CN109449583A - A kind of 5G Millimeter Wave Phased Array Antenna - Google Patents

A kind of 5G Millimeter Wave Phased Array Antenna Download PDF

Info

Publication number
CN109449583A
CN109449583A CN201811284402.3A CN201811284402A CN109449583A CN 109449583 A CN109449583 A CN 109449583A CN 201811284402 A CN201811284402 A CN 201811284402A CN 109449583 A CN109449583 A CN 109449583A
Authority
CN
China
Prior art keywords
radiation patch
arm
radiating slot
length
upper layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811284402.3A
Other languages
Chinese (zh)
Inventor
孙浩
赵继明
禹清晨
李霞
刘永宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Sun Create Electronic Co Ltd
Original Assignee
Anhui Sun Create Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Sun Create Electronic Co Ltd filed Critical Anhui Sun Create Electronic Co Ltd
Priority to CN201811284402.3A priority Critical patent/CN109449583A/en
Publication of CN109449583A publication Critical patent/CN109449583A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way

Abstract

The invention discloses a kind of 5G Millimeter Wave Phased Array Antenna, including phased array element, each phased array element includes an antenna element and a radio frequency connector c;The antenna element includes radiant section a, radiant section b;The antenna element is three ply board structure, interior to be equipped with the double-deck radiation patch;The bilayer radiation patch includes four radiation patch altogether, i.e., every layer of radiation patch includes two radiation patch;Comb shape radiating slot is provided in each radiation patch;The feeding classification of the antenna element is aperture-coupled, and is coupled with H-shaped by the way of gap matches using T shape feeding microstrip line.Antenna element of the invention reaches 30% or more relative bandwidth, to effectively raise the aperture efficiency of antenna of the invention;Antenna of the invention reduces launch loss in working frequency range, improves antenna efficiency;Improve the radiation efficiency and gain of aerial array.

Description

A kind of 5G Millimeter Wave Phased Array Antenna
Technical field
The present invention relates to the design field of millimeter wave large scale array antenna and antenna element, especially a kind of 5G milli Metric wave phased array antenna.
Background technique
With the rise of 5G mobile service, 5G network has high rate, great capacity, extremely low time delay;Relatively 4G network, the transmission rate of 5G network can promote 10~100 times, and hardware circuit solution reaches 10Gbit/s, end-to-end time delay Reach Millisecond.According to Principle of Communication, the maximum signal bandwidth of wireless communication is about 5% of carrier frequency or so, therefore, is carried Wave frequency rate it is higher, it can be achieved that signal bandwidth it is also bigger.In millimeter wave frequency band, 28GHz frequency range is most hopeful using in 5G Frequency range, the usable spectrum bandwidth of 28GHz frequency range is up to 1GHz;In comparison, the carrier wave of 4G-LTE frequency range highest frequency exists 2GHz or more, and usable spectrum bandwidth only has 100MHz.Therefore, if using millimeter wave frequency band, spectral bandwidth expands 10 times, passes Tremendous increase also can be obtained in defeated rate.Massive MIMO, BeamTrace, Beam are either used in 5G communication antenna The technologies such as Forming come realize space diversity with realize big data quantity transmission when, antenna all can use active phased array form, The scan position of antenna is generally required as -60 ° of orientation~60 °, -30 ° of pitching~30 °.For these features, 5G communication antenna Research and development have become the key points and difficulties of 5G mobile service.
In the prior art, phased array element includes an antenna element and a radio frequency connector, the existing list of antenna element Layer radiation patch also has the structure of multilayer single layer radiation patch, i.e., existing lamina structure also has Multilayer Structure, usually contains The frequency range of the work of the antenna of multilayer radiation patch structure can be more wider;Only one radio-frequency part of antenna element in the prior art Point, i.e. every layer of radiation patch only one radiation patch, i.e. only one radiation patch on a laminate;The radiation of the prior art is pasted The radiating slot of piece is generally independent bar shaped or L-type and C-shaped.Therefore, for the design of antenna element, there are also very big Room for promotion.
Summary of the invention
In order to overcome above-mentioned defect in the prior art, the present invention provides a kind of 5G Millimeter Wave Phased Array Antenna, is working In frequency range, reduce launch loss, improves antenna efficiency;Improve the radiation efficiency and gain of aerial array;And the present invention Antenna element reach 30% or more relative bandwidth, to effectively raise the aperture efficiency of antenna of the invention.
To achieve the above object, the present invention uses following technical scheme, comprising:
A kind of 5G Millimeter Wave Phased Array Antenna, including phased array element, each phased array element include an antenna element With a radio frequency connector c;The antenna element includes radiant section a, radiant section b;
The antenna element is three ply board structure, from top to bottom successively are as follows: upper layer radiant panel (1), mesosphere board (2), bottom Laminate (3);
The double-deck radiation patch is equipped in the antenna element, the bilayer radiation patch includes four radiation patch altogether, point Not are as follows: the first radiation patch of upper layer (41), the second radiation patch of upper layer (42), the first radiation patch of lower layer (51), lower layer second Radiation patch (52);
First radiation patch of upper layer (41) and the second radiation patch of the upper layer (42) are along upper layer radiant panel (1) Short side direction, that is, width direction symmetrically overlays on the copper billet of the upper surface of upper layer radiant panel (1);
First radiation patch of lower layer (51) and the second radiation patch of the lower layer (52) are along the short of mesosphere board (2) Edge direction, that is, width direction symmetrically overlays on the copper billet of the upper surface positioned at mesosphere board (2);
The center of first radiation patch of upper layer (41) is aligned with the center of first radiation patch of lower layer (51);Institute The center for stating the second radiation patch of upper layer (42) is aligned with the center of second radiation patch of lower layer (52);
The upper surface of the bottom plate (3) is equipped with the first coupling gap (61) and the second coupling gap (62);The bottom The lower surface of plate (3) is equipped with the first feeding microstrip line (71) and the second feeding microstrip line (72)
The radiant section a is by first radiation patch of upper layer (41) and the lower layer the first radiation patch (51) structure At;The radiant section b is made of second radiation patch of upper layer (42) and the second radiation patch of the lower layer (52);
The radiant section a is connected to micro- by first coupling gap (61) and first feeding microstrip line (71) One end in two output ends with T shape power splitter;The radiant section b is by second coupling gap (62) and described the Two feeding microstrip lines (72) are connected to the other end in two output ends of micro-strip T shape power splitter;And the micro-strip T shape power splitter Input terminal be connected with the radio frequency connector c.
The center of four radiation patch is etched the gap i.e. comb shape radiating slot of a comb teeth-shaped;
The center of the comb shape radiating slot of first radiation patch of upper layer (41) and first radiation patch of lower layer (51) center of comb shape radiating slot is aligned;The center of the comb shape radiating slot of second radiation patch of upper layer (42) and institute State the center alignment of the comb shape radiating slot of the second radiation patch of lower layer (52);
The comb of the comb shape radiating slot of first radiation patch of upper layer (41) and second radiation patch of upper layer (42) The opening direction of shape radiating slot is consistent;The comb shape radiating slot of first radiation patch of lower layer (51) and the lower layer The opening direction of the comb shape radiating slot of second radiation patch (52) is consistent;And first radiation patch of upper layer (41) The opening direction keeping parallelism of comb shape radiating slot and the comb shape radiating slot of first radiation patch of lower layer (51) is open Direction is identical or opposite.
The upper surface of the bottom plate (3) is covered with one layer of copper, and the upper surface of bottom plate (3) is etched two H-shaped seams Gap is as coupling gap, i.e., the first coupling gap (61) and the second coupling gap (62);
The comb shape radiating slot at the center and first radiation patch of lower layer (51) of first coupling gap (61) Center alignment;The comb shape radiating slot at the center and second radiation patch of lower layer (52) of second coupling gap (62) Center alignment;And the opening direction and four radiation patch of first coupling gap (61) and second coupling gap (62) Opening direction keep vertical.
A length of 7.5mm of the antenna element, width 5.1mm;That is upper layer radiant panel (1), mesosphere board (2), bottom plate (3) length is 7.5mm, and wide is 5.1mm;
The dielectric constant of upper layer radiant panel (1) is 3.66, with a thickness of 0.508mm;
The dielectric constant of mesosphere board (2) is 3.66, with a thickness of 0.508mm;
The dielectric constant of bottom plate (3) is 3.66, with a thickness of 0.254mm.
The length of first radiation patch of upper layer (41) and the second radiation patch of the upper layer (42) is 1.8mm, wide For 1.8mm, copper thickness is 0.018mm;First radiation patch of lower layer (51) and the second radiation patch of the lower layer (52) Length is 1.6mm, and wide is 1.6mm, and copper thickness is 0.018mm.
The comb shape radiating slot is in E shape, which is E shape radiating slot;
In E shape radiating slot and the second radiation patch of the upper layer (42) in first radiation patch of upper layer (41) The size of E shape radiating slot is identical;The E shape radiating slot (43) is by a linking arm (431) and three adjutage (432) structures At the length of three adjutages (432), width are all the same, and length is 0.1mm, and wide is 0.2mm;The linking arm (431) a length of 1.1mm, width 0.1mm;And the overall length of the E shape radiating slot (43) is 1.1mm, beam overall 0.3mm, every The slit width of seam is 0.1mm;The overall length of the E shape radiating slot (43) is the length of the linking arm (431), and beam overall is the adjutage (432) width adds the width of the linking arm (431);
In E shape radiating slot and the second radiation patch of the lower layer (52) in first radiation patch of lower layer (51) The size of E shape radiating slot is identical;The E shape radiating slot (53) is by a linking arm (531) and three adjutage (532) structures At the length of three adjutages (532), width are all the same, and length is 0.1mm, and wide is 1mm;The length of the linking arm (531) For 1.15mm, width 0.1mm;And the overall length of the E shape radiating slot is 1.15mm, beam overall 1.1mm, the slit width of every seam is 0.1mm;The overall length of the E shape radiating slot (53) is the length of the linking arm (531), and beam overall is the width of the adjutage (532) Add the width of the linking arm (531).
First coupling gap (61) and second coupling gap (62) are the identical H-shaped gap of size;H-shaped seam Gap is made of an abdomen arm (631) and two wing arms (632), a length of 0.2mm, width 1.2mm of the abdomen arm (631);Two The length of wing arm (632), width are all the same, and length is 1mm, and wide is 0.2mm;And the overall length in the H-shaped gap is 1mm, beam overall For 1.6mm, the slit width of every seam is 0.2mm;The overall length in the H-shaped gap is the length of the wing arm, and beam overall is two wing arms (632) the sum of width adds the width of the abdomen arm (631).
The lower surface of the bottom plate (3) cover there are two T shape copper billet as feeding microstrip line, i.e. the first feeding microstrip line (71) and the second feeding microstrip line (72);
First feeding microstrip line (71) is made of the first arm (711) and the second arm (712);First arm (711) Abdomen arm (631) keeping parallelism for coupling gap (61) with described first;Second arm (712) and first arm (711) are protected Hold vertical, and an end of second arm (712) connects the center of first arm (711), second arm (712) it is another One end is that the center for the abdomen arm (631) that the end far from the first arm (711) couples gap (61) with described first is aligned;
Second feeding microstrip line (72) is also made of the first arm (721) and the second arm (722);First arm (721) abdomen arm (631) keeping parallelism in gap (62) is coupled with described second;Second arm (722) and first arm (721) keep vertical, and an end of second arm (722) connects the center of first arm (721), second arm (722) another end is the center for the abdomen arm (631) that the end far from the first arm (721) couples gap (62) with described second Alignment;
The end of separate first arm (711) of the second arm (712) of first feeding microstrip line (71) and micro-strip T shape function It is divided to one end in two output ends of device to be connected by loaded line;The second arm (722) of second feeding microstrip line (72) Be connected with the other end in two output ends of micro-strip T shape power splitter by loaded line far from the end of the first arm (721).
First feeding microstrip line (71) and second feeding microstrip line (72) are the identical T shape fed microstrip of size Line, i.e., the first arm (711) of described first feeding microstrip line (71) and the first arm (721) of second feeding microstrip line (72) Size is identical, and length is 0.2mm, and wide is 1.6mm;The second arm (712) of first feeding microstrip line (71) and described the The second arm (722) size of two feeding microstrip lines (72) is identical, and length is 0.2mm, and wide is 0.2mm.
The phased array element is 5.1mm with horizontal interval, and pitching face interval forms array for the mode of 7.5mm and constitutes Phased array antenna.
The present invention has the advantages that
(1) antenna element of the invention is using the double-deck radiation patch, and radiates patch in every layer of radiation patch containing there are two Piece broadens the frequency range of Antenna Operation, improves aerial radiation gain.
(2) comb shape radiating slot is used in radiation patch of the invention, it is convenient preferably to reduce antenna patch size, simultaneously Each parameter size for adjusting comb shape radiating slot, can improve antenna match, improve the cross polarization characteristics of antenna.
(3) present invention specifically uses E shape radiating slot, is since E shape structure is relatively easy, it is easier to it realizes, with And it is convenient for adjustment parameter.
(4) antenna element of the invention reaches 30% or more relative bandwidth, effectively raises antenna of the invention Aperture efficiency.
(5) antenna of the invention reduces launch loss in working frequency range, improves antenna efficiency.
(6) present invention improves the radiation efficiency of aerial array, improves the gain of aerial array.
Detailed description of the invention
Fig. 1 is a kind of schematic diagram of 5G Millimeter Wave Phased Array Antenna structure.
Fig. 2 is a kind of schematic diagram of 5G Millimeter Wave Phased Array Antenna structure dismantling.
Fig. 3 is the dismantling schematic diagram of phased array element of the invention.
Fig. 4 is the schematic diagram that conventional phased array element forms array.
Fig. 5 is a kind of standing wave simulation curve of 5G Millimeter Wave Phased Array Antenna of the invention.
Fig. 6 is a kind of antenna pattern of 5G Millimeter Wave Phased Array Antenna of the invention.
Specific embodiment
Following will be combined with the drawings in the embodiments of the present invention, and technical solution in the embodiment of the present invention carries out clear, complete Site preparation description, it is clear that described embodiments are only a part of the embodiments of the present invention, instead of all the embodiments.It is based on Embodiment in the present invention, it is obtained by those of ordinary skill in the art without making creative efforts every other Embodiment shall fall within the protection scope of the present invention.
As shown in Figure 1, a kind of antenna element of 5G Millimeter Wave Phased Array Antenna of the present invention, the antenna element are three ply board Structure, including three layers of high frequency plate, from top to bottom successively are as follows: upper layer radiant panel 1, mesosphere board 2, bottom plate 3;
In the present embodiment, a length of 7.5mm of the antenna element, width 5.1mm;I.e. upper layer radiant panel 1, mesosphere board 2, The length of bottom plate 3 is 7.5mm, and wide is 5.1mm;
The dielectric constant of upper layer radiant panel 1 is 3.66, with a thickness of 0.508mm;
The dielectric constant of mesosphere board 2 is 3.66, with a thickness of 0.508mm;
The dielectric constant of bottom plate 3 is 3.66, with a thickness of 0.254mm.
Three layers of high frequency plate uses the form high-temperature laminating of prepreg together.
As shown in Figure 2, wherein dash area indicates that the part is covered with copper.
The double-deck radiation patch is equipped in the antenna element, the bilayer radiation patch includes four radiation patch altogether, point Not are as follows: the first radiation patch of upper layer 41, the second radiation patch of upper layer 42, the first radiation patch of lower layer 51, the radiation patch of lower layer second Piece 52.Every layer of radiation patch all includes two radiation patch.
First radiation patch of upper layer 41 and the second radiation patch of the upper layer 42 are along the short side side of upper layer radiant panel 1 The copper billet of the upper surface of upper layer radiant panel 1 is symmetrically overlayed on to i.e. width direction.In real process, above and below upper layer radiant panel 1 Two surfaces are covered with copper, and copper thickness is 0.018mm, first radiation patch of upper layer 41 and the second radiation patch of upper layer 42 For the copper billet that upper layer radiant panel 1 retains after etching, i.e., pasted on the upper and lower surfaces of upper layer radiant panel 1 except upper layer first radiates Copper except piece 41 and the second radiation patch of upper layer 42 is etched.
First radiation patch of lower layer 51 and the second radiation patch of the lower layer 52 are the short side direction along mesosphere board 2 That is the width direction copper billet that symmetrically overlays on the upper surface positioned at mesosphere board 2.In real process, up and down the two of mesosphere board 2 Surface is covered with copper, and copper thickness is 0.018mm, and first radiation patch of lower layer 51 and the second radiation patch of lower layer 52 are The copper billet that mesosphere board 2 retains after etching, i.e., the upper and lower surfaces of mesosphere board 2 remove 51 He of the first radiation patch of lower layer Copper is etched except the second radiation patch of lower layer 52.
The center of first radiation patch of upper layer (41) is aligned with the center of first radiation patch of lower layer (51);Institute The center for stating the second radiation patch of upper layer (42) is aligned with the center of second radiation patch of lower layer (52).
The center of four radiation patch is etched the gap of a comb teeth-shaped as radiating slot i.e. comb shape radiating slot Gap.The present invention can improve antenna match, improve the cross-pole of antenna by each parameter size of adjusting comb shape radiating slot Change characteristic.
The center of the comb shape radiating slot of first radiation patch of upper layer 41 and first radiation patch of lower layer 51 The center of comb shape radiating slot is aligned;The center of the comb shape radiating slot of second radiation patch of upper layer 42 and the lower layer the The center of the comb shape radiating slot of two radiation patch 52 is aligned.
Phased array antenna of the invention is poliarizing antenna, the comb shape radiating slot of first radiation patch of upper layer 41 and institute The opening direction for stating the comb shape radiating slot of the second radiation patch of upper layer 42 is consistent;First radiation patch of lower layer 51 Comb shape radiating slot and the opening direction of the comb shape radiating slot of second radiation patch of lower layer 52 are consistent;And it is described on The opening side of the comb shape radiating slot of the comb shape radiating slot and first radiation patch of lower layer 51 of the first radiation patch 41 of layer It is identical or opposite to keeping parallelism, that is, opening direction.
In the present embodiment, the length of first radiation patch of upper layer 41 and the second radiation patch of the upper layer 42 is 1.8mm wide is 1.8mm, copper thickness is 0.018mm;The comb shape of the first radiation patch of upper layer 41 and the second radiation patch of upper layer 42 Gap is E shape gap, and in the E shape radiating slot and the second radiation patch of the upper layer 42 in the first radiation patch of upper layer 41 E shape radiating slot size it is identical, which is made of a linking arm 431 and three adjutages 432, institute Length, the width for stating three adjutages 432 are all the same, and length is 0.1mm, and wide is 0.2mm;The linking arm 431 it is a length of 1.1mm, width 0.1mm;And the overall length of the E shape radiating slot 43 is 1.1mm, beam overall 0.3mm, the slit width of every seam is 0.1mm;The overall length of the E shape radiating slot 43 is the length of the linking arm 431, and beam overall is that the width of the adjutage 432 adds the company Connect the width of arm 431.
In the present embodiment, the length of first radiation patch of lower layer 51 and the second radiation patch of the lower layer 52 is 1.6mm, wide is 1.6mm, and copper thickness is 0.018mm;The comb of the first radiation patch of lower layer 51 and the second radiation patch of lower layer 52 Shape gap is E shape gap, and E shape radiating slot and the radiation patch of the lower layer second in the first radiation patch of the lower layer 51 The size of E shape radiating slot in piece 52 is identical, and the E shape radiating slot 53 is by a linking arm 531 and three 532 structures of adjutage At the length of three adjutages 532, width are all the same, and length is 0.1mm, and wide is 1mm;The linking arm 531 it is a length of 1.15mm, width 0.1mm;And the overall length of the E shape radiating slot is 1.15mm, beam overall 1.1mm, the slit width of every seam is 0.1mm;The overall length of the E shape radiating slot 53 is the length of the linking arm 531, and beam overall is that the width of the adjutage 532 adds the company Connect the width of arm 531.
In the present embodiment, the E shape radiating slot of first radiation patch of upper layer 41 and first radiation patch of lower layer The opening direction of 51 E shape radiating slot is identical.
Antenna patch size can preferably be reduced by selecting E shape gap as radiating slot in the present embodiment, and pass through tune The overall length of E shape radiating slot, beam overall, brachium, slit width are saved to improve antenna match, improves the cross polarization characteristics of antenna.
The upper surface of the bottom plate 3 is covered with one layer of copper, and copper thickness is 0.018mm, and the upper surface of bottom plate 3 is etched Two H-shaped gaps are as coupling gap, i.e., the first coupling gap 61 and the second coupling gap 62.
The center of the comb shape radiating slot at the center and first radiation patch of lower layer 51 in first coupling gap 61 Alignment;The center pair of the comb shape radiating slot at the center and second radiation patch of lower layer 52 in second coupling gap 62 Together;And the opening direction of the opening direction and four radiation patch in the first coupling gap 61 and second coupling gap 61 It keeps vertical.
In the present embodiment, the first coupling gap 61 is the identical H-shaped gap of size with second coupling gap 62, The H-shaped gap is made of an abdomen arm 631 and two wing arms 632, a length of 0.2mm of the abdomen arm 631, width 1.2mm;Two The length of wing arm 632, width are all the same, and length is 1mm, and wide is 0.2mm;And the overall length in the H-shaped gap is 1mm, beam overall is 1.6mm, the slit width of every seam are 0.2mm;The overall length in the H-shaped gap is the length of the wing arm, and beam overall is two wing arms 632 The sum of width adds the width of the abdomen arm 631.
The lower surface of the bottom plate 3 cover there are two T shape copper billet as feeding microstrip line, i.e. 71 He of the first feeding microstrip line Second feeding microstrip line 72.In real process, the lower surface of the bottom plate 3 is also covered with one layer of copper, and copper thickness is 0.018mm, institute It states the first feeding microstrip line 71 and the second feeding microstrip line 72 is that the lower surface of bottom plate 3 remains with the part of copper after etching, That is copper of the lower surface of bottom plate 3 in addition to the first feeding microstrip line 71 and the second feeding microstrip line 72 is etched.
First feeding microstrip line 71 is made of the first arm 711 and the second arm 712;First arm 711 and described the 631 keeping parallelism of abdomen arm in one coupling gap 61;Second arm 712 keeps vertical with first arm 711, and described second One end of arm 712 connects the center of first arm 711, and another end of second arm 712 is far from the first arm 711 The center for the abdomen arm 631 that end couples gap 61 with described first is aligned;
Second feeding microstrip line 72 is also made of the first arm 721 and the second arm 722;First arm 721 with it is described 631 keeping parallelism of abdomen arm in the second coupling gap 62;Second arm 722 keeps vertical with first arm 721, and described One end of two arms 722 connects the center of first arm 721, and another end of second arm 722 is i.e. far from the first arm 721 The center of the end abdomen arm 631 that couples gap 62 with described second be aligned.
In the present embodiment, first feeding microstrip line 71 and second feeding microstrip line 72 are the identical T shape of size Feeding microstrip line, i.e., the first arm 721 of the first arm 711 and second feeding microstrip line 72 of described first feeding microstrip line 71 Size is identical, and length is 0.2mm, and wide is 1.6mm;Second arm 712 of first feeding microstrip line 71 and second feedback 722 size of the second arm of electric microstrip line 72 is identical, and length is 0.2mm, and wide is 0.2mm.
As shown in Figure 3, a kind of 5G Millimeter Wave Phased Array Antenna of antenna of the invention forms array by phased array element and constitutes, Each phased array element includes an antenna element and a radio frequency connector c;
The antenna element is by Fig. 1 and antenna element shown in Fig. 2, including radiant section a, radiant section b;The spoke Part a is penetrated to be made of first radiation patch of upper layer 41 and the first radiation patch of the lower layer 51;The radiant section b is by institute It states the second radiation patch of upper layer 42 and the second radiation patch of the lower layer 52 is constituted.
The radiant section a is connected to micro-strip T by the first coupling gap 61 and first feeding microstrip line 71 One end in two output ends of shape power splitter;The radiant section b is by the second coupling gap 62 and second feedback Electric microstrip line 72 is connected to the other end in two output ends of micro-strip T shape power splitter;And the input of the micro-strip T shape power splitter End is connected with the radio frequency connector c.
Specifically, end and the micro-strip T shape of separate first arm 711 of the second arm 712 of first feeding microstrip line 71 One end in two output ends of power splitter is connected by loaded line;Second arm 722 of second feeding microstrip line 72 End far from the first arm 721 is connected with the other end in two output ends of micro-strip T shape power splitter by loaded line;It is described The other end of micro-strip T shape power splitter is connected by way of labeling high-temperature soldering with radio frequency connector c.
The radio frequency connector c and the micro-strip T shape power splitter are the prior art, belong to goods shelf products.
In the present embodiment, the phased array element is 5.1mm with horizontal interval, and pitching face interval is the mode group of 7.5mm Phased array antenna is constituted at array.
In the present invention, the antenna element includes two radiant sections, to guarantee under identical radiating aperture, saves one Semi-active TR quantity, while asking what the two-in-one bring grating-lobe-free scan angle of antenna element reduced for blindness will not be brought Topic.
Fig. 4 is the schematic diagram that conventional phased array element forms array, and conventional phased array element includes an antenna list Member and a radio frequency connector, but the antenna element of conventional phased array element only has a radiant section.Conventional phase Array antenna is controlled compared with phased array antenna of the invention, antenna of the invention possesses higher antenna radiation efficiency, and in phase With under bore, higher radiation gain is may be implemented in antenna of the invention.
Radiating slot in conventional antenna element is generally independent bar shaped or L-type and C-shaped, comb of the invention Shape radiating slot can preferably reduce antenna patch size, while adjust each parameter size of comb shape radiating slot, Ke Yigai Kind antenna match, improves the cross polarization characteristics of antenna, and specific the present embodiment is due to E shape structure using E shape radiating slot It is relatively easy, it is easier to realization and adjustment parameter;The parameter is overall length, beam overall, brachium, the slit width of radiating slot.
Fig. 5 is a kind of standing wave simulation curve of 5G Millimeter Wave Phased Array Antenna of the invention, and standing wave corresponds to launch loss, The standing-wave ratio of antenna of the invention in millimeter wave 23GHz~33GHz frequency range is less than 2, in millimeter wave 24.25GHz~29.5GHz Standing-wave ratio in frequency range reduces launch loss less than 1.6, therefore in working frequency range, improves antenna efficiency.
Fig. 6 is a kind of antenna pattern of 5G Millimeter Wave Phased Array Antenna of the invention, and module gain is greater than 8.5dB, is handed over It pitches polarization signal and is greater than 27dB.Antenna element of the invention meets actual demand well, and antenna is in pitching in actual use Surface scan angle is ± 30 °, is ± 60 ° in azimuth plane scanning angle, and unit is the close of pitching face in pitching surface wave beam width The numerical value of half, therefore antenna of the invention effectively raises radiation efficiency, to improve the gain of antenna.
Antenna VSWR≤2 i.e. standing-wave ratio in practical applications, is less than or equal to 2 relative bandwidths below and expanded to by the present invention 34.4%, cover two frequency ranges of millimeter wave 24.25GHz~27.5GHz and 27.5GHz~29.5GHz.
The above is only the preferred embodiments of the invention, are not intended to limit the invention creation, all in the present invention Made any modifications, equivalent replacements, and improvements etc., should be included in the guarantor of the invention within the spirit and principle of creation Within the scope of shield.

Claims (10)

1. a kind of 5G Millimeter Wave Phased Array Antenna, including phased array element, which is characterized in that each phased array element includes one Antenna element and a radio frequency connector c;The antenna element includes radiant section a, radiant section b;
The antenna element is three ply board structure, from top to bottom successively are as follows: upper layer radiant panel (1), mesosphere board (2), bottom plate (3);
The double-deck radiation patch is equipped in the antenna element, the bilayer radiation patch includes four radiation patch altogether, is respectively as follows: The first radiation patch of upper layer (41), the second radiation patch of upper layer (42), the first radiation patch of lower layer (51), the radiation patch of lower layer second Piece (52);
First radiation patch of upper layer (41) and the second radiation patch of the upper layer (42) are the short side along upper layer radiant panel (1) Direction, that is, width direction symmetrically overlays on the copper billet of the upper surface of upper layer radiant panel (1);
First radiation patch of lower layer (51) and the second radiation patch of the lower layer (52) are along the short side side of mesosphere board (2) The copper billet of the upper surface positioned at mesosphere board (2) is symmetrically overlayed on to i.e. width direction;
The center of first radiation patch of upper layer (41) is aligned with the center of first radiation patch of lower layer (51);On described The center of the second radiation patch of layer (42) is aligned with the center of second radiation patch of lower layer (52);
The upper surface of the bottom plate (3) is equipped with the first coupling gap (61) and the second coupling gap (62);The bottom plate (3) Lower surface be equipped with the first feeding microstrip line (71) and the second feeding microstrip line (72) radiant section a by the upper layer first Radiation patch (41) and the first radiation patch of the lower layer (51) are constituted;The radiant section b is radiated by the upper layer second and is pasted Piece (42) and the second radiation patch of the lower layer (52) are constituted;
The radiant section a is connected to micro-strip T by first coupling gap (61) and first feeding microstrip line (71) One end in two output ends of shape power splitter;The radiant section b is by second coupling gap (62) and described second Feeding microstrip line (72) is connected to the other end in two output ends of micro-strip T shape power splitter;And the micro-strip T shape power splitter Input terminal is connected with the radio frequency connector c.
2. a kind of 5G Millimeter Wave Phased Array Antenna according to claim 1, which is characterized in that the center of four radiation patch It is etched the gap i.e. comb shape radiating slot of a comb teeth-shaped;
The center of the comb shape radiating slot of first radiation patch of upper layer (41) and first radiation patch of lower layer (51) The center of comb shape radiating slot is aligned;The center of the comb shape radiating slot of second radiation patch of upper layer (42) and the lower layer The center of the comb shape radiating slot of second radiation patch (52) is aligned;
The comb shape spoke of the comb shape radiating slot of first radiation patch of upper layer (41) and second radiation patch of upper layer (42) The opening direction for penetrating gap is consistent;The comb shape radiating slot of first radiation patch of lower layer (51) and the lower layer second The opening direction of the comb shape radiating slot of radiation patch (52) is consistent;And the comb shape of first radiation patch of upper layer (41) Opening direction keeping parallelism, that is, opening direction of radiating slot and the comb shape radiating slot of first radiation patch of lower layer (51) It is identical or opposite.
3. a kind of 5G Millimeter Wave Phased Array Antenna according to claim 2, which is characterized in that the bottom plate (3) it is upper Surface is covered with one layer of copper, and the upper surface of bottom plate (3) is etched two H-shaped gaps as coupling gap, i.e., the first coupling Gap (61) and the second coupling gap (62);
The center of the comb shape radiating slot at the center and first radiation patch of lower layer (51) of first coupling gap (61) Alignment;The center of the comb shape radiating slot at the center and second radiation patch of lower layer (52) of second coupling gap (62) Alignment;And first coupling gap (61) and described second couples the opening direction of gap (62) and opening for four radiation patch Mouth direction keeps vertical.
4. a kind of 5G Millimeter Wave Phased Array Antenna according to claim 1, which is characterized in that the antenna element it is a length of 7.5mm, width 5.1mm;I.e. upper layer radiant panel (1), mesosphere board (2), bottom plate (3) length be 7.5mm, it is wide to be 5.1mm;
The dielectric constant of upper layer radiant panel (1) is 3.66, with a thickness of 0.508mm;
The dielectric constant of mesosphere board (2) is 3.66, with a thickness of 0.508mm;
The dielectric constant of bottom plate (3) is 3.66, with a thickness of 0.254mm.
5. a kind of 5G Millimeter Wave Phased Array Antenna according to claim 1, which is characterized in that the radiation of upper layer first patch The length of piece (41) and the second radiation patch of the upper layer (42) is 1.8mm, and wide is 1.8mm, and copper thickness is 0.018mm;Institute The length for stating the first radiation patch of lower layer (51) and the second radiation patch of the lower layer (52) is 1.6mm, and wide is 1.6mm, copper Thickness is 0.018mm.
6. a kind of 5G Millimeter Wave Phased Array Antenna according to claim 2, which is characterized in that the comb shape radiating slot is in E shape, the comb shape radiating slot are E shape radiating slot;
The E shape in E shape radiating slot and the second radiation patch of the upper layer (42) in first radiation patch of upper layer (41) The size of radiating slot is identical;The E shape radiating slot (43) is made of a linking arm (431) and three adjutages (432), institute Length, the width for stating three adjutages (432) are all the same, and length is 0.1mm, and wide is 0.2mm;The linking arm (431) A length of 1.1mm, width 0.1mm;And the overall length of the E shape radiating slot (43) is 1.1mm, beam overall 0.3mm, the slit width of every seam For 0.1mm;The overall length of the E shape radiating slot (43) is the length of the linking arm (431), and beam overall is the width of the adjutage (432) The width of degree plus the linking arm (431);
The E shape in E shape radiating slot and the second radiation patch of the lower layer (52) in first radiation patch of lower layer (51) The size of radiating slot is identical;The E shape radiating slot (53) is made of a linking arm (531) and three adjutages (532), and three The length of a adjutage (532), width are all the same, and length is 0.1mm, and wide is 1mm;The linking arm (531) it is a length of 1.15mm, width 0.1mm;And the overall length of the E shape radiating slot is 1.15mm, beam overall 1.1mm, the slit width of every seam is 0.1mm;The overall length of the E shape radiating slot (53) is the length of the linking arm (531), and beam overall is the width of the adjutage (532) Add the width of the linking arm (531).
7. a kind of 5G Millimeter Wave Phased Array Antenna according to claim 3, which is characterized in that first coupling gap (61) and second coupling gap (62) is the identical H-shaped gap of size;The H-shaped gap is by an abdomen arm (631) and two Wing arm (632) is constituted, a length of 0.2mm, width 1.2mm of the abdomen arm (631);The length of two wing arms (632), width are homogeneous Together, length is 1mm, and wide is 0.2mm;And the overall length in the H-shaped gap is 1mm, beam overall 1.6mm, the slit width of every seam is 0.2mm;The overall length in the H-shaped gap is the length of the wing arm, and beam overall is that the sum of width of two wing arms (632) adds the abdomen The width of arm (631).
8. a kind of 5G Millimeter Wave Phased Array Antenna according to claim 7, which is characterized in that under the bottom plate (3) Surface cover there are two T shape copper billet as feeding microstrip line, i.e. the first feeding microstrip line (71) and the second feeding microstrip line (72);
First feeding microstrip line (71) is made of the first arm (711) and the second arm (712);First arm (711) and institute State abdomen arm (631) keeping parallelism in the first coupling gap (61);Second arm (712) and first arm (711) keep hanging down Directly, and an end of second arm (712) connects the center of first arm (711), another end of second arm (712) The center for the abdomen arm (631) that the end i.e. end far from the first arm (711) couples gap (61) with described first is aligned;
Second feeding microstrip line (72) is also made of the first arm (721) and the second arm (722);First arm (721) with Abdomen arm (631) keeping parallelism of second coupling gap (62);Second arm (722) and first arm (721) keep Vertically, and an end of second arm (722) connects the center of first arm (721), second arm (722) it is another End is that the center for the abdomen arm (631) that the end far from the first arm (721) couples gap (62) with described second is aligned;
The end of separate first arm (711) of the second arm (712) of first feeding microstrip line (71) and micro-strip T shape power splitter Two output ends in one end be connected by loaded line;The second arm (722) of second feeding microstrip line (72) it is remote End from the first arm (721) is connected with the other end in two output ends of micro-strip T shape power splitter by loaded line.
9. a kind of 5G Millimeter Wave Phased Array Antenna according to claim 8, which is characterized in that first feeding microstrip line (71) and second feeding microstrip line (72) is the identical T shape feeding microstrip line of size, i.e., described first feeding microstrip line (71) the first arm (711) is identical as the first arm (721) size of second feeding microstrip line (72), and length is 0.2mm, wide It is 1.6mm;Second arm of the second arm (712) of first feeding microstrip line (71) and second feeding microstrip line (72) (722) size is identical, and length is 0.2mm, and wide is 0.2mm.
10. a kind of 5G Millimeter Wave Phased Array Antenna according to claim 1, which is characterized in that the phased array element with Horizontal interval is 5.1mm, and pitching face interval forms array for the mode of 7.5mm and constitutes phased array antenna.
CN201811284402.3A 2018-10-31 2018-10-31 A kind of 5G Millimeter Wave Phased Array Antenna Pending CN109449583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811284402.3A CN109449583A (en) 2018-10-31 2018-10-31 A kind of 5G Millimeter Wave Phased Array Antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811284402.3A CN109449583A (en) 2018-10-31 2018-10-31 A kind of 5G Millimeter Wave Phased Array Antenna

Publications (1)

Publication Number Publication Date
CN109449583A true CN109449583A (en) 2019-03-08

Family

ID=65549939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811284402.3A Pending CN109449583A (en) 2018-10-31 2018-10-31 A kind of 5G Millimeter Wave Phased Array Antenna

Country Status (1)

Country Link
CN (1) CN109449583A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311211A (en) * 2019-06-20 2019-10-08 成都天锐星通科技有限公司 A kind of Microstrip Receiving Antenna, transmitting antenna and vehicle-mounted phased array antenna
CN110429380A (en) * 2019-08-28 2019-11-08 榆林学院 It is applied towards 5G and two unit micro-strip mimo antennas is shared based on irradiation structure
CN111509379A (en) * 2020-04-09 2020-08-07 山东华箭科工创新科技有限公司 Double-layer 5G microstrip array antenna
CN111883927A (en) * 2020-08-05 2020-11-03 中国电子科技集团公司第十四研究所 Integrated 5G array antenna unit
CN114039208A (en) * 2021-11-22 2022-02-11 江苏科技大学 Multi-band slot coupling antenna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281998A (en) * 2007-10-19 2008-10-08 哈尔滨工业大学 Millimeter wave band broadband cylinder conformal 4*4 microstrip antenna as well as design method thereof
CN203134976U (en) * 2013-01-23 2013-08-14 中国计量学院 E-shape slot miniature paster microstrip antenna
CN104577316A (en) * 2014-12-30 2015-04-29 中国科学院上海微系统与信息技术研究所 Vertical coupled feeding structure applied to millimeter-wave microstrip antenna
US20160190868A1 (en) * 2014-12-29 2016-06-30 Shuai SHAO Individual antenna element
CN107425272A (en) * 2017-07-18 2017-12-01 华南理工大学 Filter antenna array
CN108717996A (en) * 2018-05-25 2018-10-30 湖南赛博诺格电子科技有限公司 A kind of Broadband circularly polarized antenna for hand-held wall-through radar

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281998A (en) * 2007-10-19 2008-10-08 哈尔滨工业大学 Millimeter wave band broadband cylinder conformal 4*4 microstrip antenna as well as design method thereof
CN203134976U (en) * 2013-01-23 2013-08-14 中国计量学院 E-shape slot miniature paster microstrip antenna
US20160190868A1 (en) * 2014-12-29 2016-06-30 Shuai SHAO Individual antenna element
CN104577316A (en) * 2014-12-30 2015-04-29 中国科学院上海微系统与信息技术研究所 Vertical coupled feeding structure applied to millimeter-wave microstrip antenna
CN107425272A (en) * 2017-07-18 2017-12-01 华南理工大学 Filter antenna array
CN108717996A (en) * 2018-05-25 2018-10-30 湖南赛博诺格电子科技有限公司 A kind of Broadband circularly polarized antenna for hand-held wall-through radar

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311211A (en) * 2019-06-20 2019-10-08 成都天锐星通科技有限公司 A kind of Microstrip Receiving Antenna, transmitting antenna and vehicle-mounted phased array antenna
CN110429380A (en) * 2019-08-28 2019-11-08 榆林学院 It is applied towards 5G and two unit micro-strip mimo antennas is shared based on irradiation structure
CN110429380B (en) * 2019-08-28 2020-09-29 榆林学院 5G application-oriented two-unit microstrip MIMO antenna shared based on radiation structure
CN111509379A (en) * 2020-04-09 2020-08-07 山东华箭科工创新科技有限公司 Double-layer 5G microstrip array antenna
CN111883927A (en) * 2020-08-05 2020-11-03 中国电子科技集团公司第十四研究所 Integrated 5G array antenna unit
CN114039208A (en) * 2021-11-22 2022-02-11 江苏科技大学 Multi-band slot coupling antenna
CN114039208B (en) * 2021-11-22 2023-10-03 江苏科技大学 Multiband slot coupling antenna

Similar Documents

Publication Publication Date Title
CN109449583A (en) A kind of 5G Millimeter Wave Phased Array Antenna
CN103872464B (en) Ultra wide band 180 degree hybrid circuit for dual band cellular antenna for base station
US8462063B2 (en) Metamaterial antenna arrays with radiation pattern shaping and beam switching
CN108987911A (en) A kind of millimeter wave wave beam forming micro-strip array antenna and design method based on SIW
CN109037935B (en) Millimeter wave low-profile broadband antenna
US9722321B2 (en) Full wave dipole array having improved squint performance
US20030103015A1 (en) Skeleton slot radiation element and multi-band patch antenna using the same
WO2016106697A1 (en) Dual-frequency antenna and antenna system
CN107634322A (en) Double frequency high-gain omni-directional antenna
CN109004344B (en) Broadband antenna applied to 5G mobile terminal
CN207116688U (en) Double frequency high-gain omni-directional antenna
EP3245690B1 (en) Dual-band inverted-f antenna with multiple wave traps for wireless electronic devices
CN113540756A (en) Broadband dual-polarized antenna
CN110176668B (en) Antenna unit and electronic device
CN208522072U (en) The closely coupled antennae battle array of broadband and wideangle low section
Suresh et al. A flower shaped miniaturized 4× 4 MIMO antenna for UWB applications using characteristic mode analysis
WO2019223318A1 (en) Indoor base station and pifa antenna thereof
Jiang et al. Design of a wideband quasi-Yagi microstrip antenna with bowtie active elements
CN110444875A (en) A kind of parallel inverted coplanar waveguide ultra wide band mimo antenna
CN106532270B (en) Resistor loaded for electromagnetic radiation measuring system minimizes Vivaldi antenna
CN100589278C (en) Broadband H-shaped single polarized bob
CN109037895A (en) The closely coupled antennae battle array of broadband and wideangle low section
CN104993245A (en) S-waveband communication-in-motion double-frequency circularly polarized micro-strip antenna and array thereof
CN218677564U (en) Single-frequency band and dual-frequency band reconfigurable microstrip quasi-yagi antenna
CN113571911B (en) Miniaturized airborne ultrashort wave antenna

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190308