CN109449935A - 一种基于能源互联的时序生产模拟方法及系统 - Google Patents

一种基于能源互联的时序生产模拟方法及系统 Download PDF

Info

Publication number
CN109449935A
CN109449935A CN201811530798.5A CN201811530798A CN109449935A CN 109449935 A CN109449935 A CN 109449935A CN 201811530798 A CN201811530798 A CN 201811530798A CN 109449935 A CN109449935 A CN 109449935A
Authority
CN
China
Prior art keywords
load
timing
energy source
source interconnection
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811530798.5A
Other languages
English (en)
Other versions
CN109449935B (zh
Inventor
田鑫
李雪亮
吴健
李琨
曾军
赵龙
王艳
郑志杰
张�杰
牟宏
汪湲
高效海
张丽娜
张玉跃
付木
付一木
魏鑫
袁振华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201811530798.5A priority Critical patent/CN109449935B/zh
Publication of CN109449935A publication Critical patent/CN109449935A/zh
Application granted granted Critical
Publication of CN109449935B publication Critical patent/CN109449935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及电网规划技术领域,提供一种基于能源互联的时序生产模拟方法及系统,方法包括:对当前时间节点进行监控,判断当前时间是否到达时序生产模拟时间阈值;是则分配基于能源互联的复杂电网的能源负荷,并模拟各个发电机组的运行状态,形成所对应时间区间的持续负荷曲线;依据形成的所述持续负荷曲线,计算发电系统产生的费用信息;否则返回执行所述对当前时间节点进行监控的步骤,从而实现更加确切地评价通过各种负荷管理方式分配负荷对系统运行的影响,还可以通过改变机组启停机限制、机组出力变化的速率等约束条件,实现不同情况下的实时优化。

Description

一种基于能源互联的时序生产模拟方法及系统
技术领域
本发明属于电网规划技术领域,尤其涉及一种基于能源互联的时序生产模拟方法及系统。
背景技术
近年来,随着电力系统规模的不断增加,风电、太阳能等间歇性能源的加入,大规模跨流域多级水电站的建设,核电、抽水蓄能电站、燃气轮机等多种类型电源的接入以及电网远距离交直流混合输电的格局等因素都极大增加了电网运行的复杂度。如何在复杂电源电网环境下优化系统运行,提高系统的节能经济性、降低系统排放强度成为电网规划面临的重要问题。电网的运行优化涉及系统调峰、复杂电源结构协调、线路断面潮流安全等多方面的因素,针对典型运行方式的分析往往仅能实现对系统安全性的评价,而对于系统能耗、成本以及排放而言过于粗略,需要对电网长时间范围内的运行模拟才能够精细化评价不同调度运行方案的节能性、经济性以及碳排放强度。
电力系统运行模拟一般被用于电源规划及电网规划的评价及对比中,近年来也用于新能源消纳的相关研究。目前研究中提出的电力运行模拟方法归纳起来可分为确定型和不确定型两种模型。确定型模型主要用于校验和分析备选的电力规划方案。不确定模型又可划分为随机性和概率性,随机性不确定模型主要有Monte carlo和Markov法;概率性模型常见的方法有分段直线逼近法、分块法、等效电量函数法、累积量法、正态混合近似法等。确定型生产模拟可以考虑和时间、空间相关的一些约束条件,但仅用一定的系统的备用容量摸拟机组的事故,对电力系统的可靠性分析缺乏深度;不确定型生产模拟弥补了确定型模拟的不足,然而在时序负荷曲线下进行生产模拟计算由于计算量太大而失去其适应性。
发明内容
针对现有技术中的缺陷,本发明提供了一种基于能源互联的时序生产模拟方法,旨在解决现有技术中确定型生产模拟和不确定型生产模拟均存在模拟缺陷的技术问题。
本发明所提供的技术方案是:一种基于能源互联的时序生产模拟方法,所述方法包括下述步骤:
对当前时间节点进行监控,判断当前时间是否到达预先设置的时序生产模拟时间阈值;
当当前时间到达预先设置的时序生产模拟时间阈值时,分配基于能源互联的复杂电网的能源负荷,并模拟各个发电机组的运行状态,形成所对应时间区间的持续负荷曲线;
依据形成的所述持续负荷曲线,计算发电系统产生的费用信息;
当当前时间未到达预先设置的时序生产模拟时间阈值时,返回执行所述对当前时间节点进行监控的步骤。
作为一种改进的方案,所述方法还包括下述步骤:
预先设置时序生产模拟时间阈值,所述时序生产模拟时间阈值用于界定时序生产模拟时间间隔。
作为一种改进的方案,所述当当前时间到达预先设置的时序生产模拟时间阈值时,分配基于能源互联的复杂电网的能源负荷的步骤之前还包括下述步骤:
根据已知年的负荷曲线形状,构建规划水平年的8760点负荷。
作为一种改进的方案,所述根据已知年的负荷曲线形状,构建规划水平年的8760点负荷的步骤具体包括下述步骤:
根据一定的预测方法获得规划水平年的最高负荷和全年用电量;
根据已知年的负荷曲线形状为基础,构造规划水平年全年8760时点的负荷,其中,负荷值的计算式为:
其中,Pi,t代表第i天t时段的负荷值,Pmax代表规划水平年的最高负荷预测值,代表全年最高负荷,代表全天最高负荷;α为日峰谷差变化系数,的取值范围为0到1之间;β为季特性系数,取值范围为0到1之间,γ为日特性系数。
作为一种改进的方案,所述依据形成的所述持续负荷曲线,计算发电系统产生的费用信息的步骤具体包括下述步骤:
依据形成的所述持续负荷曲线,根据合理的指标安排机组检修计划;
确定机组带负荷顺位排序;
按照确定的机组带负荷顺序,计算各机组发电曲线;
计算发电系统产生的费用信息,所述费用信息包括燃料费用和运行费用。
本发明的另一目的在于提供一种基于能源互联的时序生产模拟系统,所述系统包括:
时间监控模块,用于对当前时间节点进行监控;
判断模块,用于判断当前时间是否到达预先设置的时序生产模拟时间阈值;
负荷曲线形成模块,用于当当前时间到达预先设置的时序生产模拟时间阈值时,分配基于能源互联的复杂电网的能源负荷,并模拟各个发电机组的运行状态,形成所对应时间区间的持续负荷曲线;
费用信息计算模块,用于依据形成的所述持续负荷曲线,计算发电系统产生的费用信息;
返回执行模块,用于当当前时间未到达预先设置的时序生产模拟时间阈值时,返回执行所述对当前时间节点进行监控的步骤。
作为一种改进的方案,所述系统还包括:
时间阈值设置模块,用于预先设置时序生产模拟时间阈值,所述时序生产模拟时间阈值用于界定时序生产模拟时间间隔。
作为一种改进的方案,所述系统还包括:
负荷构建模块,用于根据已知年的负荷曲线形状,构建规划水平年的8760点负荷。
作为一种改进的方案,所述负荷构建模块包括:
数据获取模块,用于根据一定的预测方法获得规划水平年的最高负荷和全年用电量;
构造模块,用于根据已知年的负荷曲线形状为基础,构造规划水平年全年8760时点的负荷,其中,负荷值的计算式为:
其中,Pi,t代表第i天t时段的负荷值,Pmax代表规划水平年的最高负荷预测值,代表全年最高负荷,代表全天最高负荷;α为日峰谷差变化系数,的取值范围为0到1之间;β为季特性系数,取值范围为0到1之间,γ为日特性系数。
作为一种改进的方案,所述费用信息计算模块具体包括:
机组检修计划安排模块,用于依据形成的所述持续负荷曲线,根据合理的指标安排机组检修计划;
负荷顺序确定模块,用于确定机组带负荷顺位排序;
机组发电曲线计算模块,用于按照确定的机组带负荷顺序,计算各机组发电曲线;
计算模块,用于计算发电系统产生的费用信息,所述费用信息包括燃料费用和运行费用。
在本发明实施例中,对当前时间节点进行监控,判断当前时间是否到达预先设置的时序生产模拟时间阈值;当当前时间到达预先设置的时序生产模拟时间阈值时,分配基于能源互联的复杂电网的能源负荷,并模拟各个发电机组的运行状态,形成所对应时间区间的持续负荷曲线;依据形成的所述持续负荷曲线,计算发电系统产生的费用信息;当当前时间未到达预先设置的时序生产模拟时间阈值时,返回执行所述对当前时间节点进行监控的步骤,从而实现更加确切地评价通过各种负荷管理方式分配负荷对系统运行的影响,还可以通过改变机组启停机限制、机组出力变化的速率等约束条件,实现不同情况下的实时优化。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1是本发明提供的基于能源互联的时序生产模拟方法的实现流程图;
图2是本发明提供的根据已知年的负荷曲线形状,构建规划水平年的8760点负荷的实现流程图;
图3是本发明提供的依据形成的所述持续负荷曲线,计算发电系统产生的费用信息的实现流程图;
图4是本发明提供的基于能源互联的时序生产模拟系统的结构框图;
图5是本发明提供的费用信息计算模块的结构框图。
具体实施方式
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的、技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。
图1是本发明提供的基于能源互联的时序生产模拟方法的实现流程图,其具体包括下述步骤:
在步骤S101中,对当前时间节点进行监控。
在步骤S102中,判断当前时间是否到达预先设置的时序生产模拟时间阈值,是则执行步骤S103,否则返回执行所述对当前时间节点进行监控的步骤。
在步骤S103中,当当前时间到达预先设置的时序生产模拟时间阈值时,分配基于能源互联的复杂电网的能源负荷,并模拟各个发电机组的运行状态,形成所对应时间区间的持续负荷曲线。
在步骤S104中,依据形成的所述持续负荷曲线,计算发电系统产生的费用信息。
其中,在执行上述步骤S101之前还需要执行下述步骤:
预先设置时序生产模拟时间阈值,所述时序生产模拟时间阈值用于界定时序生产模拟时间间隔,该时序生产模拟时间阈值可以是十五分钟,也可以是一小时,在此不再赘述。
在本发明实施例中,时序生产模拟保留了负荷曲线形状随时间变化的特点,以每小时或者十五分钟(时间分辨率可以为任意设定值)为单位模拟系统运行。这样可以更确切地评价通过各种负荷管理方式分配负荷对系统运行的影响;还可以通过改变机组启停机限制、机组出力变化的速率等约束条件,实现不同情况下的实时优化。
在本发明实施例中,所述当当前时间到达预先设置的时序生产模拟时间阈值时,分配基于能源互联的复杂电网的能源负荷的步骤之前还包括下述步骤:
根据已知年的负荷曲线形状,构建规划水平年的8760点负荷。
其中,如图2所示,该根据已知年的负荷曲线形状,构建规划水平年的8760点负荷的具体实现过程为:
在步骤S201中,根据一定的预测方法获得规划水平年的最高负荷和全年用电量;
在步骤S202中,根据已知年的负荷曲线形状为基础,构造规划水平年全年8760时点的负荷,其中,负荷值的计算式为:
其中,Pi,t代表第i天t时段的负荷值,Pmax代表规划水平年的最高负荷预测值,代表全年最高负荷,代表全天最高负荷;α为日峰谷差变化系数,的取值范围为0到1之间;β为季特性系数,取值范围为0到1之间,γ为日特性系数。
在本发明实施例中,如图3所示,依据形成的所述持续负荷曲线,计算发电系统产生的费用信息的步骤具体包括下述步骤:
在步骤S301中,依据形成的所述持续负荷曲线,根据合理的指标安排机组检修计划。
在步骤S302中,确定机组带负荷顺位排序。
在步骤S303中,按照确定的机组带负荷顺序,计算各机组发电曲线。
在步骤S304中,计算发电系统产生的费用信息,所述费用信息包括燃料费用和运行费用。
在本发明实施例中,通过时序生产模拟可制定发电系统燃料供应计划;分析与邻近系统进行电能日交换,周交换,月交换和季节交换等项措施的经济效益;时序生产模拟的结果可以输入到财务分析模型中,以确定电力系统的财务需求和经济规划效果。时序生产模拟在电力系统发电计划制定,电源规划等方面运用较多。
图4示出了本发明提供的基于能源互联的时序生产模拟系统的结构框图,为了便于说明,图中仅给出了与本发明实施例相关的部分。
基于能源互联的时序生产模拟系统包括:
时间监控模块11,用于对当前时间节点进行监控;
判断模块12,用于判断当前时间是否到达预先设置的时序生产模拟时间阈值;
负荷曲线形成模块13,用于当当前时间到达预先设置的时序生产模拟时间阈值时,分配基于能源互联的复杂电网的能源负荷,并模拟各个发电机组的运行状态,形成所对应时间区间的持续负荷曲线;
费用信息计算模块14,用于依据形成的所述持续负荷曲线,计算发电系统产生的费用信息;
返回执行模块15,用于当当前时间未到达预先设置的时序生产模拟时间阈值时,返回执行所述对当前时间节点进行监控的步骤。
其中,所述系统还包括:
时间阈值设置模块16,用于预先设置时序生产模拟时间阈值,所述时序生产模拟时间阈值用于界定时序生产模拟时间间隔。
在本发明实施例中,所述系统还包括:
负荷构建模块17,用于根据已知年的负荷曲线形状,构建规划水平年的8760点负荷。
结合图4所示,所述负荷构建模块17包括:
数据获取模块18,用于根据一定的预测方法获得规划水平年的最高负荷和全年用电量;
构造模块19,用于根据已知年的负荷曲线形状为基础,构造规划水平年全年8760时点的负荷,其中,负荷值的计算式为:
其中,Pi,t代表第i天t时段的负荷值,Pmax代表规划水平年的最高负荷预测值,代表全年最高负荷,代表全天最高负荷;α为日峰谷差变化系数,的取值范围为0到1之间;β为季特性系数,取值范围为0到1之间,γ为日特性系数。
在本发明实施例中,如图5所示,所述费用信息计算模块14具体包括:
机组检修计划安排模块20,用于依据形成的所述持续负荷曲线,根据合理的指标安排机组检修计划;
负荷顺序确定模块21,用于确定机组带负荷顺位排序;
机组发电曲线计算模块22,用于按照确定的机组带负荷顺序,计算各机组发电曲线;
计算模块23,用于计算发电系统产生的费用信息,所述费用信息包括燃料费用和运行费用。
其中,上述各个模块的功能如上述方法实施例所记载,在此不再赘述。
在本发明实施例中,对当前时间节点进行监控,判断当前时间是否到达预先设置的时序生产模拟时间阈值;当当前时间到达预先设置的时序生产模拟时间阈值时,分配基于能源互联的复杂电网的能源负荷,并模拟各个发电机组的运行状态,形成所对应时间区间的持续负荷曲线;依据形成的所述持续负荷曲线,计算发电系统产生的费用信息;当当前时间未到达预先设置的时序生产模拟时间阈值时,返回执行所述对当前时间节点进行监控的步骤,从而实现更加确切地评价通过各种负荷管理方式分配负荷对系统运行的影响,还可以通过改变机组启停机限制、机组出力变化的速率等约束条件,实现不同情况下的实时优化。
以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (10)

1.一种基于能源互联的时序生产模拟方法,其特征在于,所述方法包括下述步骤:
对当前时间节点进行监控,判断当前时间是否到达预先设置的时序生产模拟时间阈值;
当当前时间到达预先设置的时序生产模拟时间阈值时,分配基于能源互联的复杂电网的能源负荷,并模拟各个发电机组的运行状态,形成所对应时间区间的持续负荷曲线;
依据形成的所述持续负荷曲线,计算发电系统产生的费用信息;
当当前时间未到达预先设置的时序生产模拟时间阈值时,返回执行所述对当前时间节点进行监控的步骤。
2.根据权利要求1所述的基于能源互联的时序生产模拟方法,其特征在于,所述方法还包括下述步骤:
预先设置时序生产模拟时间阈值,所述时序生产模拟时间阈值用于界定时序生产模拟时间间隔。
3.根据权利要求2所述的基于能源互联的时序生产模拟方法,其特征在于,所述当当前时间到达预先设置的时序生产模拟时间阈值时,分配基于能源互联的复杂电网的能源负荷的步骤之前还包括下述步骤:
根据已知年的负荷曲线形状,构建规划水平年的8760点负荷。
4.根据权利要求3所述的基于能源互联的时序生产模拟方法,其特征在于,所述根据已知年的负荷曲线形状,构建规划水平年的8760点负荷的步骤具体包括下述步骤:
根据一定的预测方法获得规划水平年的最高负荷和全年用电量;
根据已知年的负荷曲线形状为基础,构造规划水平年全年8760时点的负荷,其中,负荷值的计算式为:
其中,Pi,t代表第i天t时段的负荷值,Pmax代表规划水平年的最高负荷预测值,代表全年最高负荷,代表全天最高负荷;α为日峰谷差变化系数,的取值范围为0到1之间;β为季特性系数,取值范围为0到1之间,γ为日特性系数。
5.根据权利要求1所述的基于能源互联的时序生产模拟方法,其特征在于,所述依据形成的所述持续负荷曲线,计算发电系统产生的费用信息的步骤具体包括下述步骤:
依据形成的所述持续负荷曲线,根据合理的指标安排机组检修计划;
确定机组带负荷顺位排序;
按照确定的机组带负荷顺序,计算各机组发电曲线;
计算发电系统产生的费用信息,所述费用信息包括燃料费用和运行费用。
6.一种基于能源互联的时序生产模拟系统,其特征在于,所述系统包括:
时间监控模块,用于对当前时间节点进行监控;
判断模块,用于判断当前时间是否到达预先设置的时序生产模拟时间阈值;
负荷曲线形成模块,用于当当前时间到达预先设置的时序生产模拟时间阈值时,分配基于能源互联的复杂电网的能源负荷,并模拟各个发电机组的运行状态,形成所对应时间区间的持续负荷曲线;
费用信息计算模块,用于依据形成的所述持续负荷曲线,计算发电系统产生的费用信息;
返回执行模块,用于当当前时间未到达预先设置的时序生产模拟时间阈值时,返回执行所述对当前时间节点进行监控的步骤。
7.根据权利要求6所述的基于能源互联的时序生产模拟系统,其特征在于,所述系统还包括:
时间阈值设置模块,用于预先设置时序生产模拟时间阈值,所述时序生产模拟时间阈值用于界定时序生产模拟时间间隔。
8.根据权利要求7所述的基于能源互联的时序生产模拟系统,其特征在于,所述系统还包括:
负荷构建模块,用于根据已知年的负荷曲线形状,构建规划水平年的8760点负荷。
9.根据权利要求8所述的基于能源互联的时序生产模拟系统,其特征在于,所述负荷构建模块包括:
数据获取模块,用于根据一定的预测方法获得规划水平年的最高负荷和全年用电量;
构造模块,用于根据已知年的负荷曲线形状为基础,构造规划水平年全年8760时点的负荷,其中,负荷值的计算式为:
其中,Pi,t代表第i天t时段的负荷值,Pmax代表规划水平年的最高负荷预测值,代表全年最高负荷,代表全天最高负荷;α为日峰谷差变化系数,的取值范围为0到1之间;β为季特性系数,取值范围为0到1之间,γ为日特性系数。
10.根据权利要求6所述的基于能源互联的时序生产模拟系统,其特征在于,所述费用信息计算模块具体包括:
机组检修计划安排模块,用于依据形成的所述持续负荷曲线,根据合理的指标安排机组检修计划;
负荷顺序确定模块,用于确定机组带负荷顺位排序;
机组发电曲线计算模块,用于按照确定的机组带负荷顺序,计算各机组发电曲线;
计算模块,用于计算发电系统产生的费用信息,所述费用信息包括燃料费用和运行费用。
CN201811530798.5A 2018-12-14 2018-12-14 一种基于能源互联的时序生产模拟方法及系统 Active CN109449935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811530798.5A CN109449935B (zh) 2018-12-14 2018-12-14 一种基于能源互联的时序生产模拟方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811530798.5A CN109449935B (zh) 2018-12-14 2018-12-14 一种基于能源互联的时序生产模拟方法及系统

Publications (2)

Publication Number Publication Date
CN109449935A true CN109449935A (zh) 2019-03-08
CN109449935B CN109449935B (zh) 2021-11-16

Family

ID=65558763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811530798.5A Active CN109449935B (zh) 2018-12-14 2018-12-14 一种基于能源互联的时序生产模拟方法及系统

Country Status (1)

Country Link
CN (1) CN109449935B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106845669A (zh) * 2016-12-12 2017-06-13 国网上海市电力公司 基于指数平滑法预测电网年持续负荷的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106845669A (zh) * 2016-12-12 2017-06-13 国网上海市电力公司 基于指数平滑法预测电网年持续负荷的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
夏清,王少军,相年德: "时序负荷曲线下电力系统概率性生产模拟 ", 《中国电机工程学报》 *
韦亦龙: "《中国优秀博士学位论文全文数据库 工程科技Ⅱ辑》", 15 March 2017 *

Also Published As

Publication number Publication date
CN109449935B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
Xie et al. Autonomous optimized economic dispatch of active distribution system with multi-microgrids
Zhou et al. Multi-energy net load forecasting for integrated local energy systems with heterogeneous prosumers
Zhang et al. Short-term optimal operation of wind-solar-hydro hybrid system considering uncertainties
Bejestani et al. A hierarchical transactive control architecture for renewables integration in smart grids: Analytical modeling and stability
Liang et al. Probability-driven transmission expansion planning with high-penetration renewable power generation: A case study in northwestern China
Al-Ghandoor et al. Electricity consumption in the industrial sector of Jordan: application of multivariate linear regression and adaptive neuro-fuzzy techniques
CN109523128A (zh) 一种促进消纳的可再生能源容量配置方法
CN104377693A (zh) 一种发电生产模拟模型
Li et al. Optimal sizing of distributed generation in gas/electricity/heat supply networks
CN111200293A (zh) 基于电池损耗和分布式电网电池储能日前随机调度的方法
CN104318397A (zh) 一种基于电网短期运行行为的风险评估及分析方法
Wang et al. Integrated platform to design robust energy internet
Ahmad et al. A bio-inspired heuristic algorithm for solving optimal power flow problem in hybrid power system
Jin et al. Universal generating function based probabilistic production simulation for wind power integrated power systems
Chen et al. A BP neural network-based hierarchical investment risk evaluation method considering the uncertainty and coupling for the power grid
CN115600722A (zh) 企业电碳因子长期预测方法
Trojani et al. Stochastic security-constrained unit commitment considering electric vehicles, energy storage systems, and flexible loads with renewable energy resources
Zhang et al. Study on generation and transmission maintenance scheduling under electricity market
Wang et al. Day-ahead allocation of operation reserve in composite power systems with large-scale centralized wind farms
Wu et al. Security‐Constrained Unit Commitment with Uncertainties
Sun et al. Interval mixed-integer programming for daily unit commitment and dispatch incorporating wind power
Li et al. Reliability modeling and assessment for integrated energy system: a review of the research status and future prospects
Shariatkhah et al. Modelling the operation strategies of storages and hydro resources in adequacy analysis of power systems in presence of wind farms
Ignat-Balaci et al. Day-Ahead Scheduling, Simulation, and Real-Time Control of an Islanded Microgrid.
Xu et al. Two-layer generation expansion planning based on flexibility balance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant