CN109444845B - Device and method for identifying coal-rock interface based on solid-state lidar imaging - Google Patents
Device and method for identifying coal-rock interface based on solid-state lidar imaging Download PDFInfo
- Publication number
- CN109444845B CN109444845B CN201811138102.4A CN201811138102A CN109444845B CN 109444845 B CN109444845 B CN 109444845B CN 201811138102 A CN201811138102 A CN 201811138102A CN 109444845 B CN109444845 B CN 109444845B
- Authority
- CN
- China
- Prior art keywords
- feature map
- layer
- convolution
- coal
- convolution layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011435 rock Substances 0.000 title claims abstract description 224
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000003384 imaging method Methods 0.000 title claims abstract description 27
- 239000003245 coal Substances 0.000 claims abstract description 255
- 238000013500 data storage Methods 0.000 claims abstract description 20
- 238000012545 processing Methods 0.000 claims abstract description 17
- 230000004927 fusion Effects 0.000 claims abstract description 15
- 230000008054 signal transmission Effects 0.000 claims abstract description 15
- 238000010606 normalization Methods 0.000 claims abstract description 14
- 230000004913 activation Effects 0.000 claims description 102
- 238000011176 pooling Methods 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 238000012360 testing method Methods 0.000 claims description 18
- 238000012549 training Methods 0.000 claims description 13
- 238000005070 sampling Methods 0.000 claims 16
- 238000003062 neural network model Methods 0.000 claims 12
- 229910052500 inorganic mineral Inorganic materials 0.000 claims 5
- 239000011707 mineral Substances 0.000 claims 5
- 239000007787 solid Substances 0.000 claims 4
- 238000013527 convolutional neural network Methods 0.000 description 43
- 238000001514 detection method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005065 mining Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/4802—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/13—Satellite images
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Radar, Positioning & Navigation (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Astronomy & Astrophysics (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明涉及煤岩识别技术领域,特别涉及一种基于固态激光雷达成像对煤岩界面进行识别的装置及方法。The invention relates to the technical field of coal-rock identification, in particular to a device and method for identifying coal-rock interfaces based on solid-state laser radar imaging.
背景技术Background technique
煤岩识别即识别出煤岩对象为煤矿还是为岩石。在煤炭生产过程中,煤岩识别技术可广泛应用于滚筒采煤、掘进、放顶煤开采、原煤选研石等生产环节,对于减少采掘工作面作业人员、减轻工人劳动强度、改善作业环境、实现煤矿安全高效生产和综合机械化煤炭开采具有重要意义。Coal rock identification is to identify whether the coal rock object is a coal mine or a rock. In the process of coal production, coal rock identification technology can be widely used in the production links such as drum coal mining, tunneling, top coal caving mining, raw coal dressing and stone grinding, etc. It is of great significance to realize safe and efficient production of coal mines and comprehensive mechanized coal mining.
现阶段,已有多种煤岩识别方法,如自然射线探测法、应力截齿法、红外探测法、有功功率监测法、震动检测法、声音检测法、粉尘检测法等。但由于煤层地质条件复杂多变,导致以上各种方法不具备普遍适用性,同时由于工作面环境恶劣、识别实时性的原因而使得这些在煤岩识别方面应用不广泛。At this stage, there are many coal rock identification methods, such as natural ray detection method, stress pick method, infrared detection method, active power monitoring method, vibration detection method, sound detection method, dust detection method, etc. However, due to the complex and changeable coal seam geological conditions, the above methods do not have universal applicability. At the same time, due to the harsh environment of the working face and the real-time identification, these methods are not widely used in coal rock identification.
发明内容Contents of the invention
为了解决现有的煤岩识别方法适用性较差,以及识别实时性不好的问题,一方面,本发明提供了一种基于固态激光雷达成像对煤岩界面进行识别的装置,所述装置包括:多个激光雷达模块、信号传输模块、数据存储模块、雷达成像模块、图像融合模块以及图像识别模块;In order to solve the problems of poor applicability and poor real-time recognition of existing coal-rock identification methods, on the one hand, the present invention provides a device for identifying coal-rock interfaces based on solid-state laser radar imaging, which includes : Multiple laser radar modules, signal transmission modules, data storage modules, radar imaging modules, image fusion modules and image recognition modules;
多个激光雷达模块,用于向煤岩矿的同一区域发射雷达信号,得到煤岩矿同一区域的多组煤岩矿数据信息,其中,所述激光雷达模块,能向煤岩矿发射雷达信号,并根据煤岩矿反射回来的反射信号得到煤岩矿数据信息;A plurality of laser radar modules are used to transmit radar signals to the same area of the coal mine to obtain multiple sets of coal mine data information in the same area of the coal mine, wherein the laser radar module can transmit radar signals to the coal mine , and obtain the data information of the coal mine according to the reflection signal reflected by the coal mine;
信号传输模块,用于将所述多组煤岩矿数据信息传输至数据存储模块;The signal transmission module is used to transmit the multiple sets of coal and rock mine data information to the data storage module;
数据存储模块,用于存储信号传输模块传输过来的多组煤岩矿数据信息;The data storage module is used to store multiple sets of coal, rock and mine data information transmitted by the signal transmission module;
雷达成像模块,用于调取数据存储模块存储的多组煤岩矿数据信息,并分别对每组煤岩矿数据信息进行成像,得到每组煤岩矿数据信息所对应的煤岩纹理图像,即煤岩矿同一区域的多个煤岩纹理图像;The radar imaging module is used to retrieve multiple sets of coal and rock mine data information stored in the data storage module, and image each set of coal and rock mine data information to obtain the coal rock texture image corresponding to each set of coal and rock mine data information, That is, multiple coal texture images in the same area of the coal mine;
图像融合模块,用于对所述多个煤岩纹理图像进行融合,得到一张融合后的煤岩纹理图像;图像识别模块,用于对所述融合后的煤岩纹理图像进行归一化处理,并对归一化处理后的图像进行识别,得出煤岩界面识别结果。The image fusion module is used to fuse the multiple coal and rock texture images to obtain a fused coal and rock texture image; the image recognition module is used to normalize the fused coal and rock texture images , and identify the normalized image to obtain the coal-rock interface identification result.
每个所述激光雷达模块均包括雷达信号发射单元、雷达反射信号接收单元、雷达信号A/D转换单元;Each of the lidar modules includes a radar signal transmitting unit, a radar reflection signal receiving unit, and a radar signal A/D conversion unit;
雷达信号发射单元,用于向所述煤岩矿发射雷达信号;a radar signal transmitting unit for transmitting radar signals to the coal mine;
雷达反射信号接收单元,用于接收被所述煤岩矿反射回来的反射信号;The radar reflection signal receiving unit is used to receive the reflection signal reflected by the coal rock mine;
雷达信号A/D转换单元,用于对所述反射信号进行数据转换,得到煤岩矿数据信息。The radar signal A/D conversion unit is used to perform data conversion on the reflected signal to obtain coal, rock and mine data information.
所述激光雷达模块为固态激光雷达。The lidar module is a solid-state lidar.
对已有的煤岩纹理图像进行归一化处理,构建全卷积神经网络模型,利用归一化处理后的已有煤岩纹理图像对全卷积神经网络模型进行训练和测试,得到训练完毕的全卷积神经网络模型;将所述训练完毕的全卷积神经网络模型载入所述图像识别模块;Normalize the existing coal and rock texture images, build a fully convolutional neural network model, use the normalized existing coal and rock texture images to train and test the fully convolutional neural network model, and get the training completed The full convolutional neural network model; the fully trained full convolutional neural network model is loaded into the image recognition module;
所述图像识别模块对所述融合后的煤岩纹理图像进行归一化处理,并将归一化处理后的图像输入至训练完毕的全卷积神经网络模型内,训练完毕的全卷积神经网络模型输出煤岩界面识别结果。The image recognition module performs normalization processing on the fused coal and rock texture image, and inputs the normalized image into the trained fully convolutional neural network model, and the trained fully convolutional neural network model The network model outputs the coal-rock interface recognition results.
所述训练完毕的全卷积神经网络模型的深度为五层,分别为第一层、第二层、第三层、第四层和第五层;The depth of the fully convolutional neural network model after the training is five layers, which are respectively the first layer, the second layer, the third layer, the fourth layer and the fifth layer;
第一层由卷积层C1、卷积层C2和池化层P1组成,卷积层C1和卷积层C2均包括64个大小为3*3的卷积核和一个ReLU激活函数;卷积层C1用于输入所述归一化处理后的图像,所述归一化处理后的图像像素大小为320*320*1,所述归一化处理后的图像经过卷积层C1的所有卷积核和ReLU激活函数处理后,输出特征图A1,特征图A1的像素大小为318*318*64;卷积层C2用于输入特征图A1,特征图A1经过卷积层C2的所有卷积核和ReLU激活函数处理后,输出特征图A2,特征图A2的像素大小为316*316*64;池化层P1用于输入特征图A2,并在特征图A2上划分出多个2*2的区块,并对每个区块中取最大值后,输出特征图A3,特征图A3的像素大小为158*158*64;The first layer consists of convolutional layer C1, convolutional layer C2, and pooling layer P1. Both convolutional layer C1 and convolutional layer C2 include 64 convolution kernels of size 3*3 and a ReLU activation function; convolution Layer C1 is used to input the normalized image, the pixel size of the normalized image is 320*320*1, and the normalized image passes through all volumes of the convolutional layer C1 After the product kernel and ReLU activation function are processed, the output feature map A1, the pixel size of the feature map A1 is 318*318*64; the convolution layer C2 is used to input the feature map A1, and the feature map A1 passes through all the convolutions of the convolution layer C2 After the kernel and ReLU activation function are processed, the output feature map A2, the pixel size of the feature map A2 is 316*316*64; the pooling layer P1 is used to input the feature map A2, and divides multiple 2*2 on the feature map A2 block, and after taking the maximum value in each block, output feature map A3, the pixel size of feature map A3 is 158*158*64;
第二层由卷积层C3、卷积层C4和池化层P2组成,卷积层C3和卷积层C4均包括128个大小为2*2的卷积核和一个ReLU激活函数;卷积层C3用于输入特征图A3,特征图A3经过卷积层C3的所有卷积核和ReLU激活函数处理后,输出特征图A4,特征图A4的像素大小为156*156*128;卷积层C4用于输入特征图A4,特征图A4经过卷积层C4的所有卷积核和ReLU激活函数处理后,输出特征图A5,特征图A5的像素大小为154*154*128;池化层P2用于输入特征图A5,并在特征图A5上划分出多个2*2的区块,并对每个区块中取最大值后,输出特征图A6,特征图A6的像素大小为77*77*128;The second layer consists of convolutional layer C3, convolutional layer C4, and pooling layer P2. Both convolutional layer C3 and convolutional layer C4 include 128 convolution kernels with a size of 2*2 and a ReLU activation function; convolution Layer C3 is used to input the feature map A3. After the feature map A3 is processed by all the convolution kernels and ReLU activation functions of the convolution layer C3, the output feature map A4, the pixel size of the feature map A4 is 156*156*128; the convolution layer C4 is used to input the feature map A4. After the feature map A4 is processed by all the convolution kernels and ReLU activation functions of the convolutional layer C4, the output feature map A5, the pixel size of the feature map A5 is 154*154*128; the pooling layer P2 It is used to input the feature map A5, and divide multiple 2*2 blocks on the feature map A5, and after taking the maximum value of each block, output the feature map A6, and the pixel size of the feature map A6 is 77* 77*128;
第三层由卷积层C5和卷积层C6组成,卷积层C5和卷积层C6均包括256个大小为3*3的卷积核和一个ReLU激活函数;卷积层C5用于输入特征图A6,特征图A6经过卷积层C5的所有卷积核和ReLU激活函数处理后,输出特征图A7,特征图A7的像素大小为75*75*256;卷积层C6用于输入特征图A7,特征图A7经过卷积层C6的所有卷积核和ReLU激活函数处理后,输出特征图A8,特征图A8的像素大小为73*73*256;The third layer consists of convolutional layer C5 and convolutional layer C6. Both convolutional layer C5 and convolutional layer C6 include 256 convolution kernels of size 3*3 and a ReLU activation function; convolutional layer C5 is used for input Feature map A6, after the feature map A6 is processed by all the convolution kernels and ReLU activation functions of the convolutional layer C5, the output feature map A7, the pixel size of the feature map A7 is 75*75*256; the convolutional layer C6 is used for input features Figure A7, after the feature map A7 is processed by all convolution kernels and ReLU activation functions of the convolution layer C6, the output feature map A8, the pixel size of the feature map A8 is 73*73*256;
第四层由上采样层U1、卷积层C7和卷积层C8组成,上采样层U1包括256个大小为2*2的卷积核,卷积层C7和卷积层C8均包括128个大小为3*3的卷积核和一个ReLU激活函数;上采样层U1用于输入特征图A8,特征图A8经过上采样层U1的所有卷积核进行反卷积处理后,输出特征图A9,特征图A9的像素大小为146*146*256;卷积层C7用于输入特征图A9,特征图A9经过卷积层C7的所有卷积核和ReLU激活函数处理后,输出特征图A10,特征图A10的像素大小为144*144*128;卷积层C8用于输入特征图A10,特征图A10经过卷积层C8的所有卷积核和ReLU激活函数处理后,输出特征图A11,特征图A11的像素大小为142*142*128;The fourth layer consists of upsampling layer U1, convolutional layer C7 and convolutional layer C8. Upsampling layer U1 includes 256 convolution kernels with a size of 2*2. Convolutional layer C7 and convolutional layer C8 each include 128 A convolution kernel with a size of 3*3 and a ReLU activation function; the upsampling layer U1 is used to input the feature map A8, and after the feature map A8 is deconvoluted by all the convolution kernels of the upsampling layer U1, the output feature map A9 , the pixel size of the feature map A9 is 146*146*256; the convolutional layer C7 is used to input the feature map A9, and the feature map A9 is processed by all the convolution kernels and the ReLU activation function of the convolutional layer C7 to output the feature map A10, The pixel size of the feature map A10 is 144*144*128; the convolutional layer C8 is used to input the feature map A10, and the feature map A10 is processed by all the convolution kernels and the ReLU activation function of the convolutional layer C8 to output the feature map A11. The pixel size of Figure A11 is 142*142*128;
第五层由上采样层U2、卷积层C9、卷积层C10和卷积层C11组成,上采样层U2包括128个大小为2*2的卷积核,卷积层C9和卷积层C10均包括64个大小为3*3的卷积核和一个ReLU激活函数,卷积层C11包括2个大小为1*1的卷积核和一个ReLU激活函数;上采样层U2用于输入特征图A11,特征图A11经过上采样层U2的所有卷积核进行反卷积处理后,输出特征图A12,特征图A12的像素大小为284*284*128;卷积层C9用于输入特征图A12,特征图A12经过卷积层C9的所有卷积核和ReLU激活函数处理后,输出特征图A13,特征图A13的像素大小为282*282*64;卷积层C10用于输入特征图A13,特征图A13经过卷积层C10的所有卷积核和ReLU激活函数处理后,输出特征图A14,特征图A14的像素大小为280*280*64;卷积层C11用于输入特征图A14,特征图A14经过卷积层C11的所有卷积核和ReLU激活函数处理后,输出特征图A15,特征图A15的像素大小为280*280*2,特征图A15的输出特征包括煤岩矿的煤矿界面和岩石界面。The fifth layer consists of upsampling layer U2, convolutional layer C9, convolutional layer C10 and convolutional layer C11. Upsampling layer U2 includes 128 convolution kernels with a size of 2*2, convolutional layer C9 and convolutional layer C10 includes 64 convolution kernels of size 3*3 and a ReLU activation function, convolution layer C11 includes 2 convolution kernels of
所述装置还包括供电模块,用于对所述多个激光雷达模块、所述信号传输模块、所述数据存储模块、所述雷达成像模块、所述图像融合模块以及所述图像识别模块供电。The device also includes a power supply module for supplying power to the multiple laser radar modules, the signal transmission module, the data storage module, the radar imaging module, the image fusion module and the image recognition module.
另一方面,本发明提供了一种基于固态激光雷达成像对煤岩界面进行识别的方法,所述方法包括:In another aspect, the present invention provides a method for identifying a coal-rock interface based on solid-state lidar imaging, the method comprising:
采用多个激光雷达模块向煤岩矿的同一区域发射雷达信号,得到多组煤岩矿数据信息,其中,每个所述激光雷达模块,均能向煤岩矿发射雷达信号,并根据煤岩矿反射回来的反射信号得到煤岩矿数据信息;Multiple laser radar modules are used to transmit radar signals to the same area of the coal mine to obtain multiple sets of coal mine data information, wherein each of the laser radar modules can transmit radar signals to the coal mine, and according to the The reflection signal reflected by the mine can obtain the data information of the coal mine;
对所述多组煤岩矿数据信息进行存储;storing the multiple sets of coal and rock mine data information;
调取存储的多组煤岩矿数据信息,并分别对每组煤岩矿数据信息进行成像,得到每组煤岩矿数据信息所对应的煤岩纹理图像,即煤岩矿同一区域的多个煤岩纹理图像;Retrieve multiple sets of coal and rock mine data information stored, and image each set of coal and rock mine data information to obtain the coal rock texture image corresponding to each set of coal and rock mine data information, that is, multiple coal and rock mine data in the same area coal rock texture image;
对所述多个煤岩纹理图像进行融合,得到一张融合后的煤岩纹理图像;Fusing the plurality of coal and rock texture images to obtain a fused coal and rock texture image;
对所述融合后的煤岩纹理图像进行归一化处理,并对归一化处理后的图像进行识别,得出煤岩界面识别结果。A normalization process is performed on the fused coal-rock texture image, and the normalized image is recognized to obtain a coal-rock interface recognition result.
所述激光雷达模块,均能向煤岩矿发射雷达信号,并根据煤岩矿反射回来的反射信号得到煤岩矿数据信息,包括:The laser radar module can all transmit radar signals to the coal mine, and obtain coal mine data information according to the reflected signal reflected by the coal mine, including:
通过所述激光雷达模块的雷达信号发射单元,向所述煤岩矿发射雷达信号;transmitting radar signals to the coal mine through the radar signal transmitting unit of the laser radar module;
通过所述激光雷达模块的雷达反射信号接收单元,接收被所述煤岩矿反射回来的反射信号;通过所述激光雷达模块的雷达信号A/D转换单元,对所述反射信号进行数据转换,得到煤岩矿数据信息。Through the radar reflection signal receiving unit of the lidar module, the reflection signal reflected by the coal mine is received; through the radar signal A/D conversion unit of the lidar module, data conversion is performed on the reflection signal, Get coal mine data information.
所述对所述融合后的煤岩纹理图像进行归一化处理,并对归一化处理后的图像进行识别,包括:The said fused coal rock texture image is normalized, and the normalized image is identified, including:
对已有的煤岩纹理图像进行归一化处理,构建全卷积神经网络模型,利用归一化处理后的已有煤岩纹理图像对全卷积神经网络模型进行训练和测试,得到训练完毕的全卷积神经网络模型;Normalize the existing coal and rock texture images, build a fully convolutional neural network model, use the normalized existing coal and rock texture images to train and test the fully convolutional neural network model, and get the training completed The fully convolutional neural network model of ;
对所述融合后的煤岩纹理图像进行归一化处理,并将归一化处理后的图像输入至训练完毕的全卷积神经网络模型内,训练完毕的全卷积神经网络模型输出煤岩界面识别结果。Perform normalization processing on the fused coal texture image, and input the normalized image into the trained full convolutional neural network model, and the trained full convolutional neural network model outputs the coal rock texture image The interface recognition result.
所述训练完毕的全卷积神经网络模型的深度为五层,分别为第一层、第二层、第三层、第四层和第五层;The depth of the fully convolutional neural network model after the training is five layers, which are respectively the first layer, the second layer, the third layer, the fourth layer and the fifth layer;
第一层由卷积层C1、卷积层C2和池化层P1组成,卷积层C1和卷积层C2均包括64个大小为3*3的卷积核和一个ReLU激活函数;卷积层C1用于输入所述归一化处理后的图像,所述归一化处理后的图像像素大小为320*320*1,所述归一化处理后的图像经过卷积层C1的所有卷积核和ReLU激活函数处理后,输出特征图A1,特征图A1的像素大小为318*318*64;卷积层C2用于输入特征图A1,特征图A1经过卷积层C2的所有卷积核和ReLU激活函数处理后,输出特征图A2,特征图A2的像素大小为316*316*64;池化层P1用于输入特征图A2,并在特征图A2上划分出多个2*2的区块,并对每个区块中取最大值后,输出特征图A3,特征图A3的像素大小为158*158*64;The first layer consists of convolutional layer C1, convolutional layer C2, and pooling layer P1. Both convolutional layer C1 and convolutional layer C2 include 64 convolution kernels of size 3*3 and a ReLU activation function; convolution Layer C1 is used to input the normalized image, the pixel size of the normalized image is 320*320*1, and the normalized image passes through all volumes of the convolutional layer C1 After the product kernel and ReLU activation function are processed, the output feature map A1, the pixel size of the feature map A1 is 318*318*64; the convolution layer C2 is used to input the feature map A1, and the feature map A1 passes through all the convolutions of the convolution layer C2 After the kernel and ReLU activation function are processed, the output feature map A2, the pixel size of the feature map A2 is 316*316*64; the pooling layer P1 is used to input the feature map A2, and divides multiple 2*2 on the feature map A2 block, and after taking the maximum value in each block, output feature map A3, the pixel size of feature map A3 is 158*158*64;
第二层由卷积层C3、卷积层C4和池化层P2组成,卷积层C3和卷积层C4均包括128个大小为2*2的卷积核和一个ReLU激活函数;卷积层C3用于输入特征图A3,特征图A3经过卷积层C3的所有卷积核和ReLU激活函数处理后,输出特征图A4,特征图A4的像素大小为156*156*128;卷积层C4用于输入特征图A4,特征图A4经过卷积层C4的所有卷积核和ReLU激活函数处理后,输出特征图A5,特征图A5的像素大小为154*154*128;池化层P2用于输入特征图A5,并在特征图A5上划分出多个2*2的区块,并对每个区块中取最大值后,输出特征图A6,特征图A6的像素大小为77*77*128;The second layer consists of convolutional layer C3, convolutional layer C4, and pooling layer P2. Both convolutional layer C3 and convolutional layer C4 include 128 convolution kernels with a size of 2*2 and a ReLU activation function; convolution Layer C3 is used to input the feature map A3. After the feature map A3 is processed by all the convolution kernels and ReLU activation functions of the convolution layer C3, the output feature map A4, the pixel size of the feature map A4 is 156*156*128; the convolution layer C4 is used to input the feature map A4. After the feature map A4 is processed by all the convolution kernels and ReLU activation functions of the convolutional layer C4, the output feature map A5, the pixel size of the feature map A5 is 154*154*128; the pooling layer P2 It is used to input the feature map A5, and divide multiple 2*2 blocks on the feature map A5, and after taking the maximum value of each block, output the feature map A6, and the pixel size of the feature map A6 is 77* 77*128;
第三层由卷积层C5和卷积层C6组成,卷积层C5和卷积层C6均包括256个大小为3*3的卷积核和一个ReLU激活函数;卷积层C5用于输入特征图A6,特征图A6经过卷积层C5的所有卷积核和ReLU激活函数处理后,输出特征图A7,特征图A7的像素大小为75*75*256;卷积层C6用于输入特征图A7,特征图A7经过卷积层C6的所有卷积核和ReLU激活函数处理后,输出特征图A8,特征图A8的像素大小为73*73*256;The third layer consists of convolutional layer C5 and convolutional layer C6. Both convolutional layer C5 and convolutional layer C6 include 256 convolution kernels of size 3*3 and a ReLU activation function; convolutional layer C5 is used for input Feature map A6, after the feature map A6 is processed by all the convolution kernels and ReLU activation functions of the convolutional layer C5, the output feature map A7, the pixel size of the feature map A7 is 75*75*256; the convolutional layer C6 is used for input features Figure A7, after the feature map A7 is processed by all convolution kernels and ReLU activation functions of the convolution layer C6, the output feature map A8, the pixel size of the feature map A8 is 73*73*256;
第四层由上采样层U1、卷积层C7和卷积层C8组成,上采样层U1包括256个大小为2*2的卷积核,卷积层C7和卷积层C8均包括128个大小为3*3的卷积核和一个ReLU激活函数;上采样层U1用于输入特征图A8,特征图A8经过上采样层U1的所有卷积核进行反卷积处理后,输出特征图A9,特征图A9的像素大小为146*146*256;卷积层C7用于输入特征图A9,特征图A9经过卷积层C7的所有卷积核和ReLU激活函数处理后,输出特征图A10,特征图A10的像素大小为144*144*128;卷积层C8用于输入特征图A10,特征图A10经过卷积层C8的所有卷积核和ReLU激活函数处理后,输出特征图A11,特征图A11的像素大小为142*142*128;The fourth layer consists of upsampling layer U1, convolutional layer C7 and convolutional layer C8. Upsampling layer U1 includes 256 convolution kernels with a size of 2*2. Convolutional layer C7 and convolutional layer C8 each include 128 A convolution kernel with a size of 3*3 and a ReLU activation function; the upsampling layer U1 is used to input the feature map A8, and after the feature map A8 is deconvoluted by all the convolution kernels of the upsampling layer U1, the output feature map A9 , the pixel size of the feature map A9 is 146*146*256; the convolutional layer C7 is used to input the feature map A9, and the feature map A9 is processed by all the convolution kernels and the ReLU activation function of the convolutional layer C7 to output the feature map A10, The pixel size of the feature map A10 is 144*144*128; the convolutional layer C8 is used to input the feature map A10, and the feature map A10 is processed by all the convolution kernels and the ReLU activation function of the convolutional layer C8 to output the feature map A11. The pixel size of Figure A11 is 142*142*128;
第五层由上采样层U2、卷积层C9、卷积层C10和卷积层C11组成,上采样层U2包括128个大小为2*2的卷积核,卷积层C9和卷积层C10均包括64个大小为3*3的卷积核和一个ReLU激活函数,卷积层C11包括2个大小为1*1的卷积核和一个ReLU激活函数;上采样层U2用于输入特征图A11,特征图A11经过上采样层U2的所有卷积核进行反卷积处理后,输出特征图A12,特征图A12的像素大小为284*284*128;卷积层C9用于输入特征图A12,特征图A12经过卷积层C9的所有卷积核和ReLU激活函数处理后,输出特征图A13,特征图A13的像素大小为282*282*64;卷积层C10用于输入特征图A13,特征图A13经过卷积层C10的所有卷积核和ReLU激活函数处理后,输出特征图A14,特征图A14的像素大小为280*280*64;卷积层C11用于输入特征图A14,特征图A14经过卷积层C11的所有卷积核和ReLU激活函数处理后,输出特征图A15,特征图A15的像素大小为280*280*2,特征图A15的输出特征包括煤岩矿的煤矿界面和岩石界面。The fifth layer consists of upsampling layer U2, convolutional layer C9, convolutional layer C10 and convolutional layer C11. Upsampling layer U2 includes 128 convolution kernels with a size of 2*2, convolutional layer C9 and convolutional layer C10 includes 64 convolution kernels of size 3*3 and a ReLU activation function, convolution layer C11 includes 2 convolution kernels of size 1*1 and a ReLU activation function; upsampling layer U2 is used for input features Figure A11, after the feature map A11 is deconvoluted by all the convolution kernels of the upsampling layer U2, the output feature map A12, the pixel size of the feature map A12 is 284*284*128; the convolution layer C9 is used to input the feature map A12, after the feature map A12 is processed by all the convolution kernels and ReLU activation functions of the convolutional layer C9, the output feature map A13, the pixel size of the feature map A13 is 282*282*64; the convolutional layer C10 is used to input the feature map A13 , after the feature map A13 is processed by all the convolution kernels and ReLU activation functions of the convolutional layer C10, the output feature map A14, the pixel size of the feature map A14 is 280*280*64; the convolutional layer C11 is used to input the feature map A14, After the feature map A14 is processed by all the convolution kernels of the convolution layer C11 and the ReLU activation function, the output feature map A15, the pixel size of the feature map A15 is 280*280*2, and the output features of the feature map A15 include coal mines of coal mines interface and rock interface.
通过以上技术方案,相对于现有技术,本发明具有以下有益效果:Through the above technical solutions, compared with the prior art, the present invention has the following beneficial effects:
本发明中利用雷达信号对煤岩界面进行探测,探测精度能达到毫米级别,能探测煤岩凹凸不平表面的相对深度,探测过程不依赖环境辐射,抗干扰能力强,利用多个激光雷达模块对煤岩矿的同一区域发射雷达信号,形成同一区域的多幅煤岩纹理图像,通过对同一区域的多幅煤岩纹理图像进行融合,提高煤岩矿图像成像的精确性,利用全卷积神经网络模型,对融合后的煤岩纹理图像识别煤矿界面和岩石界面,使得识别结果更加准确;本发明在复杂环境下的矿井,有很强的抗干扰能力,可以准确的进行煤岩识别,且操作过程简单,适用性较好,能对煤矿和岩石的分布情况进行实时识别。In the present invention, radar signals are used to detect the coal-rock interface, and the detection accuracy can reach the millimeter level, and the relative depth of the uneven surface of the coal rock can be detected. The detection process does not depend on environmental radiation, and the anti-interference ability is strong. Multiple laser radar modules are used to detect Radar signals are emitted in the same area of the coal mine to form multiple coal texture images in the same area. By fusing multiple coal texture images in the same area, the accuracy of coal mine image imaging is improved, and the full convolutional neural network is used to The network model recognizes the coal mine interface and rock interface on the fused coal and rock texture image, making the recognition result more accurate; the present invention has strong anti-interference ability in mines in complex environments, and can accurately identify coal and rock, and The operation process is simple, the applicability is good, and the distribution of coal mines and rocks can be identified in real time.
附图说明Description of drawings
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1是本发明的基于固态激光雷达成像对煤岩界面进行识别的装置的结构示意图;Fig. 1 is the structural representation of the device for identifying the coal-rock interface based on solid-state lidar imaging of the present invention;
图2是本发明的激光雷达模块的布置示意图;Fig. 2 is a schematic layout diagram of the lidar module of the present invention;
图3是本发明的全卷积神经网络结构图;Fig. 3 is the full convolutional neural network structural diagram of the present invention;
图4是本发明的基于固态激光雷达成像对煤岩界面进行识别的方法的流程图。Fig. 4 is a flow chart of the method for identifying coal-rock interfaces based on solid-state lidar imaging according to the present invention.
具体实施方式Detailed ways
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。The present invention is described in further detail now in conjunction with accompanying drawing. These drawings are all simplified schematic diagrams, which only illustrate the basic structure of the present invention in a schematic manner, so they only show the configurations related to the present invention.
实施例1Example 1
为了解决现有的煤岩识别方法适用性较差,以及识别实时性不好的问题,如图1所示,本发明提供了一种基于固态激光雷达成像对煤岩界面进行识别的装置,该装置包括:多个激光雷达模块、信号传输模块、数据存储模块、雷达成像模块、图像融合模块以及图像识别模块;多个激光雷达模块,用于向煤岩矿的同一区域发射雷达信号,得到煤岩矿同一区域的多组煤岩矿数据信息,其中,激光雷达模块,均能向煤岩矿发射雷达信号,并根据煤岩矿反射回来的反射信号得到煤岩矿数据信息;In order to solve the problems of poor applicability and poor real-time recognition of existing coal-rock identification methods, as shown in Figure 1, the present invention provides a device for identifying coal-rock interfaces based on solid-state laser radar imaging. The device includes: multiple laser radar modules, signal transmission modules, data storage modules, radar imaging modules, image fusion modules and image recognition modules; multiple laser radar modules are used to transmit radar signals to the same area of coal mines to obtain coal Multiple sets of coal and rock mine data information in the same area of the rock mine, among which, the laser radar module can send radar signals to the coal and rock mine, and obtain the coal and rock mine data information according to the reflected signal reflected by the coal and rock mine;
在本发明中,每个激光雷达模块均包括雷达信号发射单元、雷达反射信号接收单元、雷达信号A/D转换单元;In the present invention, each laser radar module includes a radar signal transmitting unit, a radar reflection signal receiving unit, and a radar signal A/D conversion unit;
雷达信号发射单元,用于向煤岩矿发射雷达信号;The radar signal transmitting unit is used for transmitting radar signals to coal mines;
雷达反射信号接收单元,用于接收被煤岩矿反射回来的反射信号;The radar reflection signal receiving unit is used to receive the reflection signal reflected by the coal mine;
雷达信号A/D转换单元,用于对反射信号进行数据转换,得到煤岩矿数据信息。The radar signal A/D conversion unit is used for data conversion of the reflected signal to obtain coal, rock and mine data information.
其中,每个激光雷达模块的雷达信号发射单元向煤岩矿表面的同一区域发射雷达信号,每个激光雷达模块发射的雷达信号会在煤岩矿表面发生反射,还会穿透煤岩矿并进行反射,每个激光雷达模块的雷达反射信号接收单元,接收本身的雷达信号发射单元发射的雷达信号的反射信号,并进行数据转换,得到一组煤岩矿数据信息,因此,多个激光雷达模块会得到煤岩矿同一区域的多组煤岩矿数据信息。Among them, the radar signal transmitting unit of each laser radar module transmits radar signals to the same area on the surface of the coal mine, and the radar signal emitted by each laser radar module will be reflected on the surface of the coal mine, and will also penetrate the coal mine and For reflection, the radar reflection signal receiving unit of each lidar module receives the reflection signal of the radar signal emitted by its own radar signal transmitting unit, and performs data conversion to obtain a set of coal, rock and mine data information. Therefore, multiple laser radar The module will get multiple sets of coal mine data information in the same area of the coal mine.
其中,如图2所示,本发明中的激光雷达模块可以为固态激光雷达,可以采用型号为CE-30的固态激光雷达,多个固态激光雷达排成一排置于煤岩矿表面的前方,固态激光雷达线性移动的方式对煤岩矿表面发生雷达信号,例如,如图2所示,可以在煤岩矿表面划分多个相连的区域,分别为区域1、区域2、区域3至区域N,每个激光雷达模块均按照区域1、区域2、区域3至区域N的顺序向煤岩矿表面发射雷达信号,因此对于同一区域,均可以获得多组煤岩矿数据信息,图2中仅示出了煤岩矿表面的3个区域,图2中所示的情况为,采用3个激光雷达模块对区域2的煤岩矿表面进行激光探测。Wherein, as shown in Figure 2, the laser radar module among the present invention can be solid-state laser radar, can adopt the solid-state laser radar that model is CE-30, and a plurality of solid-state laser radars are arranged in a row and are placed in front of the coal rock mine surface , the solid-state laser radar moves linearly to generate radar signals on the coal mine surface. For example, as shown in Figure 2, a plurality of connected areas can be divided on the coal mine surface, which are respectively
信号传输模块,用于将多组煤岩矿数据信息传输至数据存储模块;The signal transmission module is used to transmit multiple sets of coal, rock and mine data information to the data storage module;
其中,信号传输模块可以通过以太网进行数据传输。Wherein, the signal transmission module can perform data transmission through Ethernet.
数据存储模块,用于存储信号传输模块传输过来的多组煤岩矿数据信息;The data storage module is used to store multiple sets of coal, rock and mine data information transmitted by the signal transmission module;
雷达成像模块,用于调取数据存储模块存储的多组煤岩矿数据信息,并分别对每组煤岩矿数据信息进行成像,得到每组煤岩矿数据信息所对应的煤岩纹理图像,即煤岩矿同一区域的多个煤岩纹理图像;The radar imaging module is used to retrieve multiple sets of coal and rock mine data information stored in the data storage module, and image each set of coal and rock mine data information to obtain the coal rock texture image corresponding to each set of coal and rock mine data information, That is, multiple coal texture images in the same area of the coal mine;
图像融合模块,用于对多个煤岩纹理图像进行融合,得到一张融合后的煤岩纹理图像;The image fusion module is used to fuse multiple coal and rock texture images to obtain a coal and rock texture image after fusion;
图像识别模块,用于对融合后的煤岩纹理图像进行归一化处理,并对归一化处理后的图像进行识别,得出煤岩界面识别结果,即识别出煤矿界面和岩石界面,如此获得了煤岩矿的煤矿和岩石的分布,其中,对煤岩矿的每个区域的多组煤岩纹理图像均进行成像、融合和识别,得到煤岩矿各个区域的煤岩识别结果。The image recognition module is used to normalize the fused coal-rock texture image, and identify the normalized image to obtain the coal-rock interface recognition result, that is, to identify the coal mine interface and the rock interface, so The distribution of coal mines and rocks in the coal mine is obtained, wherein multiple groups of coal texture images in each area of the coal mine are imaged, fused and identified, and the coal rock identification results of each area of the coal mine are obtained.
在本发明中,数据存储模块、雷达成像模块、图像融合模块和图像识别模块可以集成在上位机内,上位机可以为PC计算机,固态激光雷达可以作为下位机。In the present invention, the data storage module, the radar imaging module, the image fusion module and the image recognition module can be integrated in the upper computer, the upper computer can be a PC computer, and the solid-state laser radar can be used as the lower computer.
在本发明中,可以利用全卷积神经网络模型对煤岩纹理图像进行识别,具体地:In the present invention, the fully convolutional neural network model can be used to identify coal and rock texture images, specifically:
对已有的煤岩纹理图像进行归一化处理,构建一个全卷积神经网络模型,利用归一化处理后的已有煤岩纹理图像对全卷积神经网络模型进行训练和测试,得到训练完毕的全卷积神经网络模型;Normalize the existing coal and rock texture images, construct a fully convolutional neural network model, use the normalized existing coal and rock texture images to train and test the fully convolutional neural network model, and obtain training Completed fully convolutional neural network model;
其中,已有的煤岩纹理图像为预先采集到的煤岩纹理图像,已有的煤岩纹理图像所对应的煤矿界面和岩石界面也为已知,对已有的煤岩纹理图像归一化处理后,可以将归一化处理后的已有的煤岩纹理图像分成两个部分,一部分作为训练数据,另一部分作为测试数据,利用训练数据对全卷积神经网络模型进行训练,然后利用测试数据对全卷积神经网络模型进行测试,若测试结果与已知的煤矿界面和岩石界面误差较小,则测试结果满足要求,若测试结果不满足要求,则增加训练数据对全卷积神经网络模型进行训练,直至测试结果满足要求,得到训练完毕的全卷积神经网络模型。Among them, the existing coal and rock texture images are pre-collected coal and rock texture images, the coal mine interface and rock interface corresponding to the existing coal and rock texture images are also known, and the existing coal and rock texture images are normalized After processing, the existing coal and rock texture image after normalization processing can be divided into two parts, one part is used as training data, and the other part is used as test data. The training data is used to train the fully convolutional neural network model, and then the test data is used to train the full convolutional neural network model. The data is tested on the fully convolutional neural network model. If the error between the test result and the known coal mine interface and rock interface is small, the test result meets the requirements. If the test result does not meet the requirements, the training data is added to the full convolutional neural network. The model is trained until the test results meet the requirements, and the trained fully convolutional neural network model is obtained.
将训练完毕的全卷积神经网络模型载入图像识别模块,采用图像识别模块对图像融合模块融合后的煤岩纹理图像进行归一化处理,并将归一化处理后的图像输入至训练完毕的全卷积神经网络模型内,训练完毕的全卷积神经网络模型输出煤岩界面识别结果,煤岩识别结果包括煤矿界面和岩石界面。Load the trained fully convolutional neural network model into the image recognition module, use the image recognition module to normalize the coal and rock texture image fused by the image fusion module, and input the normalized image to the trained In the fully convolutional neural network model, the trained fully convolutional neural network model outputs the coal-rock interface recognition results, and the coal-rock recognition results include coal mine interfaces and rock interfaces.
具体地,在本发明中,训练完毕的全卷积神经网络模型的深度为五层,分别为第一层、第二层、第三层、第四层和第五层,如图3所示的为本发明中的全卷积神经网络结构图;第一层由卷积层C1、卷积层C2和池化层P1组成,卷积层C1和卷积层C2均包括64个大小为3*3的卷积核和一个ReLU激活函数;卷积层C1用于输入所述归一化处理后的图像,归一化处理后的图像像素大小为320*320*1,归一化处理后的图像经过卷积层C1的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A1,特征图A1的像素大小为318*318*64;卷积层C2用于输入特征图A1,特征图A1经过卷积层C2的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A2,特征图A2的像素大小为316*316*64;池化层P1用于输入特征图A2,并在特征图A2上划分出多个2*2的区块,并对每个区块中取最大值后,输出特征图A3,特征图A3的像素大小为158*158*64;Specifically, in the present invention, the depth of the trained fully convolutional neural network model is five layers, which are respectively the first layer, the second layer, the third layer, the fourth layer and the fifth layer, as shown in Figure 3 The structure diagram of the full convolutional neural network in the present invention; the first layer is made up of convolutional layer C1, convolutional layer C2 and pooling layer P1, and convolutional layer C1 and convolutional layer C2 all include 64 with a size of 3 *3 convolution kernel and a ReLU activation function; convolution layer C1 is used to input the normalized image, the normalized image pixel size is 320*320*1, after normalization After the image of the convolution layer C1 is convolved with all the convolution kernels and the ReLU activation function, the output feature map A1, the pixel size of the feature map A1 is 318*318*64; the convolution layer C2 is used to input the feature map A1 , after the feature map A1 is convoluted by all convolution kernels and ReLU activation functions of the convolution layer C2, the output feature map A2, the pixel size of the feature map A2 is 316*316*64; the pooling layer P1 is used for input features Figure A2, and divide multiple 2*2 blocks on the feature map A2, and after taking the maximum value in each block, output the feature map A3, the pixel size of the feature map A3 is 158*158*64;
第二层由卷积层C3、卷积层C4和池化层P2组成,卷积层C3和卷积层C4均包括128个大小为2*2的卷积核和一个ReLU激活函数;卷积层C3用于输入特征图A3,特征图A3经过卷积层C3的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A4,特征图A4的像素大小为156*156*128;卷积层C4用于输入特征图A4,特征图A4经过卷积层C4的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A5,特征图A5的像素大小为154*154*128;池化层P2用于输入特征图A5,并在特征图A5上划分出多个2*2的区块,并对每个区块中取最大值后,输出特征图A6,特征图A6的像素大小为77*77*128;The second layer consists of convolutional layer C3, convolutional layer C4, and pooling layer P2. Both convolutional layer C3 and convolutional layer C4 include 128 convolution kernels with a size of 2*2 and a ReLU activation function; convolution Layer C3 is used to input the feature map A3. After the feature map A3 is convoluted by all the convolution kernels and ReLU activation functions of the convolution layer C3, the output feature map A4, the pixel size of the feature map A4 is 156*156*128; The convolutional layer C4 is used to input the feature map A4. After the feature map A4 is convoluted by all the convolution kernels and the ReLU activation function of the convolutional layer C4, the output feature map A5, the pixel size of the feature map A5 is 154*154* 128; the pooling layer P2 is used to input the feature map A5, and divide a plurality of 2*2 blocks on the feature map A5, and after taking the maximum value in each block, output the feature map A6, the feature map A6 The pixel size is 77*77*128;
第三层由卷积层C5和卷积层C6组成,卷积层C5和卷积层C6均包括256个大小为3*3的卷积核和一个ReLU激活函数;卷积层C5用于输入特征图A6,特征图A6经过卷积层C5的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A7,特征图A7的像素大小为75*75*256;卷积层C6用于输入特征图A7,特征图A7经过卷积层C6的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A8,特征图A8的像素大小为73*73*256;The third layer consists of convolutional layer C5 and convolutional layer C6. Both convolutional layer C5 and convolutional layer C6 include 256 convolution kernels of size 3*3 and a ReLU activation function; convolutional layer C5 is used for input The feature map A6, after the feature map A6 is convoluted by all the convolution kernels and the ReLU activation function of the convolution layer C5, the output feature map A7, the pixel size of the feature map A7 is 75*75*256; the convolution layer C6 uses In the input feature map A7, after the feature map A7 is convoluted by all convolution kernels and ReLU activation functions of the convolution layer C6, the output feature map A8, the pixel size of the feature map A8 is 73*73*256;
第四层由上采样层U1、卷积层C7和卷积层C8组成,上采样层U1包括256个大小为2*2的卷积核,卷积层C7和卷积层C8均包括128个大小为3*3的卷积核和一个ReLU激活函数;上采样层U1用于输入特征图A8,特征图A8经过上采样层U1的所有卷积核进行反卷积处理后,输出特征图A9,特征图A9的像素大小为146*146*256;卷积层C7用于输入特征图A9,特征图A9经过卷积层C7的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A10,特征图A10的像素大小为144*144*128;卷积层C8用于输入特征图A10,特征图A10经过卷积层C8的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A11,特征图A11的像素大小为142*142*128;The fourth layer consists of upsampling layer U1, convolutional layer C7 and convolutional layer C8. Upsampling layer U1 includes 256 convolution kernels with a size of 2*2. Convolutional layer C7 and convolutional layer C8 each include 128 A convolution kernel with a size of 3*3 and a ReLU activation function; the upsampling layer U1 is used to input the feature map A8, and after the feature map A8 is deconvoluted by all the convolution kernels of the upsampling layer U1, the output feature map A9 , the pixel size of the feature map A9 is 146*146*256; the convolutional layer C7 is used to input the feature map A9, and the feature map A9 is convoluted by all the convolution kernels and the ReLU activation function of the convolutional layer C7, and the output feature In Figure A10, the pixel size of the feature map A10 is 144*144*128; the convolutional layer C8 is used to input the feature map A10, and the feature map A10 is convoluted by all the convolution kernels and the ReLU activation function of the convolutional layer C8. Output feature map A11, the pixel size of feature map A11 is 142*142*128;
第五层由上采样层U2、卷积层C9、卷积层C10和卷积层C11组成,上采样层U2包括128个大小为2*2的卷积核,卷积层C9和卷积层C10均包括64个大小为3*3的卷积核和一个ReLU激活函数,卷积层C11包括2个大小为1*1的卷积核和一个ReLU激活函数;上采样层U2用于输入特征图A11,特征图A11经过上采样层U2的所有卷积核进行反卷积处理后,输出特征图A12,特征图A12的像素大小为284*284*128;卷积层C9用于输入特征图A12,特征图A12经过卷积层C9的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A13,特征图A13的像素大小为282*282*64;卷积层C10用于输入特征图A13,特征图A13经过卷积层C10的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A14,特征图A14的像素大小为280*280*64;卷积层C11用于输入特征图A14,特征图A14经过卷积层C11的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A15,特征图A15的像素大小为280*280*2,特征图A15的输出特征包括煤岩矿的煤矿界面和岩石界面。The fifth layer consists of upsampling layer U2, convolutional layer C9, convolutional layer C10 and convolutional layer C11. Upsampling layer U2 includes 128 convolution kernels with a size of 2*2, convolutional layer C9 and convolutional layer C10 includes 64 convolution kernels of size 3*3 and a ReLU activation function, convolution layer C11 includes 2 convolution kernels of size 1*1 and a ReLU activation function; upsampling layer U2 is used for input features Figure A11, after the feature map A11 is deconvoluted by all the convolution kernels of the upsampling layer U2, the output feature map A12, the pixel size of the feature map A12 is 284*284*128; the convolution layer C9 is used to input the feature map A12, after the feature map A12 is convoluted by all convolution kernels and ReLU activation functions of the convolution layer C9, the output feature map A13, the pixel size of the feature map A13 is 282*282*64; the convolution layer C10 is used for input The feature map A13, after the feature map A13 is convoluted by all the convolution kernels and the ReLU activation function of the convolution layer C10, the output feature map A14, the pixel size of the feature map A14 is 280*280*64; the convolution layer C11 uses In the input feature map A14, after the feature map A14 is convoluted by all convolution kernels and ReLU activation functions of the convolution layer C11, the output feature map A15, the pixel size of the feature map A15 is 280*280*2, and the feature map A15 The output features for the coal-rock mine include the coal interface and the rock interface.
本发明在的装置还可以包括供电模块,用于对多个激光雷达模块、信号传输模块、数据存储模块、雷达成像模块、图像融合模块以及图像识别模块供电,在本发明中,数据存储模块、雷达成像模块、图像融合模块和图像识别模块均可以集成在上位机内。The device of the present invention may also include a power supply module for supplying power to multiple laser radar modules, signal transmission modules, data storage modules, radar imaging modules, image fusion modules and image recognition modules. In the present invention, the data storage module, The radar imaging module, image fusion module and image recognition module can all be integrated in the host computer.
本发明中的装置,利用雷达信号对煤岩界面进行探测,探测精度能达到毫米级别,能探测煤岩凹凸不平表面的相对深度,探测过程不依赖环境辐射,抗干扰能力强,利用多个激光雷达模块对煤岩矿的同一区域发射雷达信号,形成同一区域的多幅煤岩纹理图像,通过对同一区域的多幅煤岩纹理图像进行融合,提高煤岩矿图像成像的精确性,利用全卷积神经网络模型,对融合后的煤岩纹理图像识别煤矿界面和岩石界面,使得识别结果更加准确;本发明中的装置,在复杂环境下的矿井,有很强的抗干扰能力,可以准确的进行煤岩识别,且操作过程简单,适用性较好,能对煤矿和岩石的分布情况进行实时识别。The device in the present invention uses radar signals to detect the coal-rock interface, the detection accuracy can reach the millimeter level, and the relative depth of the uneven surface of the coal rock can be detected. The detection process does not depend on environmental radiation, and the anti-interference ability is strong. The radar module transmits radar signals to the same area of coal and rock mines to form multiple coal and rock texture images in the same area. By fusing multiple coal and rock texture images in the same area, the accuracy of coal and rock mine image imaging is improved. The convolutional neural network model recognizes the coal mine interface and rock interface on the fused coal and rock texture image, making the recognition result more accurate; the device in the present invention has strong anti-interference ability in mines in complex environments, and can accurately Coal and rock identification, and the operation process is simple, the applicability is good, and it can identify the distribution of coal mines and rocks in real time.
实施例2Example 2
本发明提供一种基于固态激光雷达成像对煤岩界面进行识别的方法,如图4所示,该方法包括:The present invention provides a method for identifying the coal-rock interface based on solid-state laser radar imaging, as shown in Figure 4, the method comprising:
101、采用多个激光雷达模块向煤岩矿的同一区域发射雷达信号,得到多组煤岩矿数据信息,其中,每个激光雷达模块,均能向煤岩矿发射雷达信号,并根据煤岩矿反射回来的反射信号得到煤岩矿数据信息;101. Multiple laser radar modules are used to transmit radar signals to the same area of the coal mine, and multiple sets of coal mine data information are obtained. Each laser radar module can transmit radar signals to the coal mine, and according to the coal mine The reflection signal reflected by the mine can obtain the data information of the coal mine;
其中,激光雷达模块包括雷达信号发射单元、雷达反射信号接收单元和雷达信号A/D转换单元,所述激光雷达模块,均能向煤岩矿发射雷达信号,并根据煤岩矿反射回来的反射信号得到煤岩矿数据信息,包括:Wherein, the laser radar module includes a radar signal transmitting unit, a radar reflection signal receiving unit, and a radar signal A/D conversion unit. The signal obtains coal mine data information, including:
通过激光雷达模块的雷达信号发射单元,向煤岩矿发射雷达信号;Send radar signals to coal mines through the radar signal transmitting unit of the laser radar module;
通过激光雷达模块的雷达反射信号接收单元,接收被煤岩矿反射回来的反射信号;Through the radar reflection signal receiving unit of the laser radar module, the reflection signal reflected by the coal mine is received;
通过激光雷达模块的雷达信号A/D转换单元,对反射信号进行数据转换,得到煤岩矿数据信息。Through the radar signal A/D conversion unit of the laser radar module, data conversion is performed on the reflected signal to obtain coal, rock and mine data information.
每个激光雷达模块的雷达信号发射单元向煤岩矿表面的同一区域发射雷达信号,每个激光雷达模块发射的雷达信号会在煤岩矿表面发生反射,还会穿透煤岩矿并进行反射,每个激光雷达模块的雷达反射信号接收单元,接收本身的雷达信号发射单元发射的雷达信号的反射信号,并进行数据转换,得到一组煤岩矿数据信息,因此,多个激光雷达模块会得到煤岩矿同一区域的多组煤岩矿数据信息。The radar signal transmitting unit of each laser radar module transmits radar signals to the same area on the surface of the coal mine, and the radar signal emitted by each laser radar module will be reflected on the surface of the coal mine, and will also penetrate the coal mine and be reflected , the radar reflection signal receiving unit of each laser radar module receives the reflection signal of the radar signal emitted by its own radar signal transmitting unit, and performs data conversion to obtain a set of coal, rock and mine data information. Therefore, multiple laser radar modules will Get multiple sets of coal and rock mine data information in the same area of the coal and rock mine.
其中,如图2所示,本发明中的激光雷达模块可以为固态激光雷达,多个固态激光雷达排成一排置于煤岩矿表面的前方,固态激光雷达线性移动的方式对煤岩矿表面发生雷达信号,例如,如图2所示,可以在煤岩矿表面划分多个相连的区域,分别为区域1、区域2、区域3至区域N,每个激光雷达模块均按照区域1、区域2、区域3至区域N的顺序向煤岩矿表面发射雷达信号,因此对于同一区域,均可以获得多组煤岩矿数据信息。Wherein, as shown in Figure 2, the lidar module among the present invention can be solid-state lidar, and a plurality of solid-state lidars are arranged in a row and are placed in the front of coal rock mine surface, and the mode of solid-state lidar linear movement is opposite to coal rock mine Radar signals are generated on the surface. For example, as shown in Figure 2, a plurality of connected areas can be divided on the coal mine surface, which are respectively
102、对多组煤岩矿数据信息进行存储;102. Store multiple sets of coal mine data information;
103、调取存储的多组煤岩矿数据信息,并分别对每组煤岩矿数据信息进行成像,得到每组煤岩矿数据信息所对应的煤岩纹理图像,即煤岩矿同一区域的多个煤岩纹理图像;103. Retrieve multiple sets of stored coal and rock mine data information, and image each set of coal and rock mine data information to obtain the coal rock texture image corresponding to each set of coal rock mine data information, that is, the coal rock mine data information in the same area Multiple coal rock texture images;
104、对多个煤岩纹理图像进行融合,得到一张融合后的煤岩纹理图像;104. Fusing multiple coal and rock texture images to obtain a fused coal and rock texture image;
105、对融合后的煤岩纹理图像进行归一化处理,并对归一化处理后的图像进行识别,得出煤岩界面识别结果,即识别出煤矿界面和岩石界面,如此获得了煤岩矿的煤矿和岩石的分布,对煤岩矿的每个区域的多组煤岩纹理图像均进行成像、融合和识别,得到煤岩矿各个区域的煤岩识别结果。105. Normalize the fused coal-rock texture image, and identify the normalized image to obtain the coal-rock interface recognition result, that is, identify the coal mine interface and rock interface, thus obtaining the coal-rock interface According to the distribution of coal and rocks in the mine, multiple groups of coal texture images in each area of the coal mine are imaged, fused and identified, and the coal rock identification results of each area of the coal mine are obtained.
其中,对融合后的煤岩纹理图像进行归一化处理,并对归一化处理后的图像进行识别,在本发明中,可以利用全卷积神经网络模型对所述归一化处理后的图像进行识别,具体地:Wherein, normalization processing is performed on the fused coal and rock texture image, and the image after normalization processing is recognized. In the present invention, the full convolutional neural network model can be used to analyze the The image is identified, specifically:
对已有的煤岩纹理图像进行归一化处理,构建一个全卷积神经网络模型,利用归一化处理后的已有煤岩纹理图像对全卷积神经网络模型进行训练和测试,得到训练完毕的全卷积神经网络模型;Normalize the existing coal and rock texture images, construct a fully convolutional neural network model, use the normalized existing coal and rock texture images to train and test the fully convolutional neural network model, and obtain training Completed fully convolutional neural network model;
其中,已有的煤岩纹理图像为预先采集到的煤岩纹理图像,已有的煤岩纹理图像所对应的煤矿界面和岩石界面也为已知,对已有的煤岩纹理图像归一化处理后,可以将归一化处理后的已有的煤岩纹理图像分成两个部分,一部分作为训练数据,另一部分作为测试数据,利用训练数据对全卷积神经网络模型进行训练,然后利用测试数据对全卷积神经网络模型进行测试,若测试结果与已知的煤矿界面和岩石界面误差较小,则测试结果满足要求,若测试结果不满足要求,则增加训练数据继续对全卷积神经网络模型进行训练,直至测试结果满足要求,得到训练完毕的全卷积神经网络模型。Among them, the existing coal and rock texture images are pre-collected coal and rock texture images, the coal mine interface and rock interface corresponding to the existing coal and rock texture images are also known, and the existing coal and rock texture images are normalized After processing, the existing coal and rock texture image after normalization processing can be divided into two parts, one part is used as training data, and the other part is used as test data. The training data is used to train the fully convolutional neural network model, and then the test data is used to train the full convolutional neural network model. The data is used to test the fully convolutional neural network model. If the error between the test result and the known coal mine interface and rock interface is small, the test result meets the requirements. The network model is trained until the test results meet the requirements, and the trained fully convolutional neural network model is obtained.
对所述融合后的煤岩纹理图像进行归一化处理,并将归一化处理后的图像输入至训练完毕的全卷积神经网络模型内,训练完毕的全卷积神经网络模型输出煤岩界面识别结果,煤岩识别结果包括煤矿界面和岩石界面。Perform normalization processing on the fused coal texture image, and input the normalized image into the trained full convolutional neural network model, and the trained full convolutional neural network model outputs the coal rock texture image Interface identification results, coal and rock identification results include coal mine interface and rock interface.
具体地,在本发明中,训练完毕的全卷积神经网络模型的深度为五层,分别为第一层、第二层、第三层、第四层和第五层,如图3所示的为本发明中的卷积神经网络结构图;第一层由卷积层C1、卷积层C2和池化层P1组成,卷积层C1和卷积层C2均包括64个大小为3*3的卷积核和一个ReLU激活函数;卷积层C1用于输入所述归一化处理后的图像,归一化处理后的图像像素大小为320*320*1,归一化处理后的图像经过卷积层C1的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A1,特征图A1的像素大小为318*318*64;卷积层C2用于输入特征图A1,特征图A1经过卷积层C2的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A2,特征图A2的像素大小为316*316*64;池化层P1用于输入特征图A2,并在特征图A2上划分出多个2*2的区块,并对每个区块中取最大值后,输出特征图A3,特征图A3的像素大小为158*158*64;Specifically, in the present invention, the depth of the trained fully convolutional neural network model is five layers, which are respectively the first layer, the second layer, the third layer, the fourth layer and the fifth layer, as shown in Figure 3 It is the convolutional neural network structure diagram among the present invention; The first layer is made up of convolutional layer C1, convolutional layer C2 and pooling layer P1, and convolutional layer C1 and convolutional layer C2 all include 64 size is 3* 3 convolution kernel and a ReLU activation function; the convolution layer C1 is used to input the normalized image, the normalized image pixel size is 320*320*1, and the normalized image pixel size is 320*320*1, and the normalized After the image is convoluted by all the convolution kernels and ReLU activation functions of the convolutional layer C1, the output feature map A1, the pixel size of the feature map A1 is 318*318*64; the convolutional layer C2 is used to input the feature map A1, After the feature map A1 is convoluted by all the convolution kernels and ReLU activation functions of the convolution layer C2, the output feature map A2, the pixel size of the feature map A2 is 316*316*64; the pooling layer P1 is used to input the feature map A2, and divide a plurality of 2*2 blocks on the feature map A2, and after taking the maximum value of each block, output the feature map A3, the pixel size of the feature map A3 is 158*158*64;
第二层由卷积层C3、卷积层C4和池化层P2组成,卷积层C3和卷积层C4均包括128个大小为2*2的卷积核和一个ReLU激活函数;卷积层C3用于输入特征图A3,特征图A3经过卷积层C3的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A4,特征图A4的像素大小为156*156*128;卷积层C4用于输入特征图A4,特征图A4经过卷积层C4的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A5,特征图A5的像素大小为154*154*128;池化层P2用于输入特征图A5,并在特征图A5上划分出多个2*2的区块,并对每个区块中取最大值后,输出特征图A6,特征图A6的像素大小为77*77*128;The second layer consists of convolutional layer C3, convolutional layer C4, and pooling layer P2. Both convolutional layer C3 and convolutional layer C4 include 128 convolution kernels with a size of 2*2 and a ReLU activation function; convolution Layer C3 is used to input the feature map A3. After the feature map A3 is convoluted by all the convolution kernels and ReLU activation functions of the convolution layer C3, the output feature map A4, the pixel size of the feature map A4 is 156*156*128; The convolutional layer C4 is used to input the feature map A4. After the feature map A4 is convoluted by all the convolution kernels and the ReLU activation function of the convolutional layer C4, the output feature map A5, the pixel size of the feature map A5 is 154*154* 128; the pooling layer P2 is used to input the feature map A5, and divide a plurality of 2*2 blocks on the feature map A5, and after taking the maximum value in each block, output the feature map A6, the feature map A6 The pixel size is 77*77*128;
第三层由卷积层C5和卷积层C6组成,卷积层C5和卷积层C6均包括256个大小为3*3的卷积核和一个ReLU激活函数;卷积层C5用于输入特征图A6,特征图A6经过卷积层C5的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A7,特征图A7的像素大小为75*75*256;卷积层C6用于输入特征图A7,特征图A7经过卷积层C6的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A8,特征图A8的像素大小为73*73*256;The third layer consists of convolutional layer C5 and convolutional layer C6. Both convolutional layer C5 and convolutional layer C6 include 256 convolution kernels of size 3*3 and a ReLU activation function; convolutional layer C5 is used for input The feature map A6, after the feature map A6 is convoluted by all the convolution kernels and the ReLU activation function of the convolution layer C5, the output feature map A7, the pixel size of the feature map A7 is 75*75*256; the convolution layer C6 uses In the input feature map A7, after the feature map A7 is convoluted by all convolution kernels and ReLU activation functions of the convolution layer C6, the output feature map A8, the pixel size of the feature map A8 is 73*73*256;
第四层由上采样层U1、卷积层C7和卷积层C8组成,上采样层U1包括256个大小为2*2的卷积核,卷积层C7和卷积层C8均包括128个大小为3*3的卷积核和一个ReLU激活函数;上采样层U1用于输入特征图A8,特征图A8经过上采样层U1的所有卷积核进行反卷积处理后,输出特征图A9,特征图A9的像素大小为146*146*256;卷积层C7用于输入特征图A9,特征图A9经过卷积层C7的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A10,特征图A10的像素大小为144*144*128;卷积层C8用于输入特征图A10,特征图A10经过卷积层C8的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A11,特征图A11的像素大小为142*142*128;The fourth layer consists of upsampling layer U1, convolutional layer C7 and convolutional layer C8. Upsampling layer U1 includes 256 convolution kernels with a size of 2*2. Convolutional layer C7 and convolutional layer C8 each include 128 A convolution kernel with a size of 3*3 and a ReLU activation function; the upsampling layer U1 is used to input the feature map A8, and after the feature map A8 is deconvoluted by all the convolution kernels of the upsampling layer U1, the output feature map A9 , the pixel size of the feature map A9 is 146*146*256; the convolutional layer C7 is used to input the feature map A9, and the feature map A9 is convoluted by all the convolution kernels and the ReLU activation function of the convolutional layer C7, and the output feature In Figure A10, the pixel size of the feature map A10 is 144*144*128; the convolutional layer C8 is used to input the feature map A10, and the feature map A10 is convoluted by all the convolution kernels and the ReLU activation function of the convolutional layer C8. Output feature map A11, the pixel size of feature map A11 is 142*142*128;
第五层由上采样层U2、卷积层C9、卷积层C10和卷积层C11组成,上采样层U2包括128个大小为2*2的卷积核,卷积层C9和卷积层C10均包括64个大小为3*3的卷积核和一个ReLU激活函数,卷积层C11包括2个大小为1*1的卷积核和一个ReLU激活函数;上采样层U2用于输入特征图A11,特征图A11经过上采样层U2的所有卷积核进行反卷积处理后,输出特征图A12,特征图A12的像素大小为284*284*128;卷积层C9用于输入特征图A12,特征图A12经过卷积层C9的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A13,特征图A13的像素大小为282*282*64;卷积层C10用于输入特征图A13,特征图A13经过卷积层C10的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A14,特征图A14的像素大小为280*280*64;卷积层C11用于输入特征图A14,特征图A14经过卷积层C11的所有卷积核和ReLU激活函数进行卷积处理后,输出特征图A15,特征图A15的像素大小为280*280*2,特征图A15的输出特征包括煤岩矿的煤矿界面和岩石界面。The fifth layer consists of upsampling layer U2, convolutional layer C9, convolutional layer C10 and convolutional layer C11. Upsampling layer U2 includes 128 convolution kernels with a size of 2*2, convolutional layer C9 and convolutional layer C10 includes 64 convolution kernels of size 3*3 and a ReLU activation function, convolution layer C11 includes 2 convolution kernels of size 1*1 and a ReLU activation function; upsampling layer U2 is used for input features Figure A11, after the feature map A11 is deconvoluted by all the convolution kernels of the upsampling layer U2, the output feature map A12, the pixel size of the feature map A12 is 284*284*128; the convolution layer C9 is used to input the feature map A12, after the feature map A12 is convoluted by all convolution kernels and ReLU activation functions of the convolution layer C9, the output feature map A13, the pixel size of the feature map A13 is 282*282*64; the convolution layer C10 is used for input The feature map A13, after the feature map A13 is convoluted by all the convolution kernels and the ReLU activation function of the convolution layer C10, the output feature map A14, the pixel size of the feature map A14 is 280*280*64; the convolution layer C11 uses In the input feature map A14, after the feature map A14 is convoluted by all convolution kernels and ReLU activation functions of the convolution layer C11, the output feature map A15, the pixel size of the feature map A15 is 280*280*2, and the feature map A15 The output features for the coal mine include the coal interface and the rock interface.
本发明中的方法,利用雷达信号对煤岩界面进行探测,探测精度能达到毫米级别,能探测煤岩凹凸不平表面的相对深度,探测过程不依赖环境辐射,抗干扰能力强,利用多个激光雷达模块对煤岩矿的同一区域发射雷达信号,形成同一区域的多幅煤岩纹理图像,通过对同一区域的多幅煤岩纹理图像进行融合,提高煤岩矿图像成像的精确性,利用全卷积神经网络模型,对融合后的煤岩纹理图像识别煤矿界面和岩石界面,使得识别结果更加准确;本发明中的方法,在复杂环境下的矿井,有很强的抗干扰能力,可以准确的进行煤岩识别,且操作过程简单,适用性较好,能对煤矿和岩石的分布情况进行实时识别。The method in the present invention uses radar signals to detect the coal-rock interface, the detection accuracy can reach the millimeter level, and the relative depth of the uneven surface of the coal rock can be detected. The detection process does not depend on environmental radiation, and the anti-interference ability is strong. Multiple lasers are used The radar module transmits radar signals to the same area of coal and rock mines to form multiple coal and rock texture images in the same area. By fusing multiple coal and rock texture images in the same area, the accuracy of coal and rock mine image imaging is improved. The convolutional neural network model recognizes the coal mine interface and the rock interface on the fused coal and rock texture image, making the identification result more accurate; the method in the present invention has strong anti-interference ability in mines in complex environments, and can Coal and rock identification, and the operation process is simple, the applicability is good, and it can identify the distribution of coal mines and rocks in real time.
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。Inspired by the above-mentioned ideal embodiment according to the present invention, through the above-mentioned description content, relevant workers can make various changes and modifications within the scope of not departing from the technical idea of the present invention. The technical scope of the present invention is not limited to the content in the specification, but must be determined according to the scope of the claims.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811138102.4A CN109444845B (en) | 2018-09-28 | 2018-09-28 | Device and method for identifying coal-rock interface based on solid-state lidar imaging |
PCT/CN2018/115023 WO2020062470A1 (en) | 2018-09-28 | 2018-11-12 | Apparatus and method for recognizing coal-rock interface based on solid-state laser radar imaging |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811138102.4A CN109444845B (en) | 2018-09-28 | 2018-09-28 | Device and method for identifying coal-rock interface based on solid-state lidar imaging |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109444845A CN109444845A (en) | 2019-03-08 |
CN109444845B true CN109444845B (en) | 2023-05-23 |
Family
ID=65546183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811138102.4A Active CN109444845B (en) | 2018-09-28 | 2018-09-28 | Device and method for identifying coal-rock interface based on solid-state lidar imaging |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109444845B (en) |
WO (1) | WO2020062470A1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111259095A (en) * | 2020-01-08 | 2020-06-09 | 京工博创(北京)科技有限公司 | Method, device and equipment for calculating boundary of ore rock |
CN111337883B (en) * | 2020-04-17 | 2022-02-08 | 中国矿业大学(北京) | Intelligent detection and identification system and method for mine coal rock interface |
CN111812671A (en) * | 2020-06-24 | 2020-10-23 | 北京佳力诚义科技有限公司 | Artificial intelligence ore recognition device and method based on laser imaging |
CN111931824B (en) * | 2020-07-15 | 2024-05-28 | 中煤科工集团重庆研究院有限公司 | Coal rock identification method based on drilling slag return image |
CN112001253B (en) * | 2020-07-23 | 2021-11-30 | 西安科技大学 | Coal dust particle image identification method based on improved Fast R-CNN |
CN111968136A (en) * | 2020-08-18 | 2020-11-20 | 华院数据技术(上海)有限公司 | Coal rock microscopic image analysis method and analysis system |
CN114689625B (en) * | 2020-12-29 | 2024-09-17 | 中冶长天国际工程有限责任公司 | Ore grade acquisition system and method based on multi-source data |
CN112818952B (en) * | 2021-03-11 | 2024-07-26 | 中国科学院武汉岩土力学研究所 | Coal rock boundary recognition method and device and electronic equipment |
CN113137230B (en) * | 2021-05-20 | 2023-08-22 | 太原理工大学 | Coal-rock interface recognition system |
CN113421222B (en) * | 2021-05-21 | 2023-06-23 | 西安科技大学 | A Lightweight Coal Gangue Target Detection Method |
CN113267124B (en) * | 2021-05-26 | 2024-10-15 | 济南玛恩机械电子科技有限公司 | Laser radar-based caving coal caving amount measuring system and caving control method |
CN113406296A (en) * | 2021-06-24 | 2021-09-17 | 辽宁工程技术大学 | Coal petrography intelligent recognition system based on degree of depth learning |
CN113777108B (en) * | 2021-11-10 | 2022-01-18 | 河北工业大学 | Method, device and medium for identifying boundary of double-substance interface |
CN114322743B (en) * | 2022-01-05 | 2024-04-12 | 瞬联软件科技(北京)有限公司 | Tunnel deformation real-time monitoring system and monitoring method |
CN115480255A (en) * | 2022-09-13 | 2022-12-16 | 中煤科工集团重庆研究院有限公司 | Coal mine dynamic identification system based on laser radar |
CN116246111A (en) * | 2023-02-27 | 2023-06-09 | 中国矿业大学 | Infrared radiation intelligent identification method for the damaged state of bearing coal and rock |
CN116297544A (en) * | 2023-03-16 | 2023-06-23 | 南京京烁雷达科技有限公司 | Method and device for extracting target object of coal rock identification ground penetrating radar |
CN116539643B (en) * | 2023-03-16 | 2023-11-17 | 南京京烁雷达科技有限公司 | Method and system for identifying coal rock data by using radar |
CN116310843B (en) * | 2023-05-16 | 2023-07-21 | 三一重型装备有限公司 | Coal rock identification method, device, readable storage medium and heading machine |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202383714U (en) * | 2011-11-24 | 2012-08-15 | 中国矿业大学(北京) | Coal petrography interface identification system based on image |
CN103207999A (en) * | 2012-11-07 | 2013-07-17 | 中国矿业大学(北京) | Method and system for coal and rock boundary dividing based on coal and rock image feature extraction and classification and recognition |
CN103472447A (en) * | 2013-09-13 | 2013-12-25 | 北京科技大学 | Multipoint-radar collaborative imaging device based on chute position judgment and method thereof |
CN107272017A (en) * | 2017-06-29 | 2017-10-20 | 深圳市速腾聚创科技有限公司 | Multilasered optical radar system and its control method |
CN107728143A (en) * | 2017-09-18 | 2018-02-23 | 西安电子科技大学 | Radar High Range Resolution target identification method based on one-dimensional convolutional neural networks |
CN107886121A (en) * | 2017-11-03 | 2018-04-06 | 北京清瑞维航技术发展有限公司 | Target identification method, apparatus and system based on multiband radar |
CN108519812A (en) * | 2018-03-21 | 2018-09-11 | 电子科技大学 | A three-dimensional micro-Doppler gesture recognition method based on convolutional neural network |
CN108564108A (en) * | 2018-03-21 | 2018-09-21 | 天津市协力自动化工程有限公司 | The recognition methods of coal and device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU891914A1 (en) * | 1980-03-26 | 1981-12-23 | Научно-Производственное Объединение "Автоматгормаш Союзуглеавтоматика" | Method of monitoring the coal-rock interface |
US4981327A (en) * | 1989-06-09 | 1991-01-01 | Consolidation Coal Company | Method and apparatus for sensing coal-rock interface |
US8884806B2 (en) * | 2011-10-26 | 2014-11-11 | Raytheon Company | Subterranean radar system and method |
CN102496004B (en) * | 2011-11-24 | 2013-11-06 | 中国矿业大学(北京) | Coal-rock interface identifying method and system based on image |
CN103927514B (en) * | 2014-04-09 | 2017-07-25 | 中国矿业大学(北京) | A kind of Coal-rock identification method based on random local image characteristics |
CN104134074B (en) * | 2014-07-31 | 2017-06-23 | 中国矿业大学 | A kind of Coal-rock identification method based on laser scanning |
CN106845509A (en) * | 2016-10-19 | 2017-06-13 | 中国矿业大学(北京) | A kind of Coal-rock identification method based on bent wave zone compressive features |
CN107676095B (en) * | 2017-11-01 | 2019-07-26 | 天地科技股份有限公司 | Top coal mining device and method for thick coal seam caving |
-
2018
- 2018-09-28 CN CN201811138102.4A patent/CN109444845B/en active Active
- 2018-11-12 WO PCT/CN2018/115023 patent/WO2020062470A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202383714U (en) * | 2011-11-24 | 2012-08-15 | 中国矿业大学(北京) | Coal petrography interface identification system based on image |
CN103207999A (en) * | 2012-11-07 | 2013-07-17 | 中国矿业大学(北京) | Method and system for coal and rock boundary dividing based on coal and rock image feature extraction and classification and recognition |
CN103472447A (en) * | 2013-09-13 | 2013-12-25 | 北京科技大学 | Multipoint-radar collaborative imaging device based on chute position judgment and method thereof |
CN107272017A (en) * | 2017-06-29 | 2017-10-20 | 深圳市速腾聚创科技有限公司 | Multilasered optical radar system and its control method |
CN107728143A (en) * | 2017-09-18 | 2018-02-23 | 西安电子科技大学 | Radar High Range Resolution target identification method based on one-dimensional convolutional neural networks |
CN107886121A (en) * | 2017-11-03 | 2018-04-06 | 北京清瑞维航技术发展有限公司 | Target identification method, apparatus and system based on multiband radar |
CN108519812A (en) * | 2018-03-21 | 2018-09-11 | 电子科技大学 | A three-dimensional micro-Doppler gesture recognition method based on convolutional neural network |
CN108564108A (en) * | 2018-03-21 | 2018-09-21 | 天津市协力自动化工程有限公司 | The recognition methods of coal and device |
Non-Patent Citations (1)
Title |
---|
基于地质雷达探测的煤—岩分界面实验分析;徐旭东 等;《华北科技学院学报》;20161231;第13卷(第06期);第78-81页 * |
Also Published As
Publication number | Publication date |
---|---|
WO2020062470A1 (en) | 2020-04-02 |
CN109444845A (en) | 2019-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109444845B (en) | Device and method for identifying coal-rock interface based on solid-state lidar imaging | |
EP3096293B1 (en) | Methods for improving the accuracy of dimensioning-system measurements | |
CN110135468A (en) | A kind of recognition methods of gangue | |
CN101557452A (en) | Scanning system for 3d mineralogy modelling | |
US20140180743A1 (en) | Workflow monitoring and analysis system and method thereof | |
CN112801061A (en) | Posture recognition method and system | |
CN104408055A (en) | Storage method and device for laser radar point cloud data | |
CN117433440B (en) | Roadway deformation real-time detection method and device based on laser point cloud and storage medium | |
US20230290054A1 (en) | Information processing device and method, and non-transitory computer-readable recording medium | |
CN111897660A (en) | Model deployment method, model deployment device and terminal equipment | |
CN117197653A (en) | Landslide hazard identification method and system based on deep learning | |
CN114803860A (en) | Underground monorail crane unmanned driving system and method based on machine vision | |
Ronkin et al. | Review of deep learning approaches in solving rock fragmentation problems | |
Wang et al. | Real-time detection and location of reserved anchor hole in coal mine roadway support steel belt | |
JP7059889B2 (en) | Learning device, image generator, learning method, and learning program | |
CN109211607A (en) | A kind of method of sampling, device, equipment, system and readable storage medium storing program for executing | |
CN113281779A (en) | 3D object rapid detection method, device, equipment and medium | |
CN113643351A (en) | Method, device and equipment for calculating space volume of mine goaf and storage medium | |
CN114966849B (en) | Rock mass fracture characterization method based on microseismic or acoustic emission and focal mechanism constraints | |
CN114295046B (en) | A method and system for comprehensive evaluation of explosion pile morphology, electronic equipment, and storage medium | |
Peng et al. | A new method for recognizing discontinuities from 3D point clouds in tunnel construction environments | |
Montes et al. | Automatic Determination of Cuttings and Cavings Properties for Hole Cleaning and Wellbore Stability Assessment Using a Laser-Based Sensor | |
CN115309835A (en) | Image-based method, device and electronic device for determining rock hardness of face face | |
Zhuang et al. | Surrounding rock classification from onsite images with deep transfer learning based on EfficientNet | |
CN109165459A (en) | A kind of verifying integrated system and method based on virtual reality and augmented reality |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |