CN109447979A - 基于深度学习和图像处理算法的目标检测方法 - Google Patents

基于深度学习和图像处理算法的目标检测方法 Download PDF

Info

Publication number
CN109447979A
CN109447979A CN201811332427.6A CN201811332427A CN109447979A CN 109447979 A CN109447979 A CN 109447979A CN 201811332427 A CN201811332427 A CN 201811332427A CN 109447979 A CN109447979 A CN 109447979A
Authority
CN
China
Prior art keywords
ssd network
image
contact pin
data set
trained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811332427.6A
Other languages
English (en)
Other versions
CN109447979B (zh
Inventor
林伟阳
黄乐平
邱剑彬
佟明斯
李湛
高会军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201811332427.6A priority Critical patent/CN109447979B/zh
Publication of CN109447979A publication Critical patent/CN109447979A/zh
Application granted granted Critical
Publication of CN109447979B publication Critical patent/CN109447979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)

Abstract

基于深度学习和图像处理算法的目标检测方法,本发明涉及图像目标检测方法。本发明的目的是为了解决现有机械臂应用于小目标的精密作业时,单纯用深度学习进行检测与定位,小目标位置的确定误差大,精度低的问题。过程为:步骤一、建立数据集,根据数据集对SSD网络进行训练,得到最终训练好的SSD网络,使用最终训练好的SSD网络模型对待检测的图像中的插针进行检测,在图像上用预选框把插针所在范围框出;步骤二、使用大津算法将预选框中的图像内容进行二值化,即分为插针及非插针两部分;步骤三、通过漫水填充算法,将二值化后的插针部分从图像中分离出来,并计算出插针的位置中点。本发明属于目标检测领域。

Description

基于深度学习和图像处理算法的目标检测方法
技术领域
本发明涉及目标检测方法。本发明属于目标检测领域。
背景技术
随着计算机技术的发展和计算机视觉原理的广泛应用,利用计算机图像处理技术对目标进行实时跟踪研究越来越热门,对目标进行动态实时跟踪定位在智能生产制造、智能化交通系统、智能监控系统、军事目标检测及医学导航手术中手术器械定位等方面具有广泛的应用价值。
近年来,深度学习基于强大的学习特征表达的能力,在模式识别和计算机视觉领域快速发展,迅速替代了以往基于先验知识的人工构造特征的方式。基于卷积神经网络的深度学习在图像识别、图像检测和图像分割等领域都取得了显著成就。其中的目标检测技术与传统的方法相比在准确率以及速度上有十分大的优势,并且具有较强的鲁棒性,能够适应复杂环境下的许多变化。
但当机械臂应用于小目标的精密作业时,需要对操作目标进行精确的检测和定位,对坐标点的精确度要求高,单纯用深度学习进行检测与定位,小目标位置的确定误差大,精度低。
发明内容
本发明的目的是为了解决现有机械臂应用于小目标的精密作业时,单纯用深度学习进行检测与定位,小目标位置的确定误差大,精度低的问题,而提出基于深度学习和图像处理算法的目标检测方法。
基于深度学习和图像处理算法的目标检测方法具体过程为:
步骤一、建立数据集,根据数据集对SSD网络进行训练,得到最终训练好的SSD网络,使用最终训练好的SSD网络模型对待检测的图像中的插针进行检测,在图像上用预选框把插针所在范围框出;
步骤二、使用大津算法将预选框中的图像内容进行二值化,即分为插针及非插针两部分;
步骤三、通过漫水填充算法,将二值化后的插针部分从图像中分离出来,并计算出插针的位置中点。
本发明的有益效果为:
当机械臂应用于小目标的精密作业时,需要对操作目标进行精确的检测和定位,对坐标点的精确度要求高。单纯用深度学习进行检测与定位,位置的确定误差大,精度低。本发明提出的目标检测方法,首先用深度学习识别目标,再引入大津算法和漫水填充算法,对深度学习的算法结果进行处理。在原先深度学习算法的效率高、鲁棒性的强的基础上,增强了算法的准确度,减小了小目标位置确定的误差,提高了小目标位置确定的精度。在对凹槽中的插针进行准确的检测与定位后,帮助机械臂很好地完成所需的任务。处理的帧数能够达到100帧/秒,准确率达95%以上。
附图说明
图1为本发明数据集图片示意图;
图2为本发明SSD网络的训练loss值曲线图,k为千;
图3为本发明算法流程图;
图4为本发明算法检测效果展示图;
图5为本发明SSD网络架构图;
其中:Conv是卷积层,VGG-16through Conv5_3layer为用vgg16的哪些层截取到conv5-3,classifier为分类器,classes为类别个数,image为图像,Extra Feature Layers为额外的特征提取层,Non-Maximum Suppression为非极大值抑制,Detections为检测,Perclass为每类,FPS为画面每秒传输帧数,MAP为准确率,FC为全连接层。
具体实施方式
具体实施方式一:本实施方式的基于深度学习和图像处理算法的目标检测方法具体过程为:
为了满足机械臂应用于小目标的精密作业时,对目标位置精确度的较高要求。本专利提出了一种深度学习SSD网络与大津算法、水漫算法两种传统图像处理方法相结合的目标检测方法,帮助机械臂系统精确识和定位别凹槽中的插针,进而很好得完成后续的任务。
该目标检测算法分为三个步骤,首先通过SSD网络对目标进行识别,然后使用大津算法对bounding box中图像内容进行二值化,最后使用漫水填充算法识别插针的位置,并对插针的位置中点进行计算。具体内容如下:
步骤一、建立数据集,根据数据集对SSD网络进行训练,得到最终训练好的SSD网络,使用最终训练好的SSD网络模型对待检测的图像中的插针进行检测,在图像上用预选框(bounding box)把插针所在范围框出;
步骤二、大津算法
在计算机视觉和图像处理中,大津二值化法用来自动对基于聚类的图像进行二值化,或者说,将一个灰度图像退化为二值图像。
在ssd模型对图像进行初步检测后,使用大津算法将预选框(bounding box)中的图像内容进行二值化,即分为插针及非插针两部分;
步骤三、漫水填充算法
所谓漫水填充,简单来说,就是自动选中了和种子点相连的区域,接着将该区域替换成指定的颜色。经常被用来标记或者分离图像的一部分,以便对其进行进一步处理或者分析。
我们通过漫水填充算法,将二值化后的插针部分从图像中分离出来,并计算出插针的位置中点,以帮助机械臂进行后续操作。
具体实施方式二:本实施方式与具体实施方式一不同的是,所述步骤一中建立数据集,根据数据集对SSD网络进行训练,得到最终训练好的SSD网络,使用最终训练好的SSD网络模型对待检测的图像中的插针进行检测,在图像上用预选框(bounding box)把插针所在范围框出;具体过程为:
步骤一一、采集数据集:
首先将相机安装在机械臂末端,对待识别区域的图像进行采集(采集1万张或2万张待识别区域的图像),构成数据集,并且尽量多的包含不同情形下的图像内容情况,并通过人工手段对数据集的图像进行标注;
步骤一二、对标注完的数据集的图像进行增广:
由于数据量对于深度学习网络的训练及最终的性能有着至关重要的影响,故需要对现有的数据集进行扩充,增加数据量及其多样性。采用添加椒盐噪声,高斯噪声和旋转方式,改变标注完的数据集中图像的HSV空间的曝光度和饱和度等,对数据集的图片进行增广;效果如图1所示。
步骤一三、划分数据集:
将增广后的数据集的图像分为训练集,验证集和测试集,训练集,验证集和测试集各自所占比例分别为8:1:1;
将训练集,验证集和测试集转换为TFRecord格式,提升模型的训练速率;
步骤一四、根据训练集对SSD网络进行训练,得到最终训练好的SSD网络;
步骤一五、使用最终训练好的SSD网络模型对待检测的图像中的插针进行检测,在图像上用预选框(bounding box)把插针所在范围框出。
其它步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是,所述步骤一四中根据训练集对SSD网络进行训练,得到最终训练好的SSD网络;具体过程为:
步骤一四一、搭建SSD网络架构;
步骤一四二、将训练集和验证集输入到SSD网络中,采用七块1080ti显卡对SSD网络模型进行训练,训练过程中,通过Tensorboard实时观察SSD网络模型的训练集损失值和验证集正确率(两个曲线在同一个图上),当训练集损失值收敛且满足SSD网络不出现过拟合时停止训练,得到训练完的SSD网络模型;
Tensorboard是TensorFlow自带的一个强大的可视化工具;
步骤一四三、采用测试集对训练完的SSD网络模型进行测试,当测试集准确率满足要求时,得到最终训练好的SSD网络模型及该SSD网络模型的参数w,b,否则重复执行步骤一四一和步骤一四三,直至测试集准确率满足要求。
SSD网络模型训练最终收敛时的损失值(loss)如图2所示。
其它步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是,所述测试集准确率满足要求为测试集准确率达到95%。
其它步骤及参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是,所述步骤一四一中搭建SSD网络架构;如图5所示,具体为:
使用Tensorflow深度学习框架搭建ssd网络。
SSD网络的输入图像大小是300x300,特征提取部分使用了VGG16的卷积层,并将VGG16的两个全连接层转换成2个卷积层(图中conv6和conv7),之后又接了6个卷积层(conv8_1,conv8_2,conv9_1,conv9_2,conv10_1,conv10_2),得到大小不同的featuremaps(特征图),最后在这些feature maps上同时进行分类器(softmax)分类和位置回归(SSD:Single Shot MultiBox Detector,https://arxiv.org/abs/1512.02325)。
其它步骤及参数与具体实施方式一至四之一相同。
采用以下实施例验证本发明的有益效果:
实施例一:
本实施例具体是按照以下步骤制备的:
构建数据集:
首先将相机安装在机械臂末端,对所要识别区域的图像进行采集,并且尽量多的包含不同情形下的图像内容情况,并通过人工手段对数据集的图片进行标注。
搭建SSD网络架构:
使用Tensorflow深度学习框架搭建ssd网络。
数据增广:
使用添加椒盐噪声,高斯噪声,平移,改变HSV空间的曝光度和饱和度等方式对数据集进行增广。
转换数据格式
将数据集转换为TFRecord格式,提升模型的训练速率。
训练SSD网络:
将训练样本输入到SSD网络中,采用七块1080ti显卡对模型进行训练。训练过程中,通过Tensorboard实时观察模型的损失值和正确率。当训练集损失值较小且验证集的准确率较高时停止训练,加载训练的模型用测试集进行测试,当有不错的测试结果则可将此训练结果存入计算机硬盘作为最终的训练模型,否则加载停止训练时刻的模型继续进行训练。模型训练最终收敛时的损失值(loss)如图2所示。
编写程序,流程图如图3所示。读取训练好的SSD模型,并在SSD网络预测后,使用大津算法、漫水填充算法处理网络输出的图像。
运行程序,包含训练好的模型以及传统图像处理两部分。读取摄像头采集到的图像,并进行实时的检测与定位,结果如图4所示。处理的帧数能够达到100帧/秒,准确率达95%。
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (5)

1.基于深度学习和图像处理算法的目标检测方法,其特征在于:所述方法具体过程为:
步骤一、建立数据集,根据数据集对SSD网络进行训练,得到最终训练好的SSD网络,使用最终训练好的SSD网络模型对待检测的图像中的插针进行检测,在图像上用预选框把插针所在范围框出;
步骤二、使用大津算法将预选框中的图像内容进行二值化,即分为插针及非插针两部分;
步骤三、通过漫水填充算法,将二值化后的插针部分从图像中分离出来,并计算出插针的位置中点。
2.根据权利要求1所述基于深度学习和图像处理算法的目标检测方法,其特征在于:所述步骤一中建立数据集,根据数据集对SSD网络进行训练,得到最终训练好的SSD网络,使用最终训练好的SSD网络模型对待检测的图像中的插针进行检测,在图像上用预选框把插针所在范围框出;具体过程为:
步骤一一、采集数据集:
首先将相机安装在机械臂末端,对待识别区域的图像进行采集,构成数据集,并通过人工手段对数据集的图像进行标注;
步骤一二、对标注完的数据集的图像进行增广:
采用添加椒盐噪声,高斯噪声和旋转方式,改变标注完的数据集中图像的HSV空间的曝光度和饱和度,对数据集的图片进行增广;
步骤一三、划分数据集:
将增广后的数据集的图像分为训练集,验证集和测试集,训练集,验证集和测试集各自所占比例分别为8:1:1;
将训练集,验证集和测试集转换为TFRecord格式;
步骤一四、根据训练集对SSD网络进行训练,得到最终训练好的SSD网络;
步骤一五、使用最终训练好的SSD网络模型对待检测的图像中的插针进行检测,在图像上用预选框把插针所在范围框出。
3.根据权利要求1或2所述基于深度学习和图像处理算法的目标检测方法,其特征在于:所述步骤一四中根据训练集对SSD网络进行训练,得到最终训练好的SSD网络;具体过程为:
步骤一四一、搭建SSD网络架构;
步骤一四二、将训练集和验证集输入到SSD网络中,采用七块1080ti显卡对SSD网络模型进行训练,训练过程中,通过Tensorboard实时观察SSD网络模型的训练集损失值和验证集正确率,当训练集损失值收敛且满足SSD网络不出现过拟合时停止训练,得到训练完的SSD网络模型;
步骤一四三、采用测试集对训练完的SSD网络模型进行测试,当测试集准确率满足要求时,得到最终训练好的SSD网络模型及该SSD网络模型的参数w,b,否则重复执行步骤一四一和步骤一四三,直至测试集准确率满足要求。
4.根据权利要求3所述基于深度学习和图像处理算法的目标检测方法,其特征在于:所述测试集准确率满足要求为测试集准确率达到95%。
5.根据权利要求4所述基于深度学习和图像处理算法的目标检测方法,其特征在于:所述步骤一四一中搭建SSD网络架构;具体为:
SSD网络的输入图像大小是300x300,特征提取部分使用了VGG16的卷积层,并将VGG16的两个全连接层转换成2个卷积层,之后接6个卷积层,得到大小不同的featuremaps,在feature maps上同时进行分类器分类和位置回归。
CN201811332427.6A 2018-11-09 2018-11-09 基于深度学习和图像处理算法的目标检测方法 Active CN109447979B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811332427.6A CN109447979B (zh) 2018-11-09 2018-11-09 基于深度学习和图像处理算法的目标检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811332427.6A CN109447979B (zh) 2018-11-09 2018-11-09 基于深度学习和图像处理算法的目标检测方法

Publications (2)

Publication Number Publication Date
CN109447979A true CN109447979A (zh) 2019-03-08
CN109447979B CN109447979B (zh) 2021-09-28

Family

ID=65551419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811332427.6A Active CN109447979B (zh) 2018-11-09 2018-11-09 基于深度学习和图像处理算法的目标检测方法

Country Status (1)

Country Link
CN (1) CN109447979B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110070018A (zh) * 2019-04-12 2019-07-30 武汉大学 一种结合深度学习的地震灾害场景识别方法
CN110175989A (zh) * 2019-05-08 2019-08-27 常州市第二人民医院 影像数据处理方法及其装置
CN110349118A (zh) * 2019-03-28 2019-10-18 云南农业大学 基于计算机视觉技术的天麻品质检测方法
CN110852998A (zh) * 2019-10-28 2020-02-28 季华实验室 一种基于深度学习的泰勒锥检测方法及检测系统
CN111091541A (zh) * 2019-12-12 2020-05-01 哈尔滨市科佳通用机电股份有限公司 一种铁路货车横跨梁组装螺母丢失故障识别方法
CN111241905A (zh) * 2019-11-21 2020-06-05 南京工程学院 基于改进ssd算法的输电线路鸟窝检测方法
CN111476129A (zh) * 2020-03-27 2020-07-31 潍坊申海科技有限公司 一种基于深度学习的土壤杂质检测方法
CN112396648A (zh) * 2019-08-12 2021-02-23 北京全路通信信号研究设计院集团有限公司 一种可定位目标物质心的目标识别方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592114A (zh) * 2011-12-26 2012-07-18 河南工业大学 复杂路况的车道线特征提取、识别方法
US20150193667A1 (en) * 2014-01-08 2015-07-09 Qualcomm Incorporated Processing text images with shadows
CN105930791A (zh) * 2016-04-19 2016-09-07 重庆邮电大学 基于ds证据理论的多摄像头融合的路面交通标志识别方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592114A (zh) * 2011-12-26 2012-07-18 河南工业大学 复杂路况的车道线特征提取、识别方法
US20150193667A1 (en) * 2014-01-08 2015-07-09 Qualcomm Incorporated Processing text images with shadows
CN105930791A (zh) * 2016-04-19 2016-09-07 重庆邮电大学 基于ds证据理论的多摄像头融合的路面交通标志识别方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WEI LIU,ET AL: "《SSD:Single Shot MultiBox Detector》", 《ECCV 2016:COMPUTER VISION》 *
WEIYANG LIN,ET AL: "《A novel robust algorithm for position and orientation detection based on cascaded deep neural network》", 《NEUROCOMPUTING》 *
孙亚根: "《基于机器视觉的电容屏缺陷识别》", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110349118A (zh) * 2019-03-28 2019-10-18 云南农业大学 基于计算机视觉技术的天麻品质检测方法
CN110070018A (zh) * 2019-04-12 2019-07-30 武汉大学 一种结合深度学习的地震灾害场景识别方法
CN110175989A (zh) * 2019-05-08 2019-08-27 常州市第二人民医院 影像数据处理方法及其装置
CN112396648A (zh) * 2019-08-12 2021-02-23 北京全路通信信号研究设计院集团有限公司 一种可定位目标物质心的目标识别方法和系统
CN112396648B (zh) * 2019-08-12 2024-04-30 北京全路通信信号研究设计院集团有限公司 一种可定位目标物质心的目标识别方法和系统
CN110852998A (zh) * 2019-10-28 2020-02-28 季华实验室 一种基于深度学习的泰勒锥检测方法及检测系统
CN110852998B (zh) * 2019-10-28 2023-03-31 季华实验室 一种基于深度学习的泰勒锥检测方法及检测系统
CN111241905A (zh) * 2019-11-21 2020-06-05 南京工程学院 基于改进ssd算法的输电线路鸟窝检测方法
CN111091541A (zh) * 2019-12-12 2020-05-01 哈尔滨市科佳通用机电股份有限公司 一种铁路货车横跨梁组装螺母丢失故障识别方法
CN111476129A (zh) * 2020-03-27 2020-07-31 潍坊申海科技有限公司 一种基于深度学习的土壤杂质检测方法

Also Published As

Publication number Publication date
CN109447979B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
CN109447979A (zh) 基于深度学习和图像处理算法的目标检测方法
CN109344701B (zh) 一种基于Kinect的动态手势识别方法
Rao et al. Selfie video based continuous Indian sign language recognition system
CN108549873B (zh) 三维人脸识别方法和三维人脸识别系统
WO2020108362A1 (zh) 人体姿态检测方法、装置、设备及存储介质
CN106097393B (zh) 一种基于多尺度与自适应更新的目标跟踪方法
CN111340797A (zh) 一种激光雷达与双目相机数据融合检测方法及系统
CN107705322A (zh) 运动目标识别跟踪方法和系统
CN108573221A (zh) 一种基于视觉的机器人目标零件显著性检测方法
CN110569782A (zh) 一种基于深度学习目标检测方法
CN110176016B (zh) 一种基于人体轮廓分割与骨骼识别的虚拟试衣方法
CN104268602A (zh) 一种基于二进制特征匹配的遮挡工件识别方法及装置
Hagara et al. About Edge Detection in Digital Images.
CN109685045A (zh) 一种运动目标视频跟踪方法及系统
CN109829354B (zh) 一种基于深度学习的人脸识别方法
Liu et al. Grasp and Inspection of Mechanical Parts based on Visual Image Recognition Technology
CN111563550A (zh) 基于图像技术的精子形态检测方法和装置
Zhang et al. Multi-scale defect detection of printed circuit board based on feature pyramid network
Li et al. Research on a product quality monitoring method based on multi scale PP-YOLO
CN110197113A (zh) 一种高精度锚点匹配策略的人脸检测方法
CN105930793A (zh) 一种基于sae特征可视化学习的人体检测方法
CN103268494B (zh) 基于稀疏表示的寄生虫虫卵识别方法
CN105405152B (zh) 基于结构化支持向量机的自适应尺度目标跟踪方法
CN107729863B (zh) 人体指静脉识别方法
An et al. Automated detection of tuberculosis bacilli using deep neural networks with sputum smear images

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant