CN109451554B - 一种无线网络路径优化方法及系统 - Google Patents

一种无线网络路径优化方法及系统 Download PDF

Info

Publication number
CN109451554B
CN109451554B CN201811397178.9A CN201811397178A CN109451554B CN 109451554 B CN109451554 B CN 109451554B CN 201811397178 A CN201811397178 A CN 201811397178A CN 109451554 B CN109451554 B CN 109451554B
Authority
CN
China
Prior art keywords
node
nodes
initial
path
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811397178.9A
Other languages
English (en)
Other versions
CN109451554A (zh
Inventor
陈光黎
马敬奇
赵勇
钟震宇
王楠
雷欢
周志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Intelligent Manufacturing of Guangdong Academy of Sciences
Original Assignee
Guangdong Institute of Intelligent Manufacturing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Institute of Intelligent Manufacturing filed Critical Guangdong Institute of Intelligent Manufacturing
Priority to CN201811397178.9A priority Critical patent/CN109451554B/zh
Publication of CN109451554A publication Critical patent/CN109451554A/zh
Application granted granted Critical
Publication of CN109451554B publication Critical patent/CN109451554B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/248Connectivity information update

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线网络路径优化方法及系统,包括以下步骤:获取网络的源节点与目标节点,从源节点出发,通过遗传算法找到适应度值大于预设值的若干个优节点,将若干个优节点作为初始节点,通过A*算法找出各个初始节点到目标节点的最短路径,计算各条最短路径的长度并进行比较,从中选取长度最小的最短路径,提取出该长度最小的最短路径的初始节点,并保存,判断步骤S14中提取得到的初始节点是否为目标节点,若是,则按顺序输出所有已经保存的节点,否则返回到步骤S12中重新进行计算和判断。本发明将遗传算法和A*算法进行融合,不仅达到了能快速找到网络中最优路径,而且还提高了网路传输数据的稳定性和可靠性,延长了网络使用寿命的目的。

Description

一种无线网络路径优化方法及系统
技术领域
本发明属于通信技术领域,具体地说是一种无线网络路径优化方法及系统。
背景技术
无线传感器网络(Wireless Sensor Networks,WSN)综合了嵌入式技术、无线通信技术、传感器技术和分布式信息处理技术等,由大量能量有限传感器节点以多跳自组织方式形成一个无线网络,其在工业生产、生物医疗、环境监测、军事国防等领域具有十分广阔的应用前景。
相对于传统无线网络,无线传感器网络上节点能量有限,且不能更换,因此保证网络能稳定的运行是无线传感器网络的一个非常重要的问题,即找到一条源节点到目标节点数据传输最优路径成为重要,使无线传感器网络生命周期最大化。由于传感器节点能量有限,路径优化设计不仅考虑数据传输路径的长度,还要考虑节省能量和网络能量均衡等问题,因此无线传感器网络路径优化是一个典型多目标优化问题。
工业现场能耗数据采集环境复杂,能源网关设备的数量、安置位置和传输方式呈现多样不确定性,由网关组成的网络节点和通讯链路构成整个实时变化的拓扑网络系统,而实际应用中由于应用环境复杂性、网络传输不确定性、多节点带宽共享等问题的存在,可能导致某一通信链路的时延突然增大、数据丢失,甚至是链路中断等问题。
发明内容
为解决上述技术问题,本发明提供了一种无线网络路径优化方法和系统。
为了解决上述技术问题,本发明采取以下技术方案:
一种无线网络路径优化方法,包括以下步骤:
S11,获取网络的源节点与目标节点;
S12,从源节点出发,通过遗传算法找到适应度值大于预设值的若干个优节点;
S13,将若干个优节点作为初始节点,通过A*算法找出各个初始节点到目标节点的最短路径;
S14,计算各条最短路径的长度并进行比较,从中选取长度最小的最短路径,提取出该长度最小的最短路径的初始节点,并保存;
S15,判断步骤S14中提取得到的初始节点是否为目标节点,若是,则按顺序输出所有已经保存的节点,得到最优网络路径,否则返回到步骤S12中重新进行计算和判断。
所述步骤S12具体包括:
S12.1,对数据进行编码,生成初始父代群体,编码公式为
Figure BDA0001875455690000021
其中,x表示区间内的变量,[a,b]表示这个数据的区间,l表示这个区间的长度,[S]2表示二进制串;
S12.2,计算所有的父代群体中的各个个体的适应度值,保存适应度值大于预设值的节点。
所述步骤S12.2具体为:
计算适应度值时,采用适应度值函数:
F(P)=α1M1(p)+α2M2(p)+α3M3(p)
其中,F(P)为总的权值和,α1、α2、α3分别为路径长度、能量消耗和网络能量均衡在适应度函数中的权重,M1(p)、M2(p)、M3(p)分别代表路径长度、能量消耗和网络能量均衡;
通过公式
Figure BDA0001875455690000022
来计算路径长度,其中,m(ni,ni+1)是节点ni和ni+1之间的距离;
M2(p)为路径能量消耗,与节点的发射功率、能量消耗和路径长度的平方成正比;
M3(p)为网络能量均衡消耗,可通过公式:
Figure BDA0001875455690000031
其中α(li,li+1)为第i节点与第i+1节点之间的均衡能量消耗值,n表示当前路径上的所有节点数目。
所述步骤S12.2中,若计算得到的各个个体的适应度值都小于预设值,则对父代群体进行选择、交叉、变异处理,具体为:首先在父代群体中的个体编码串中随机设定一个变异节点,随后计算该变异节点的自适应变异概率,最后用自适应变异概率对父代个体变异基因进行非均匀变异,产生一个服从非均匀变异的随机值,用来替换变异节点上的原有值,以产生新的个体,然后再重新计算该新的个体的适应度值,直到产生适应度值大于预设值的节点。
所述对父代群体进行选择处理时,具体采用轮盘赌选择法:通过各个个体的累计概率
Figure BDA0001875455690000032
然后产生0到1之间的随机数e,随机数e与px(ak)进行比较来决定选择的个体,若ak-1<e<ak,则选择第k个个体,通过重复n轮产生n个子代个体;
采用单点交叉方法对父代群体交叉处理,对两个父代群体中的个体中某节点之后的编码进行互换操作;
最后用非均匀变异概率方法对群体进行变异处理。
所述进行非均匀变异概率方法进行变异处理时,非均匀变异概率的计算公式具体为:
Figure BDA0001875455690000041
其中,Pm为变异概率,Pmax和Pmin分别为最大和最小变异概率,fmax和favg分别为当前群体中的最大适应度值和平均适应度值,f为该个体的适应度值。
所述步骤S13中采用的A*算法,具体公式为:
f(n)=g(n)+h(n)
其中,f(n)是从初始状节点经由节点n到目标节点的距离估值,g(n)是在从初始节点到节点n的距离的实际值,h(n)是从状态n到目标节点的距离估值;
具体包括以下步骤:
S13.1,确定初始节点与目标节点,将初始节点放入OPEN表,CLOSE表置空;
S13.2,将OPEN表中的表头点放入CLOSE表中,将初始节点的所有后继点展开,也就是与初始节点直接关联的后继点放入OPEN表,同时计算每一个后继节点的距离估值f(n),并按f(n)升序排列;
S13.3,重复步骤S13.2,直至最后将目标节点放入CLOSE表中,这群节点的排列就是该初始节点开始到目标节点的最短路径。
一种无线网络的优化系统,所述系统包括:
获取单元,用于获取网络的源节点与目标节点;
寻找单元,用于从源节点出发,通过遗传算法找到大于预设值的若干个优节点;
最短路径计算单元,用于通过A*算法找出若干个优节点到目标节点的最短路径;
比较单元,用于比较得到的各条最短路径的长短;
判断单元,用于判断当前节点是否为目标节点,若是,则按顺序输出所有已经保存的节点,否则返回到寻找单元搜寻新的优节点。
本发明采用了遗传算法与A*算法的结合,融合了两种算法的优点,使寻找到的路径为最优路径,从而确保系统稳定、可靠以及高效运行,延长了网络的使用寿命。
附图说明
附图1为本发明流程示意图;
附图2为本发明遗传算法的流程图示意图
附图3为本发明带权有向示意图;
附图4为本发明中A*算法示意图。
具体实施方式
为能进一步了解本发明的特征、技术手段以及所达到的具体目的、功能,下面结合附图与具体实施方式对本发明作进一步详细描述。
如附图1所示,本发明揭示了一种无线网络路径优化方法,包括以下步骤:
S11,获取网络的源节点与目标节点。
S12,从源节点出发,通过遗传算法找到适应度值大于预设值的若干个优节点。从源节点开始,将每一个节点都计算得到相应的适应度值,与适应度值的预设值比较,大于预设值的就选取出来。
S13,将若干个优节点作为初始节点,通过A*算法找出各个初始节点到目标节点的最短路径。每一个优节点到目标节点具有多条路径,其中距离最短的为最短路径。有多少个优节点,相应的具有多少个最短路径。
S14,计算各条最短路径的长度并进行比较,从中选取长度最小的最短路径,提取出该长度最小的最短路径的初始节点,并保存。
S15,判断步骤S14中提取得到的初始节点是否为目标节点,若是,则按顺序输出所有已经保存的节点,得到最优网络路径,否则返回到步骤S12中重新进行计算和判断。
所述步骤S12具体包括:
S12.1,对数据进行编码,生成初始父代群体,编码公式为
Figure BDA0001875455690000061
其中,x表示区间内的变量,[a,b]表示这个数据的区间,l表示这个区间的长度,[S]2表示二进制串。
S12.2,计算所有的父代群体中的各个个体的适应度值,保存适应度值大于预设值的节点。可行路径适应度值的计算需要考虑路径长度、能量消耗和网络能量均衡等因素。由于其他因素对网络的影响比较小,因此只考虑这三个因素,舍弃其他因素,本发明优化的目的是尽量避免能量较少的节点,以达到对网络的均衡消耗,延长网络寿命的目的,因此本发明定义了一个n节点可行路径适应度函数:
F(p)=α1M1(p)+α2M2(p)+α3M3(p)+...+αnMn
其中,α1、α2、α3、...、αn分别为路径选择所需要考虑的影响属性在适应度函数中所占的权重,如距离、能量消耗和网络能量均衡消耗等这些属性在适应度函数中的权重,且α123+...+αn=1;由于其他因素对网络的影响比较小,因此本发明的可行路径适应度值的计算只考虑路径长度、能量消耗和网络能量均衡这三个因素,舍弃其他因素,则适度值函数公式简化为:
F(P)=α1M1(p)+α2M2(p)+α3M3(p)
其中,F(P)为总的权值和,α1、α2、α3分别为路径长度、能量消耗和网络能量均衡在适应度函数中的权重,M1(p)、M2(p)、M3(p)分别代表路径长度、能量消耗和网络能量均衡。
通过公式
Figure BDA0001875455690000071
来计算路径长度,其中,m(ni,ni+1)是节点ni和ni+1之间的距离。
M2(p)为路径能量消耗,与节点的发射功率、能量消耗和路径长度的平方成正比。
M3(p)为网络能量均衡消耗,可通过公式:
Figure BDA0001875455690000072
其中α(li,li+1)为第i节点与第i+1节点之间的均衡能量消耗值,n表示当前路径上的所有节点数目。
所述步骤S12.2中,若计算得到的各个个体的适应度值都小于预设值,则对父代群体进行选择、交叉、变异处理,具体为:首先在父代群体中的个体编码串中随机设定一个变异节点,随后计算该变异节点的自适应变异概率,最后用自适应变异概率对父代个体变异基因进行非均匀变异,产生一个服从非均匀变异的随机值,用来替换变异节点上的原有值,以产生新的个体,然后再重新计算该新的个体的适应度值,直到产生适应度值大于预设值的节点。
所述对父代群体进行选择处理时,具体采用轮盘赌选择法:通过各个个体的累计概率
Figure BDA0001875455690000073
然后产生0到1之间的随机数e,随机数e与px(ak)进行比较来决定选择的个体,若ak-1<e<ak,则选择第k个个体,通过重复n轮产生n个子代个体。
采用单点交叉方法对父代群体交叉处理,对两个父代群体中的个体中某节点之后的编码进行互换操作。
最后用非均匀变异概率方法对群体进行变异处理。
所述进行非均匀变异概率方法进行变异处理时,非均匀变异概率的计算公式具体为:
Figure BDA0001875455690000081
其中,Pm为变异概率,Pmax和Pmin分别为最大和最小变异概率,fmax和favg分别为当前群体中的最大适应度值和平均适应度值,f为该个体的适应度值。
所述步骤S13中采用的A*算法,具体公式为:
f(n)=g(n)+h(n)
其中,f(n)是从初始状节点经由节点n到目标节点的距离估值,g(n)是在从初始节点到节点n的距离的实际值,h(n)是从状态n到目标节点的距离估值。
具体包括以下步骤:
S13.1,确定初始节点与目标节点,将初始节点放入OPEN表,CLOSE表置空。
S13.2,将OPEN表中的表头点放入CLOSE表中,将初始节点的所有后继点展开,也就是与初始节点直接关联的后继点放入OPEN表,同时计算每一个后继节点的距离估值f(n),并按f(n)升序排列,{如:(N3,50) (N1,80) (N4,90)}。
S13.3,重复步骤S13.2,直至最后将目标节点放入CLOSE表中,这群节点的排列就是该初始节点开始到目标节点的最短路径,{如:(N0,0) (N3,50) (N4,70) (N6,50) (N1,80) (N7,70)}。
另外,本发明还揭示了一种无线网络的优化系统,所述系统包括:
获取单元,用于获取网络的源节点与目标节点;寻找单元,用于从源节点出发,通过遗传算法找到大于预设值的若干个优节点;最短路径计算单元,用于通过A*算法找出若干个优节点到目标节点的最短路径;比较单元,用于比较得到的各条最短路径的长短;判断单元,用于判断当前节点是否为目标节点,若是,则按顺序输出所有已经保存的节点,否则返回到寻找单元搜寻新的优节点。
需要说明的是,以上仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但是凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种无线网络路径优化方法,包括以下步骤:
S11,获取网络的源节点与目标节点;
S12,从源节点出发,通过遗传算法找到适应度值大于预设值的若干个优节点;
S13,将若干个优节点作为初始节点,通过A*算法找出各个初始节点到目标节点的最短路径;
S14,计算各条最短路径的长度并进行比较,从中选取长度最小的最短路径,提取出该长度最小的最短路径的初始节点,并保存;
S15,判断步骤S14中提取得到的初始节点是否为目标节点,若是,则按顺序输出所有已经保存的节点,得到最优网络路径,否则返回到步骤S12中重新进行计算和判断;
所述步骤S12具体包括:
S12.1,对数据进行编码,生成初始父代群体,编码公式为
Figure FDA0002596617000000011
其中,x表示区间内的变量,[a,b]表示这个数据的区间,l表示这个区间的长度,[S]2表示二进制串;
S12.2,计算所有的父代群体中的各个个体的适应度值,保存适应度值大于预设值的节点;
所述步骤S12.2具体为:
计算适应度值时,采用适应度值函数:
F(P)=α1M1(p)+α2M2(p)+α3M3(p)
其中,F(P)为总的权值和,α1、α2、α3分别为路径长度、能量消耗和网络能量均衡在适应度函数中的权重,M1(p)、M2(p)、M3(p)分别代表路径长度、能量消耗和网络能量均衡;
通过公式
Figure FDA0002596617000000021
来计算路径长度,其中,m(ni,ni+1)是节点ni和ni+1之间的距离;
M2(p)为路径能量消耗,与节点的发射功率、能量消耗和路径长度的平方成正比;
M3(p)为网络能量均衡消耗,可通过公式:
Figure FDA0002596617000000022
其中α(li,li+1)为第i节点与第i+1节点之间的均衡能量消耗值,n表示当前路径上的所有节点数目。
2.根据权利要求1所述的无线网络路径优化方法,其特征在于,所述步骤S12.2中,若计算得到的各个个体的适应度值都小于预设值,则对父代群体进行选择、交叉、变异处理,具体为:首先在父代群体中的个体编码串中随机设定一个变异节点,随后计算该变异节点的自适应变异概率,最后用自适应变异概率对父代个体变异基因进行非均匀变异,产生一个服从非均匀变异的随机值,用来替换变异节点上的原有值,以产生新的个体,然后再重新计算该新的个体的适应度值,直到产生适应度值大于预设值的节点。
3.根据权利要求2所述的无线网络路径优化方法,其特征在于,所述对父代群体进行选择处理时,具体采用轮盘赌选择法:通过各个个体的累计概率
Figure FDA0002596617000000031
然后产生0到1之间的随机数e,随机数e与px(ak)进行比较来决定选择的个体,若ak-1<e<ak,则选择第k个个体,通过重复n轮产生n个子代个体;
采用单点交叉方法对父代群体交叉处理,对两个父代群体中的个体中某节点之后的编码进行互换操作;
最后用非均匀变异概率方法对群体进行变异处理。
4.根据权利要求3所述的无线网络路径优化方法,其特征在于,所述进行非均匀变异概率方法进行变异处理时,非均匀变异概率的计算公式具体为:
Figure FDA0002596617000000032
其中,Pm为变异概率,Pmax和Pmin分别为最大和最小变异概率,fmax和favg分别为当前群体中的最大适应度值和平均适应度值,f为该个体的适应度值。
5.根据权利要求4所述的无线网络路径优化方法,其特征在于,所述步骤S13中采用的A*算法,具体公式为:
f(n)=g(n)+h(n)
其中,f(n)是从初始状节点经由节点n到目标节点的距离估值,g(n)是在从初始节点到节点n的距离的实际值,h(n)是从状态n到目标节点的距离估值;
具体包括以下步骤:
S13.1,确定初始节点与目标节点,将初始节点放入OPEN表,CLOSE表置空;
S13.2,将OPEN表中的表头点放入CLOSE表中,将初始节点的所有后继点展开,也就是与初始节点直接关联的后继点放入OPEN表,同时计算每一个后继节点的距离估值f(n),并按f(n)升序排列;
S13.3,重复步骤S13.2,直至最后将目标节点放入CLOSE表中,这群节点的排列就是该初始节点开始到目标节点的最短路径。
CN201811397178.9A 2018-11-22 2018-11-22 一种无线网络路径优化方法及系统 Active CN109451554B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811397178.9A CN109451554B (zh) 2018-11-22 2018-11-22 一种无线网络路径优化方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811397178.9A CN109451554B (zh) 2018-11-22 2018-11-22 一种无线网络路径优化方法及系统

Publications (2)

Publication Number Publication Date
CN109451554A CN109451554A (zh) 2019-03-08
CN109451554B true CN109451554B (zh) 2020-12-22

Family

ID=65553494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811397178.9A Active CN109451554B (zh) 2018-11-22 2018-11-22 一种无线网络路径优化方法及系统

Country Status (1)

Country Link
CN (1) CN109451554B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456789A (zh) * 2019-07-23 2019-11-15 中国矿业大学 一种清洁机器人的全覆盖路径规划方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749084A (zh) * 2012-07-10 2012-10-24 南京邮电大学 一种面向海量交通信息的路径选择方法
CN102880186A (zh) * 2012-08-03 2013-01-16 北京理工大学 基于稀疏a*算法和遗传算法的航迹规划方法
CN106444755A (zh) * 2016-09-22 2017-02-22 江苏理工学院 基于改进遗传算法的移动机器人路径规划方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749084A (zh) * 2012-07-10 2012-10-24 南京邮电大学 一种面向海量交通信息的路径选择方法
CN102880186A (zh) * 2012-08-03 2013-01-16 北京理工大学 基于稀疏a*算法和遗传算法的航迹规划方法
CN106444755A (zh) * 2016-09-22 2017-02-22 江苏理工学院 基于改进遗传算法的移动机器人路径规划方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于改进A*算法的导购路径规划方法;钟志峰等;《计算机工程与应用》;20181026;全文 *

Also Published As

Publication number Publication date
CN109451554A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
Elhoseny et al. Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm
Elhoseny et al. Dynamic clustering of heterogeneous wireless sensor networks using a genetic algorithm, towards balancing energy exhaustion
Qiu et al. A data-driven robustness algorithm for the internet of things in smart cities
CN107277889A (zh) 一种基于k‑means的无线传感器网络分簇方法
CN108737191B (zh) 面向超密集无线传感器网基于无监督学习的拓扑控制方法
Zhong et al. Ant colony optimization algorithm for lifetime maximization in wireless sensor network with mobile sink
Balamurugan et al. Hybrid Marine predators optimization and improved particle swarm optimization-based optimal cluster routing in wireless sensor networks (WSNs)
Liu et al. Joint design of energy-efficient clustering and data recovery for wireless sensor networks
CN109451554B (zh) 一种无线网络路径优化方法及系统
Nabavi et al. Intelligent optimization of qos in wireless sensor networks using multiobjective grey wolf optimization algorithm
Cao et al. A mobility-supported routing mechanism in industrial IoT networks
Sharma et al. Optimized genetic algorithm (OGA) for homogeneous WSNs
Wen et al. Energy efficient data collection scheme in mobile wireless sensor networks
Das et al. Energy efficient and trustable routing protocol for wireless sensor networks based on genetic algorithm (E2TRP)
CN108684066B (zh) 基于K-medoids的无线传感器网络分簇方法
Wu et al. Lifetime enhancement by cluster head evolutionary energy efficient routing model for WSN
Ghasemzadeh et al. Improving LEACH protocol using SFLA algorithm to reduce the energy consumption of wireless sensor networks
Khalil et al. CDS based reliable topology control in WSNs
Kaviarasan et al. A Novel Spider Monkey Optimized Fuzzy C-Means Algorithm (SMOFCM) for Energy-Based Cluster-Head Selection in WSNs
KR20120044703A (ko) 무선 센서 및 액터 네트워크의 주문형 라우팅 방법
Hu et al. A rendezvous node selection and routing algorithm for mobile wireless sensor network
Khalil et al. Prolonging stability period of CDS based WSNs
CN107911851B (zh) 以数据为中心的无线传感器网络中生命期最优dag分解方法
Wu et al. A hybrid optimisation algorithm based on GA algorithm and ACO algorithm improvements for routing selection in heterogeneous sensor networks
Ramadhan et al. Modified Combined LEACH and PEGASIS Routing Protocol for Energy Efficiency in IoT Network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 510000 13 building, 100 martyrs Road, Yuexiu District, Guangzhou, Guangdong.

Patentee after: Institute of intelligent manufacturing, Guangdong Academy of Sciences

Address before: 510000 13 building, 100 martyrs Road, Yuexiu District, Guangzhou, Guangdong.

Patentee before: GUANGDONG INSTITUTE OF INTELLIGENT MANUFACTURING

CP01 Change in the name or title of a patent holder