CN109447342B - 特低渗透砂岩油藏油井投产初期含水率预测方法 - Google Patents

特低渗透砂岩油藏油井投产初期含水率预测方法 Download PDF

Info

Publication number
CN109447342B
CN109447342B CN201811252565.3A CN201811252565A CN109447342B CN 109447342 B CN109447342 B CN 109447342B CN 201811252565 A CN201811252565 A CN 201811252565A CN 109447342 B CN109447342 B CN 109447342B
Authority
CN
China
Prior art keywords
reservoir
water
volume
ultra
oil well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811252565.3A
Other languages
English (en)
Other versions
CN109447342A (zh
Inventor
胡罡
田选华
李鹏春
王刘英
张晓雨
唐永建
傅仕豪
林国平
陈嘉杰
陈敏谊
何晓琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Petrochemical Technology
Original Assignee
Guangdong University of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Petrochemical Technology filed Critical Guangdong University of Petrochemical Technology
Priority to CN201811252565.3A priority Critical patent/CN109447342B/zh
Publication of CN109447342A publication Critical patent/CN109447342A/zh
Application granted granted Critical
Publication of CN109447342B publication Critical patent/CN109447342B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Primary Health Care (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Husbandry (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明公开了特低渗透砂岩油藏油井投产初期含水率预测方法,该方法包括:收集整理选定特低渗透砂岩油藏计算参数;利用有效应力与含水饱和度之间的函数关系预测特低渗透砂岩油藏油井投产初期含水率。该特低渗透砂岩油藏油井投产初期含水率预测方法为解释揭示该类型油藏油井投产初期即含水及预测油井投产初期含水率提供了理论依据,实现了特低渗透砂岩油藏油井投产初期含水率动态预测之目的,因而具有一定的理论及实际意义。

Description

特低渗透砂岩油藏油井投产初期含水率预测方法
技术领域
本发明涉及特低渗透砂岩油藏高效开发及大幅度提高水驱采收率领域,具体地说是一种特低渗透砂岩油藏油井投产初期含水率预测方法。
背景技术
随着经济技术水平的发展及油气资源勘探开发工作的深入,特低渗透油藏越来越引起人们的重视。基于理论及矿场实践研究成果,我国将储集层空气渗透率1~10mD定义为特低渗油藏。在该类油藏的开发过程中发现,油井初始含水率与常规的认识不同,经常发生油井投产后初始含水率高的现象。明晰此类油藏油井投产即含水的成因机理,定量化预测油井投产初期含水率,成为特低渗透砂岩油藏高效开发及大幅度提高水驱采收率面临的重要问题。目前国内外研究发现,储层中初始含水饱和度高,则初期含水率就高;地层非均质性、古河道等会影响储层内流体的分布,进而控制初期含水率的高低;在开发过程中,射孔层位的高低及注采井网的配比关系也会影响投产初期含水率的高低。由此可见,当前国内外对于特低渗透油藏油井投产即含水的成因及油井投产初期含水率预测的研究尚少,且不系统,严重阻碍了特低渗透砂岩油藏高效开发理论及技术的研发。为此我们基于特低渗透砂岩油藏岩石有效应力及物质平衡方程,推导了特低渗透砂岩油藏岩石有效应力与含水饱和度之间的函数关系,发明了一种新的特低渗透砂岩油藏油井投产初期含水率预测方法,解决了以上技术问题。
发明内容
本发明的目的在于提供特低渗透砂岩油藏油井投产初期含水率预测方法,其通过利用特低渗透砂岩油藏岩石有效应力与含水饱和度之间的函数关系解释该类油藏油井投产即含水成因,定量化预测油井投产初期含水率,实现特低渗透砂岩油藏高效开发及大幅度提高水驱采收率之目的。
本发明的目的可通过如下技术措施来实现:特低渗透砂岩油藏油井投产初期含水率预测方法,该方法包括如下步骤:
步骤1,收集整理选定特低渗透砂岩油藏计算参数;步骤2,利用步骤1中得到的计算参数,运用有效应力与含水饱和度之间的函数关系预测特低渗透砂岩油藏油井投产初期含水率。
在步骤1中,油藏计算参数包括以下若干参数:原始条件下油藏的孔隙体积
Figure DEST_PATH_IMAGE001
,m3;原始条件下油藏的岩石体积
Figure DEST_PATH_IMAGE002
,m3;原始条件下油藏的孔隙度
Figure DEST_PATH_IMAGE003
,小数;原始条件下油藏的束缚水体积
Figure DEST_PATH_IMAGE004
,m3;原始条件下油藏的束缚水饱和度
Figure DEST_PATH_IMAGE005
,小数;当地层压力下降
Figure DEST_PATH_IMAGE006
时,孔隙体积减小量
Figure DEST_PATH_IMAGE007
,m3;油藏岩石孔隙体积的压缩系数
Figure DEST_PATH_IMAGE008
,MPa-1 ;油藏压降
Figure 825421DEST_PATH_IMAGE006
,MPa-1;当地层压力下降
Figure 742561DEST_PATH_IMAGE006
时,束缚水体积变化量
Figure DEST_PATH_IMAGE009
,m3;束缚水的压缩系数
Figure DEST_PATH_IMAGE010
,MPa-1;当地层压力下降
Figure 584615DEST_PATH_IMAGE006
后,油藏岩石的孔隙体积
Figure DEST_PATH_IMAGE011
,m3;因油藏地层有效应力增大,孔隙中束缚水中转化为可动水的体积
Figure DEST_PATH_IMAGE012
,m3;当地层压力下降
Figure 104458DEST_PATH_IMAGE006
后,油藏含水体积
Figure DEST_PATH_IMAGE013
,m3;当地层压力下降
Figure 984077DEST_PATH_IMAGE006
后,含水饱和度
Figure DEST_PATH_IMAGE014
,小数;地层水的粘度
Figure DEST_PATH_IMAGE015
Figure DEST_PATH_IMAGE016
;原油的粘度
Figure DEST_PATH_IMAGE017
Figure 931173DEST_PATH_IMAGE016
;相对渗透率曲线系数
Figure DEST_PATH_IMAGE018
Figure DEST_PATH_IMAGE019
上述中,原始条件下油藏的孔隙体积
Figure 260523DEST_PATH_IMAGE001
、原始条件下油藏的岩石体积
Figure 521740DEST_PATH_IMAGE002
、原始条件下油藏的孔隙度
Figure 190619DEST_PATH_IMAGE003
之间满足如下关系:
Figure DEST_PATH_IMAGE020
上述中,原始条件下油藏的束缚水体积
Figure 246300DEST_PATH_IMAGE004
、原始条件下油藏的束缚水饱和度
Figure 62946DEST_PATH_IMAGE005
、原始条件下油藏的岩石体积
Figure 799958DEST_PATH_IMAGE002
和原始条件下油藏的孔隙度
Figure 385660DEST_PATH_IMAGE003
之间满足如下关系:
Figure DEST_PATH_IMAGE021
上述中,当地层压力下降
Figure 880751DEST_PATH_IMAGE006
时,孔隙体积减小量
Figure 122377DEST_PATH_IMAGE007
与原始条件下油藏的孔隙体积
Figure 459817DEST_PATH_IMAGE001
、油藏岩石孔隙体积的压缩系数
Figure 103288DEST_PATH_IMAGE008
、油藏压降
Figure 438454DEST_PATH_IMAGE006
之间满足如下关系:
Figure DEST_PATH_IMAGE022
上述中,当地层压力下降
Figure 26430DEST_PATH_IMAGE006
时,束缚水体积变化量
Figure 370824DEST_PATH_IMAGE009
与原始条件下油藏的束缚水体积
Figure 868802DEST_PATH_IMAGE004
、束缚水的压缩系数
Figure 702765DEST_PATH_IMAGE010
、油藏压降
Figure 653404DEST_PATH_IMAGE006
之间满足如下关系:
Figure DEST_PATH_IMAGE023
上述中,当地层压力下降
Figure 598226DEST_PATH_IMAGE006
后,油藏岩石的孔隙体积
Figure 13027DEST_PATH_IMAGE011
与原始条件下油藏的孔隙体积
Figure 955575DEST_PATH_IMAGE001
、当地层压力下降
Figure 252564DEST_PATH_IMAGE006
时孔隙体积减小量
Figure 673181DEST_PATH_IMAGE007
、原始条件下油藏的束缚水体积
Figure 145751DEST_PATH_IMAGE004
、当地层压力下降
Figure 527709DEST_PATH_IMAGE006
时束缚水体积变化量
Figure 452940DEST_PATH_IMAGE009
、因油藏地层有效应力增大孔隙中束缚水中转化为可动水的体积
Figure 739565DEST_PATH_IMAGE012
之间满足如下关系:
Figure DEST_PATH_IMAGE024
上述中,当地层压力下降
Figure 660116DEST_PATH_IMAGE006
后,油藏含水体积
Figure 944467DEST_PATH_IMAGE013
与原始条件下油藏的岩石体积
Figure 622573DEST_PATH_IMAGE001
、原始条件下油藏的孔隙度
Figure 650572DEST_PATH_IMAGE003
、原始条件下油藏的束缚水饱和度
Figure 691209DEST_PATH_IMAGE005
、束缚水的压缩系数
Figure 880882DEST_PATH_IMAGE010
、油藏压降
Figure 780705DEST_PATH_IMAGE006
之间满足以下关系:
Figure DEST_PATH_IMAGE025
上述中,当地层压力下降
Figure 612395DEST_PATH_IMAGE006
后,含水饱和度
Figure 976380DEST_PATH_IMAGE014
与当地层压力下降
Figure 336954DEST_PATH_IMAGE006
后,油藏岩石的孔隙体积
Figure 583128DEST_PATH_IMAGE011
、含水体积
Figure 952929DEST_PATH_IMAGE013
之间满足如下关系:
Figure DEST_PATH_IMAGE026
在步骤2中,其中利用有效应力与含水饱和度之间的函数关系预测特低渗透砂岩油藏油井投产初期含水率公式为:
Figure DEST_PATH_IMAGE027
式中,
Figure DEST_PATH_IMAGE028
为油井投产含水率,% 。
本发明中的特低渗透砂岩油藏油井投产初期含水率预测方法,通过利用特低渗透砂岩油藏岩石有效应力与含水饱和度之间的函数关系,可以解释该类油藏油井投产即含水成因,定量化预测油井投产初期含水率,可以实现油特低渗透砂岩油藏高效开发及大幅度提高水驱采收率等4大目标。该技术方法可以在特低渗透砂岩油藏油井投产初期,为明晰此类油藏油井投产即含水的成因机理,定量化预测油井投产初期含水率,努力增加经济可采储量,强化开发资源基础,进一步提高原油采收率提供一种可靠的新方法。该技术发明推广应用前景广阔,经济社会效益显著。
附图说明
图1是本发明的特低渗透砂岩油藏油井投产初期含水率预测方法的流程图。
具体实施方式
有关本发明的详细说明及技术内容,配合附图说明如下,然而附图仅提供参考与说明之用,并非用来对本发明加以限制。
实施例:
如图1所示,本发明的特低渗透砂岩油藏油井投产初期含水率预测方法,其步骤如下:
步骤101,根据所研究的特低渗透砂岩油藏的地质及开发特征,收集整理计算参数,为后续油井投产初期含水率预测提供参数值。该油藏计算参数包括:原始条件下油藏的孔隙体积
Figure 959370DEST_PATH_IMAGE001
、岩石体积
Figure 756424DEST_PATH_IMAGE002
、孔隙度
Figure 427577DEST_PATH_IMAGE003
、束缚水体积
Figure 601069DEST_PATH_IMAGE004
、束缚水饱和度
Figure 611751DEST_PATH_IMAGE005
;油藏岩石孔隙体积的压缩系数
Figure 845286DEST_PATH_IMAGE008
,油藏压降
Figure 941418DEST_PATH_IMAGE006
,油藏束缚水的压缩系数
Figure 512077DEST_PATH_IMAGE010
;当地层压力下降
Figure 377264DEST_PATH_IMAGE006
时,孔隙体积减小量
Figure 516122DEST_PATH_IMAGE007
、束缚水体积变化量
Figure 365129DEST_PATH_IMAGE009
、岩石的孔隙体积
Figure 614845DEST_PATH_IMAGE011
、油藏含水体积
Figure 600118DEST_PATH_IMAGE013
、含水饱和度
Figure 768932DEST_PATH_IMAGE014
;因油藏地层有效应力增大,孔隙中束缚水中转化为可动水的体积
Figure 839656DEST_PATH_IMAGE012
;地层水的粘度
Figure 955379DEST_PATH_IMAGE015
,原油的粘度
Figure 795159DEST_PATH_IMAGE017
,相对渗透率曲线系数
Figure 275819DEST_PATH_IMAGE018
Figure 836769DEST_PATH_IMAGE019
,流程进入到步骤102。步骤102中,基于步骤101中得到的特低渗透砂岩油藏计算参数,利用有效应力与含水饱和度之间的函数关系预测特低渗透砂岩油藏油井投产初期含水率。流程结束。其中:
原始条件下油藏的孔隙体积
Figure 693867DEST_PATH_IMAGE001
、原始条件下油藏的岩石体积
Figure 247208DEST_PATH_IMAGE002
、原始条件下油藏的孔隙度
Figure 898769DEST_PATH_IMAGE003
之间满足如下关系:
Figure 944085DEST_PATH_IMAGE020
原始条件下油藏的束缚水体积
Figure 401612DEST_PATH_IMAGE004
、原始条件下油藏的束缚水饱和度
Figure 950405DEST_PATH_IMAGE005
、原始条件下油藏的岩石体积
Figure 100763DEST_PATH_IMAGE002
和原始条件下油藏的孔隙度
Figure 367796DEST_PATH_IMAGE003
之间满足如下关系:
Figure 629014DEST_PATH_IMAGE021
当地层压力下降
Figure 32313DEST_PATH_IMAGE006
时,孔隙体积减小量
Figure 556835DEST_PATH_IMAGE007
与原始条件下油藏的孔隙体积
Figure 311165DEST_PATH_IMAGE001
、油藏岩石孔隙体积的压缩系数
Figure 907231DEST_PATH_IMAGE008
、油藏压降
Figure 430616DEST_PATH_IMAGE006
之间满足如下关系:
Figure 922778DEST_PATH_IMAGE022
当地层压力下降
Figure 898824DEST_PATH_IMAGE006
时,束缚水体积变化量
Figure 504773DEST_PATH_IMAGE009
与原始条件下油藏的束缚水体积
Figure 210561DEST_PATH_IMAGE004
、束缚水的压缩系数
Figure 545727DEST_PATH_IMAGE010
、油藏压降
Figure 336966DEST_PATH_IMAGE006
之间满足如下关系:
Figure 415780DEST_PATH_IMAGE023
当地层压力下降
Figure 976075DEST_PATH_IMAGE006
后,油藏岩石的孔隙体积
Figure 482142DEST_PATH_IMAGE011
与原始条件下油藏的孔隙体积
Figure 760677DEST_PATH_IMAGE001
、当地层压力下降
Figure 643182DEST_PATH_IMAGE006
时孔隙体积减小量
Figure 57983DEST_PATH_IMAGE007
、原始条件下油藏的束缚水体积
Figure 531DEST_PATH_IMAGE004
、当地层压力下降
Figure 500783DEST_PATH_IMAGE006
时束缚水体积变化量
Figure 921400DEST_PATH_IMAGE009
、因油藏地层有效应力增大孔隙中束缚水中转化为可动水的体积
Figure 456286DEST_PATH_IMAGE012
之间满足如下关系:
Figure 304157DEST_PATH_IMAGE024
当地层压力下降
Figure 294634DEST_PATH_IMAGE006
后,油藏含水体积
Figure 518942DEST_PATH_IMAGE013
与原始条件下油藏的岩石体积
Figure 846018DEST_PATH_IMAGE001
、原始条件下油藏的孔隙度
Figure 192686DEST_PATH_IMAGE003
、原始条件下油藏的束缚水饱和度
Figure 605213DEST_PATH_IMAGE005
、束缚水的压缩系数
Figure 367632DEST_PATH_IMAGE010
、油藏压降
Figure 611532DEST_PATH_IMAGE006
之间满足以下关系:
Figure 66784DEST_PATH_IMAGE025
当地层压力下降
Figure 28924DEST_PATH_IMAGE006
后,含水饱和度
Figure 595034DEST_PATH_IMAGE014
与当地层压力下降
Figure 693440DEST_PATH_IMAGE006
后,油藏岩石的孔隙体积
Figure 319594DEST_PATH_IMAGE011
、含水体积
Figure 706713DEST_PATH_IMAGE013
之间满足如下关系:
Figure 873252DEST_PATH_IMAGE026
其中利用有效应力与含水饱和度之间的函数关系预测特低渗透砂岩油藏油井投产初期含水率公式为:
Figure 29427DEST_PATH_IMAGE027
式中,
Figure 826481DEST_PATH_IMAGE028
为油井投产含水率,% ,
Figure DEST_PATH_IMAGE029
为数学常数,是自然对数函数的底数。
针对特低渗透砂岩油藏油井投产后即含水成因及初始含水率高预测等研究及应用难题,本发明基于特低渗透砂岩油藏岩石有效应力及物质平衡方程,推导特低渗透砂岩油藏岩石有效应力与含水饱和度之间的函数关系,解释了该类油藏油井投产即含水成因,定量化预测了油井投产初期含水率,从而实现了特低渗透砂岩油藏高效开发及大幅度提高水驱原油采收率之目的。
应用例:
中国石化胜利油田桩74北块油藏是一被南北两条大断层所夹持的地垒构造,中部高,向西、向东两翼降低,地层倾角一般小于5°,构造幅度小,资料井分布范围比较窄,目的产层未找到油水界面。主要目的层系均为沙河街组沙三段沙三下亚段,岩性主要为褐色油页岩及深灰色泥岩夹薄层砂岩,储层物性差,为特低渗储层,平均空气渗透率分别为0.66×10-3μm2和6.1×10-3μm2。桩74北块1994年投入开发,2002~2003年该块的桩74-10-2井区进行井网加密开发,9口加密井投产初期含水稳定后为37.8%~87.3%,平均综合含水为61.5%。
为了便于叙述,这里选用桩74北块油藏空气渗透率相近岩心的3块岩样开展衰竭式开采实验,具体数据如表1。
表1 桩74北块油藏空气渗透率相近岩心的生产压差与含水率关系表
Figure DEST_PATH_IMAGE030
通过收集可知桩74北块油藏可以得到以下若干参数:
Figure 559951DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE031
Figure DEST_PATH_IMAGE032
Figure 810409DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE033
Figure 883407DEST_PATH_IMAGE032
Figure 913680DEST_PATH_IMAGE015
为1.0
Figure DEST_PATH_IMAGE034
Figure 72129DEST_PATH_IMAGE017
为1.81
Figure 518153DEST_PATH_IMAGE034
;相对渗流透率曲线系数a为0.4,b为0.02。
利用桩74北块油藏原始条件下的孔隙体积
Figure 648920DEST_PATH_IMAGE001
、岩石体积
Figure 850095DEST_PATH_IMAGE002
、孔隙度
Figure 433523DEST_PATH_IMAGE003
、束缚水体积
Figure 745555DEST_PATH_IMAGE004
、束缚水饱和度
Figure 730829DEST_PATH_IMAGE005
;油藏岩石孔隙体积的压缩系数
Figure 102904DEST_PATH_IMAGE008
,油藏压降
Figure 173629DEST_PATH_IMAGE006
,油藏束缚水的压缩系数
Figure 289352DEST_PATH_IMAGE010
;当地层压力下降
Figure 129132DEST_PATH_IMAGE006
时,孔隙体积减小量
Figure 675039DEST_PATH_IMAGE007
、束缚水体积变化量
Figure 967480DEST_PATH_IMAGE009
、岩石的孔隙体积
Figure 824577DEST_PATH_IMAGE011
、油藏含水体积
Figure 581181DEST_PATH_IMAGE013
、含水饱和度
Figure 232742DEST_PATH_IMAGE014
;因油藏地层有效应力增大,孔隙中束缚水中转化为可动水的体积
Figure 340375DEST_PATH_IMAGE012
;地层水的粘度
Figure 735584DEST_PATH_IMAGE015
,原油的粘度
Figure 346694DEST_PATH_IMAGE017
,相对渗透率曲线系数
Figure 434736DEST_PATH_IMAGE018
Figure 764086DEST_PATH_IMAGE019
等计算参数之间的相关关系和有效应力与含水饱和度之间的函数关系预测特低渗透砂岩油藏油井投产初期含水率,可以得到1(29/35)<5-3>、2(52/60)<6-3>、3(20/33)<8-2>岩样的投产初期含水率分别为61.35%、58.75%、43.65%,均分布在桩74-10-2井区9口加密井投产初期含水率37.8%~87.3%的分别范围内,其中3块岩样含水率预测结果与实际产出有一定的出入,分析认为是在实际计算过程中将岩心中的含水饱和度都当成束缚水饱和度造成的,而实际情况中岩心内也会存在少量的可动水。由此可以说明,本发明的理论基础及应用效果较好,推广应用后可以取得了良好的社会经济效益。
以上所述仅为本发明的较佳实施例,非用以限定本发明的专利范围,其他运用本发明的专利精神的等效变化,均应俱属本发明的专利范围。

Claims (7)

1.一种特低渗透砂岩油藏油井投产初期含水率预测方法,其特征在于,该方法包括如下步骤:
步骤1,收集整理选定特低渗透砂岩油藏计算参数;
步骤2,利用步骤1中得到的计算参数,运用有效应力与含水饱和度之间的函数关系预测特低渗透砂岩油藏油井投产初期含水率;
在步骤1中,油藏计算参数包括以下若干参数:原始条件下油藏的孔隙体积
Figure 825212DEST_PATH_IMAGE001
;原始条件下油藏的岩石体积
Figure 582953DEST_PATH_IMAGE002
;原始条件下油藏的孔隙度
Figure 293420DEST_PATH_IMAGE003
;原始条件下油藏的束缚水体积
Figure 427598DEST_PATH_IMAGE004
;原始条件下油藏的束缚水饱和度
Figure 133386DEST_PATH_IMAGE005
;当地层压力下降
Figure 202973DEST_PATH_IMAGE006
时,孔隙体积减小量
Figure 259791DEST_PATH_IMAGE007
;油藏岩石孔隙体积的压缩系数
Figure 73026DEST_PATH_IMAGE008
;油藏压降
Figure 898899DEST_PATH_IMAGE006
;当地层压力下降
Figure 139388DEST_PATH_IMAGE006
时,束缚水体积变化量
Figure 949081DEST_PATH_IMAGE009
;束缚水的压缩系数
Figure 300428DEST_PATH_IMAGE010
;当地层压力下降
Figure 980808DEST_PATH_IMAGE006
后,油藏岩石的孔隙体积
Figure 126619DEST_PATH_IMAGE011
;因油藏地层有效应力增大,孔隙中束缚水中转化为可动水的体积
Figure 158028DEST_PATH_IMAGE012
;当地层压力下降
Figure 313066DEST_PATH_IMAGE006
后,油藏含水体积
Figure 113532DEST_PATH_IMAGE013
;当地层压力下降
Figure 695823DEST_PATH_IMAGE006
后,含水饱和度
Figure 214529DEST_PATH_IMAGE014
;地层水的粘度
Figure 907679DEST_PATH_IMAGE015
;原油的粘度
Figure 828230DEST_PATH_IMAGE016
;相对渗透率曲线系数
Figure 581422DEST_PATH_IMAGE017
Figure 321845DEST_PATH_IMAGE018
当地层压力下降
Figure 818686DEST_PATH_IMAGE006
后,含水饱和度
Figure 593744DEST_PATH_IMAGE014
与当地层压力下降
Figure 517837DEST_PATH_IMAGE006
后,油藏岩石的孔隙体积
Figure 11136DEST_PATH_IMAGE011
、含水体积
Figure 46088DEST_PATH_IMAGE013
之间满足如下关系:
Figure 410073DEST_PATH_IMAGE019
在步骤2中,其中利用有效应力与含水饱和度之间的函数关系预测特低渗透砂岩油藏油井投产初期含水率公式为:
Figure 629702DEST_PATH_IMAGE020
式中,
Figure 485662DEST_PATH_IMAGE021
为油井投产含水率。
2.根据权利要求1所述的特低渗透砂岩油藏油井投产初期含水率预测方法,其特征在于,原始条件下油藏的孔隙体积
Figure 183360DEST_PATH_IMAGE001
、原始条件下油藏的岩石体积
Figure 73955DEST_PATH_IMAGE002
、原始条件下油藏的孔隙度
Figure 198906DEST_PATH_IMAGE003
之间满足如下关系:
Figure 276584DEST_PATH_IMAGE022
3.根据权利要求1所述的特低渗透砂岩油藏油井投产初期含水率预测方法,其特征在于,原始条件下油藏的束缚水体积
Figure 777972DEST_PATH_IMAGE004
、原始条件下油藏的束缚水饱和度
Figure 257495DEST_PATH_IMAGE005
、原始条件下油藏的岩石体积
Figure 818926DEST_PATH_IMAGE002
和原始条件下油藏的孔隙度
Figure 383900DEST_PATH_IMAGE003
之间满足如下关系:
Figure 423400DEST_PATH_IMAGE023
4.根据权利要求1所述的特低渗透砂岩油藏油井投产初期含水率预测方法,其特征在于,当地层压力下降
Figure 23009DEST_PATH_IMAGE006
时,孔隙体积减小量
Figure 489762DEST_PATH_IMAGE007
与原始条件下油藏的孔隙体积
Figure 542032DEST_PATH_IMAGE001
、油藏岩石孔隙体积的压缩系数
Figure 385223DEST_PATH_IMAGE008
、油藏压降
Figure 963972DEST_PATH_IMAGE006
之间满足如下关系:
Figure 742572DEST_PATH_IMAGE024
5.根据权利要求1所述的特低渗透砂岩油藏油井投产初期含水率预测方法,其特征在于,当地层压力下降
Figure 141192DEST_PATH_IMAGE006
时,束缚水体积变化量
Figure 663440DEST_PATH_IMAGE009
与原始条件下油藏的束缚水体积
Figure 96696DEST_PATH_IMAGE004
、束缚水的压缩系数
Figure 46197DEST_PATH_IMAGE010
、油藏压降
Figure 197693DEST_PATH_IMAGE006
之间满足如下关系:
Figure 258053DEST_PATH_IMAGE025
6.根据权利要求1所述的特低渗透砂岩油藏油井投产初期含水率预测方法,其特征在于,当地层压力下降
Figure 811394DEST_PATH_IMAGE006
后,油藏岩石的孔隙体积
Figure 931797DEST_PATH_IMAGE011
与原始条件下油藏的孔隙体积
Figure 305009DEST_PATH_IMAGE001
、当地层压力下降
Figure 169060DEST_PATH_IMAGE006
时孔隙体积减小量
Figure 576908DEST_PATH_IMAGE007
、原始条件下油藏的束缚水体积
Figure 602632DEST_PATH_IMAGE004
、当地层压力下降
Figure 299079DEST_PATH_IMAGE006
时束缚水体积变化量
Figure 966820DEST_PATH_IMAGE009
、因油藏地层有效应力增大孔隙中束缚水中转化为可动水的体积
Figure 229174DEST_PATH_IMAGE012
之间满足如下关系:
Figure 691380DEST_PATH_IMAGE026
7.根据权利要求1所述的特低渗透砂岩油藏油井投产初期含水率预测方法,其特征在于,当地层压力下降
Figure 39184DEST_PATH_IMAGE006
后,油藏含水体积
Figure 510617DEST_PATH_IMAGE013
与原始条件下油藏的岩石体积
Figure 627478DEST_PATH_IMAGE001
、原始条件下油藏的孔隙度
Figure 260584DEST_PATH_IMAGE003
、原始条件下油藏的束缚水饱和度
Figure 95685DEST_PATH_IMAGE005
、束缚水的压缩系数
Figure 105229DEST_PATH_IMAGE010
、油藏压降
Figure 76596DEST_PATH_IMAGE006
之间满足以下关系:
Figure 146184DEST_PATH_IMAGE027
CN201811252565.3A 2018-10-25 2018-10-25 特低渗透砂岩油藏油井投产初期含水率预测方法 Active CN109447342B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811252565.3A CN109447342B (zh) 2018-10-25 2018-10-25 特低渗透砂岩油藏油井投产初期含水率预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811252565.3A CN109447342B (zh) 2018-10-25 2018-10-25 特低渗透砂岩油藏油井投产初期含水率预测方法

Publications (2)

Publication Number Publication Date
CN109447342A CN109447342A (zh) 2019-03-08
CN109447342B true CN109447342B (zh) 2022-02-11

Family

ID=65548551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811252565.3A Active CN109447342B (zh) 2018-10-25 2018-10-25 特低渗透砂岩油藏油井投产初期含水率预测方法

Country Status (1)

Country Link
CN (1) CN109447342B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112001055B (zh) * 2019-11-07 2024-04-09 中海石油(中国)有限公司 一种基于微构造的低幅稀油油藏含水率预测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106600443A (zh) * 2016-12-09 2017-04-26 北京源博科技有限公司 动态含水饱和度的油井产量劈分方法
CN107944126A (zh) * 2017-11-21 2018-04-20 中国石油天然气股份有限公司 一种确定水驱油藏含水率的方法及装置
CN108049861A (zh) * 2017-12-08 2018-05-18 中国石油化工股份有限公司 适用于中高渗油藏密闭取心井流体饱和度的校正方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX343535B (es) * 2010-11-18 2016-11-09 Suncor Energy Inc Procedimiento para determinar la saturacion de agua libre en una formacion de deposito.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106600443A (zh) * 2016-12-09 2017-04-26 北京源博科技有限公司 动态含水饱和度的油井产量劈分方法
CN107944126A (zh) * 2017-11-21 2018-04-20 中国石油天然气股份有限公司 一种确定水驱油藏含水率的方法及装置
CN108049861A (zh) * 2017-12-08 2018-05-18 中国石油化工股份有限公司 适用于中高渗油藏密闭取心井流体饱和度的校正方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
特低渗透砂岩油藏初始含水率影响因素探讨;党海龙;《非常规油气》;20150831;第2卷(第4期);第30-35页 *
砂岩气藏地层压力下降对束缚水饱和度的影响;李莲明;《新疆石油地质》;20101231;第31卷(第6期);第626-628页 *

Also Published As

Publication number Publication date
CN109447342A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN104389594B (zh) 页岩气井产能评价预测方法
CN102865060B (zh) 一种页岩油藏水力压裂支撑剂量的确定方法
CN111694068B (zh) 一种大型淡水湖盆陆相泥页岩油形成与富集评价方法
CN105317407B (zh) 一种特高含水期表外储层的开发方法
RU2518684C2 (ru) Способ добычи нефти и других пластовых жидкостей из коллектора (варианты)
CN108518219B (zh) 一种基于天然能量开发油田规模提液选井的评价方法
CN111638317A (zh) 一种大型淡水湖盆陆相泥页岩油形成与演化评价方法
CN107133393B (zh) 通道压裂选井选层及动态参数优化设计方法
Wang et al. Influence of stress and formation water properties on velocity sensitivity of lignite reservoir using simulation experiment
CN104727790A (zh) 水驱油藏剩余油再富集成藏周期预测方法
CN108088779B (zh) 一种致密储层和常规储层储集空间分类方法
CN109447342B (zh) 特低渗透砂岩油藏油井投产初期含水率预测方法
Anuar et al. The effect of WAG ratio and oil density on oil recovery by immiscible water alternating gas flooding
CN109869129A (zh) 一种双向驱油藏最优井位部署技术方法
Dano et al. Simulation study on polymer flooding for enhanced oil recovery: a case study
CN109142682A (zh) 一种单位体积岩石含气率与试油效果评价方法
CN115746808A (zh) 调堵剂及其应用
Pu et al. Study of polymer flooding in class III reservoir and pilot test
Liu et al. Enhancing oil recovery through immiscible water-alternating-CO2 in tight oil formations—a case study of Yaoyingtai Field in China
Jia et al. Intelligent waterflooding development of high-permeability reservoirs at the late development stage
Guo et al. Investigation on immiscible N2 WAG and SWAG after water flooding in the paleo-subterranean river of fractured-vuggy reservoirs
Onwukwe et al. Optimizing production in brown fields using re-entry horizontal wells
Hao et al. Using a well-to-well interplay during the CO2 huff-n-puff process for enhanced oil recovery in an inclined oil reservoir: Experiments, simulations, and pilot tests
Dandan et al. Integrated management and Application of Horizontal Well Water Flooding Technology in a Large-scale Complicated Carbonate Oilfield Containing High permeability Streaks
CN110656934B (zh) 一种致密砂岩储层去压实地层对比方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant