CN109437456B - 一种基于操作模式动态匹配的重金属废水净化控制方法 - Google Patents

一种基于操作模式动态匹配的重金属废水净化控制方法 Download PDF

Info

Publication number
CN109437456B
CN109437456B CN201811622305.0A CN201811622305A CN109437456B CN 109437456 B CN109437456 B CN 109437456B CN 201811622305 A CN201811622305 A CN 201811622305A CN 109437456 B CN109437456 B CN 109437456B
Authority
CN
China
Prior art keywords
heavy metal
real
concentration
operation mode
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811622305.0A
Other languages
English (en)
Other versions
CN109437456A (zh
Inventor
阳春华
张凤雪
朱红求
李勇刚
李文婷
蒋晓云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201811622305.0A priority Critical patent/CN109437456B/zh
Priority to PCT/CN2019/072269 priority patent/WO2020133611A1/zh
Publication of CN109437456A publication Critical patent/CN109437456A/zh
Application granted granted Critical
Publication of CN109437456B publication Critical patent/CN109437456B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/46135Voltage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/4615Time
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明公开了一种基于操作模式动态匹配的重金属废水净化控制方法,包括:构建中和沉淀过程、电化学过程中重金属离子浓度与加药量、槽电压的关系模型;以加药量和电耗最小为目标构建多目标协调优化模型;构建操作模式知识库;以及利用目标协调优化模型得到实时输入条件下加药量、槽电压的优化值;并判断是否需要进行操作匹配;若需要匹配,则匹配操作模式知识库中的操作模式获取加药量、槽电压协调值并调节优化值得到加药量和槽电压的控制值,若不需要匹配,将加药量、槽电压的优化值作为控制值并进行控制调节。本发明通过该方法可以更合理和准确的加药量与电压值,避免人工添加而造成的高能耗、高物耗。

Description

一种基于操作模式动态匹配的重金属废水净化控制方法
技术领域
本发明属于废水处理过程优化与控制技术领域,具体涉及一种基于操作模式动态匹配的重金属废水净化控制方法。
背景技术
有色金属工业废水是我国主要的重金属污染源,对环境保护与人类生命安全造成重大威胁。因此,我国对重金属废水的稳定达标排放有着严格的要求。中和沉淀-电化学废水处理过程是一种大规模深度处理重金属废水的有效方法。中和沉淀过程的预处理效果可实现废水的大规模净化,满足我国有色金属企业大流量废水的处理需求;电化学过程通过电极反应和离子迁移可实现重金属的深度净化,且无需添加药剂,避免了二次污染,是一种绿色净水技术。
中和沉淀过程和电化学过程通常利用添加药剂和改变电压来实现重金属离子的去除。因此,药剂的添加量和电压设定量是废水处理过程的最为关键的控制参数,其控制精准度不仅直接影响着出口废水能否稳定地达标排放,还与企业的经济效益息息相关。加药量过多,电压调节过高,造成药剂和电能的浪费,增大了废水处理过程的生产成本;而加药量过少,电压过低,则造成出口废水中的重金属离子无法稳定达标。
重金属废水实际处理过程中,操作人员根据入口流量和浓度凭经验调节加药量和电压。但废水来源广、水质水量波动大而造成工况波动大,且吸附反应与电化学反应机理复杂且关联耦合,造成操作人员难以及时正确地确定药剂量与电压值,无法实现两种工序协调配合完成重金属的稳定去除。不合理的药剂添加和电压设定,使得出口重金属离子波动较大,甚至无法及时排放需二次处理,造成了资源和人工的浪费。
因此,分析出口重金属离子浓度与加药量和电压的关系,研究药耗与电耗的优化方法,且在工况波动下实时确定最优加药量与电压设定值,对于废水稳定达标排放,降低企业资源浪费具有极其重要的意义。
发明内容
本发明的目的是提供一种基于操作模式动态匹配的重金属废水净化控制方法,用于确定重金属废水处理过程中更合理和准确的加药量与电压值,避免人工添加、调节而造成的高能耗、高物耗,以及处理后的废水不能稳定达标的问题。
本发明提供的一种基于操作模式动态匹配的重金属废水净化控制方法,包括如下步骤:
S1:分别构建中和沉淀过程中重金属离子浓度与加药量、电化学过程中重金属离子浓度与槽电压的关系模型,并基于历史数据进行关系模型的参数辨识;
所述重金属离子浓度与加药量的关系模型用于表示沉淀反应池中沉淀反应池出口重金属离子浓度与加药量的关系;所述重金属离子浓度与槽电压关系模型用于表示电解槽中电解槽出口重金属离子浓度与槽电压的关系;
S2:将加药量和电耗最小以及出口重金属离子浓度达标设定为优化目标并构建多目标协调优化模型;
其中,重金属废水净化过程为先进行沉淀反应后进行电化学反应,所述出口重金属离子浓度达标表示电解槽出口重金属离子浓度小于或等于预设的可排放重金属离子浓度上限值;所述电耗表示在电解槽内电化学反应消耗的电能,所述电耗与槽电压相关;
S3:定义输入条件和操作参数并基于历史数据中各个输入条件对应的操作参数构建操作模式知识库;
其中,输入条件包括中和沉淀过程废水流量,沉淀反应池入口重金属离子浓度以及电解槽运行时间;所述操作参数包括加药量协调值和槽电压协调值,所述加药量协调值、槽电压协调值分别为:同一输入条件下历史数据中加药量、槽电压的实际操作值与利用所述多目标协调优化模型得到的加药量、槽电压的优化值之差;
一个输入条件及其操作参数构成一个操作模式,所述操作模式知识库包括各类输入条件下的最优操作模式,所述最优操作模式为同一输入条件下加药量协调值和槽电压协调值最小的操作模式;
S4:获取现场实时输入条件,并将实时输入条件代入步骤S2中所述多目标协调优化模型得到实时输入条件下对应加药量、槽电压的优化值;
S5:根据实时输入条件判断是否需要进行操作匹配;
若需要,则根据实时输入条件匹配操作模式知识库中的操作模式获取实时输入条件匹配的操作参数,再依据获取的操作参数调节实时输入条件下加药量、槽电压的优化值得到加药量、槽电压的控制值并进行控制调节;
其中,依次计算实时输入条件下与操作模式知识库中各类输入条件的最优操作模式的相似度,并选取相似度最小的最优操作模式的操作参数作为实时输入条件匹配的操作参数;
若不需要,将实时输入条件下的加药量、槽电压的优化值作为加药量、槽电压的控制值并进行控制调节。
本发明以中和沉淀过程与电化学过程的机理模型为基础构建了重金属离子浓度与加药量、槽电压的关系模型,从反应机理推导了其理论关系模型,再基于运行的历史数据对关系模型的参数进行辨识得到完整的关系模型;再基于实际需求将加药量和电耗作为优化目标构建了多目标协调优化模型,而基于此多目标协调优化模型可以得到实时输入条件下的加药量、槽电压的优化值,解决了因人工经验操作造成药耗和电耗浪费的问题。本发明进一步的基于历史数据和优化值构建了操作模式知识库,提出了操作模式动态匹配的方法得到实时输入条件下加药量、槽电压的协调值并调节优化值,解决了因入口工况波动造成的出口重金属离子波动较大,出口废水品质不稳定等问题。这是由于构建关系模型并进行参数辨识的使用的历史数据的工况与当前实时工况可能存在较大波动,因此得到的当前实时输入条件下的优化值还需要进一步调整才与当前工况更相符,本发明通过历史数据与优化值构建的操作模式知识库可以有效地降低工况波动而带来的影响。
进一步优选,步骤S1中所述重金属离子浓度与加药量的关系模型是根据中和沉淀过程吸附动力学原理与物料平衡原理构建,如下:
Figure BDA0001927176170000031
式中,V1为沉淀反应池体积,
Figure BDA0001927176170000032
为沉淀反应池中重金属离子浓度的变化,
Figure BDA0001927176170000033
为沉淀反应池入口重金属离子M浓度;
Figure BDA0001927176170000034
为沉淀反应池出口重金属离子M浓度;Q1为中和沉淀过程废水流量;G为加药量;k1和p为中和沉淀过程的辨识参数。
在流程工业中物料平衡原理为:物质的变化量=物质的流入量-物质的流出量-物质的反应量;吸附动力学原理来描述物质的反应量,譬如采用弗罗因德利希方程来进行表示,其弗罗因德利希方程即为单位量的药剂所吸附重金属的量(即反应掉的重金属量)与重金属平衡状态的浓度存在以下关系式:
Figure BDA0001927176170000035
则添加G量的药剂,反应掉重金属离子量为
Figure BDA0001927176170000036
基于该原理本发明构建出上述关系模型。
进一步优选,所述重金属离子浓度与槽电压的关系模型是根据法拉第定律与物料平衡原理构建,如下:
Figure BDA0001927176170000037
式中,V2为电解槽体积,
Figure BDA0001927176170000038
为电解槽中重金属离子浓度的变化,
Figure BDA0001927176170000039
为电解槽入口重金属离子M浓度,
Figure BDA00019271761700000310
为电解槽出口重金属离子M浓度,Q2为电化学过程废水流量,i为槽电流密度,qmax为1摩尔氢氧化铁的吸附能力,KL为朗缪尔常数,S为电极板面积,z为电荷转移数,F为法拉第常数,U是槽电压,d是极板间距,σ是电导率,k2,k3,k4均为电化学过程的辨识参数。
在流程工业中物料平衡原理为:物质的变化量=物质的流入量-物质的流出量-物质的反应量;法拉第电解定律为:在电极界面上发生化学变化物质的质量与通入的电量成正比。因此将其两者进行结合通过数学推理得到上述关系模型。
利用现场采集的历史数据(流量、重金属离子浓度、加药量、槽电压等)对关系模型采用最小二乘法进行参数辨识得到k1和p、k2,k3,k4,由于最小二乘法是参数辨识时常用技术手段,因此对其实现过程不进行具体描述,其在本发明用模型输出值与真实值误差最小来优化待求解的辨识参数,即利用上述公式计算的出口重金属离子浓度与历史数据中真实离子浓度误差最小。
进一步优选,所述多目标协调优化模型如下所示:
minJ1=minG
minJ2=minE
Figure BDA0001927176170000041
式中,J1、J2分别表示目标函数值分别表示目标函数,E是电耗;n是电解槽个数,t是电解时间,I是槽电流,
Figure BDA0001927176170000044
分别为中和沉淀过程、电化学过程的重金属去除效率,
Figure BDA0001927176170000042
为可排放重金属离子浓度上限。
进一步优选,步骤S5中实时输入条件下与操作模式知识库中一类输入条件的最优操作模式的相似度计算公式如下:
Figure BDA0001927176170000043
式中,δ(ψ,ψt)表示实时输入条件下与操作模式知识库中一类输入条件的最优操作模式的相似度,ωj和ωt,j分别表示操作模式知识库中一类输入条件中、实时输入条件中的中和沉淀过程废水流量或沉淀反应池入口重金属离子浓度或电解槽运行时间。
j=1、2、3,其分别对应输入条件中中和沉淀过程废水流量、沉淀反应池入口重金属离子浓度、电解槽运行时间。
进一步优选,步骤S5中根据实时输入条件判断是否需要进行操作匹配的标准如下:
若实时输入条件内中和沉淀过程废水流量大于步骤S1关系模型参数辨识时历史数据内中和沉淀过程废水流量的上限或小于下限,且相对误差大于预设阈值,则进行操作模式匹配;
或者,若实时输入条件内沉淀反应池入口重金属离子浓度大于步骤S1关系模型参数辨识时历史数据内沉淀反应池入口重金属离子浓度的上限或小于下限,且相对误差大于预设阈值,则进行操作模式匹配;
或者,若实时输入条件内电解槽运行时间大于预设时长,则进行操作模式匹配;
若均不满足,则不需要进行操作模式匹配。
是否需要进行操作匹配的判断基于当前实时工况与步骤S1中关系模型参数辨识时历史数据的工况相比较,当前实时工况相较于关系模型构建的工况变动大,则需要进行操作模式匹配。此外,解槽运行时间对应的预设时长是根据极板大小和材料确定的,其为经验值。
进一步优选,所述相对误差对应的预设阈值为5%。
依据获取的操作参数调节实时输入条件下加药量、槽电压的优化值得到加药量、槽电压的控制值规律为:
加药量的控制值等于操作参数中加药量协调值与加药量优化值之和;
槽电压的控制值等于操作参数中槽电压协调值与槽电压优化值之和。
本发明优选若进行了操作模式匹配,控制值等于协调值与优化值之和。
进一步优选,加药量和槽电压的优化值的获取方式为:采用状态转移算法求解所述多目标协调优化模型。
有益效果
本发明提供了一种基于操作模式动态匹配的重金属废水净化控制方法,该方法以构建的中和沉淀过程与电化学过程的机理模型为基础,定量的考虑了出口重金属离子浓度与加药量和电压之间的对应关系而构建出关系模型;再基于加药量和电耗最小为优化目标构建出多目标协调优化模型,因此,本发明基于现场数据和状态转移算法求解多目标协调优化模型计算出加药量与槽电压的优化值,解决了因人工经验操作造成药耗和电耗浪费的问题。进一步又基于历史数据和优化值构建了操作模式知识库,提出了操作模式动态匹配的方法,得到了实时现场数据下加药量和槽电压协调值,再基于协调值来调整优化值得到与实时工况更加吻合的控制值,解决了因入口工况波动造成的出口重金属离子波动较大,出口废水品质不稳定等问题。
利用本发明所述方法,在同等工况条件下,相对于人工添加方法,可以使出口重金属离子浓度波动减小,节约了平均加药量和电耗,达到了稳定出口废水质量,降低药耗和电耗的目标。
本发明深入分析吸附反应和电化学反应原理,结合现场数据,协调两种工序去除废水中的重金属离子,适宜于重金属废水深度净化过程的加药量与电压的控制,对废水处理过程稳定出口重金属离子浓度,提高可排废水质量,降低成本具有重要意义。
附图说明
图1是本发明提供的一种基于操作模式动态匹配的重金属废水净化控制方法的流程图;
图2是本发明提供的人工操作下以及采用本发明所述方法下出口处铅离子浓度变化对比图。
具体实施方式
下面将结合实施例对本发明做进一步的说明。
如图1所示,本发明提供的一种基于操作模式动态匹配的重金属废水净化控制方法,包括如下步骤:
S1:分别构建中和沉淀过程中重金属离子浓度与加药量、电化学过程中重金属离子浓度与槽电压的关系模型,并基于现场历史数据进行关系模型的参数辨识。
重金属离子浓度与加药量的关系模型是根据中和沉淀过程吸附动力学原理与物料平衡原理构建,如下:
Figure BDA0001927176170000061
式中,V1为沉淀反应池体积,
Figure BDA0001927176170000062
为沉淀反应池中重金属离子浓度的变化率,
Figure BDA0001927176170000063
为沉淀反应池入口重金属离子M浓度;
Figure BDA0001927176170000064
为沉淀反应池出口重金属离子M浓度;Q1为中和沉淀过程废水流量;G为加药量;k1和p为中和沉淀过程的辨识参数。
重金属离子浓度与槽电压的关系模型是根据法拉第定律与物料平衡原理构建,如下:
Figure BDA0001927176170000065
式中,V2为电解槽体积,
Figure BDA0001927176170000066
为电解槽中重金属离子浓度的变化率,
Figure BDA0001927176170000067
为电解槽入口重金属离子M浓度,
Figure BDA0001927176170000068
为电解槽出口重金属离子M浓度,Q2为电化学过程废水流量,i为槽电流密度,qmax为1摩尔氢氧化铁的吸附能力,KL为朗缪尔常数,S为电极板面积,z为电荷转移数,F为法拉第常数,U是槽电压,d是极板间距,σ是电导率,k2,k3,k4均为电化学过程的辨识参数。
需要说明的是,上述公式中重金属离子M并非特指某一类重金属离子,而仅仅是用于表示废水中的重金属离子,可以用于表示任意一类重金属离子。
还需要说明的是,沉淀反应池中重金属离子浓度的变化率
Figure BDA0001927176170000071
和电解槽中重金属离子浓度的变化率
Figure BDA0001927176170000072
均是表示离子浓度随时间的变化,其分别与电解槽出口重金属离子浓度
Figure BDA0001927176170000073
沉淀反应池出口重金属离子浓度
Figure BDA0001927176170000074
相关。
本实施例中,k1和p、k2,k3,k4均是利用现场采集的历史数据采用最小二乘法进行参数辨识,得到相关参数值后代入公式1和公式2得到唯一确定的关系模型。需要说明的是,参数辨识时,是利用现场采集的诸多组历史数据进行分析得到,因此譬如沉淀反应池入口重金属离子浓度、中和沉淀过程废水流量等均是存在多类取值的,但是均会存在一个上限和下限值。下文将利用上限、下限值来鉴别实时工况与关系模型参数辨识时的工况是否相近。
S2:将加药量和电耗最小以及出口重金属离子浓度达标设定为优化目标并构建多目标协调优化模型。其多目标协调优化模型如下所示:
minJ1=minG
minJ2=minE
Figure BDA0001927176170000075
式中,J1、J2分别表示目标函数值,E是电耗;n是电解槽个数,t是电解时间,I是槽电流,
Figure BDA0001927176170000077
分别为中和沉淀过程、电化学过程的重金属去除效率,
Figure BDA0001927176170000076
为可排放重金属离子浓度上限。
本发明优选采用状态转移算法来求解多目标协调优化模型得到加药量、槽电压的优化值。本实施例中优化迭代过程简述如下:
随机生成加药量G与槽电压U的初始值G0,U0,将G0,U0作为输入值进行状态转移算法中算子的迭代运算得到新的G1,U1,比较G0与G1(即目标函数J1的比较),E0与E1的大小(即目标函数J2的比较),较小的G和较小的E对应的U保留作为当前解Gx,Ux,如果还没有达到迭代终止条件,则以Gx,Ux,作为输入值进行操作算子的运算得到新的G2,U2,然后比较G2与Gx,E2与Ex,保留较小的G和较小的E对应的U保留作为当前解Gx,Ux,以此类推直到达到迭代终止条件。本实施例中迭代终止条件为预先设置的迭代次数;其他可行的实施例中,迭代终止条件还可以是判断当前解Gx,Ux是否会继续下降,若不下降了或者下降差值小于设定值(下降不明显),则视为达到了迭代终止条件。
S3:构建操作模式知识库;具体过程如下:
S3.1:将中和沉淀过程废水流量Q1,沉淀反应池入口重金属离子浓度C0以及电解槽运行时间T定义为输入条件ω,即存在ω=[Q1,C0,T];
S3.2:利用现场采集的历史数据计算各类输入条件下多目标协调优化模型的加药量、槽电压的优化值,再计算各类输入条件下的操作参数,操作参数包括加药量协调值和槽电压协调值;
其中,加药量协调值=同一输入条件下加药量实际操作值-加药量优化值;
槽电压协调值=同一输入条件下槽电压实际操作值-槽电压优化值。
本实施例中加药量、槽电压的优化值均采用上述状态转移算法进行迭代计算得到。
S3.3:定义一个输入条件及其操作参数构成一个操作模式;
S3.4:将相同输入条件下所对应的不同操作参数进行综合评价,将加药量协调值和槽电压协调值均最小的操作模式作为该输入条件下的最优操作模式,并将各类输入条件下的最优操作模式集合构建操作模式知识库。
从上述可知,本发明的构建的操作模式知识库是基于运行过程采集的数据以及根据构建的多目标协调优化模型构建的。
S4:获取现场实时输入条件,并将实时输入条件代入步骤S2中所述多目标协调优化模型得到实时输入条件下加药量、槽电压的优化值。
同理,本实施例中采用状态转移算法计算出当前实时输入条件下加药量、槽电压的优化值。
S5:根据实时输入条件判断是否需要进行操作匹配;本实施例中,具体判断标准如下:
若实时输入条件内中和沉淀过程废水流量大于步骤S1关系模型参数辨识时历史数据内中和沉淀过程废水流量的上限或小于下限,且相对误差大于预设阈值,则进行操作模式匹配;
或者,若实时输入条件内沉淀反应池入口重金属离子浓度大于步骤S1关系模型参数辨识时历史数据内沉淀反应池入口重金属离子浓度的上限或小于下限,且相对误差大于预设阈值,则进行操作模式匹配;
或者,若实时输入条件内电解槽运行时间大于预设时长,则进行操作模式匹配;
若均不满足上述条件,则不需要进行操作模式匹配。
其中,若需要进行操作匹配,则根据实时输入条件匹配操作模式知识库中的操作模式获取实时输入条件匹配的操作参数,再依据获取的操作参数调节实时输入条件下加药量、槽电压的优化值得到加药量、槽电压的控制值并进行控制调节。
其中,按照如下公式依次计算实时输入条件下与操作模式知识库中各类输入条件的最优操作模式的相似度,并选取相似度最小的最优操作模式的操作参数作为实时输入条件匹配的操作参数,即得到加药量协调值和槽电压协调值。
实时输入条件下与操作模式知识库中一类输入条件的最优操作模式的相似度计算公式如下:
Figure BDA0001927176170000091
式中,δ(ψ,ψt)表示实时输入条件下与操作模式知识库中一类输入条件的最优操作模式的相似度,ωj和ωt,j分别表示操作模式知识库中一类输入条件中、实时输入条件中的中和沉淀过程废水流量或沉淀反应池入口重金属离子浓度或电解槽运行时间。
本实施例中,优选得到加药量协调值和槽电压协调值后,将加药量协调值与加药量优化值求和作为加药量的控制值,将槽电压协调值与槽电压优化值求和作为槽电压的控制值。然后再根据加药量和槽电压的控制值进行实时控制调节。
若不需要进行操作匹配,择将实时输入条件下的加药量、槽电压的优化值作为加药量、槽电压的控制值并进行实时控制调节。
基于上述方案,本发明提供如下实例来验证本发明所述方法的有效性。
某废水处理厂中和沉淀-电化学过程去除重金属铅为例说明本发明的优越性。第一步,建立中和沉淀过程、电化学过程铅离子浓度与加药量和电流密度的关系模型,并利用现场采集的数据对所建模型进行参数辨识;第二步,构建面向加药量和电耗最小的废水处理过程多目标协调优化模型。第三步,构成的重金属废水处理过程操作模式,采集现场数据,构建操作模式知识库。采集现场一个月实际过程人工添加药剂量和电耗,并采用状态转移算法快速求解优化模型获取到对应优化值;第四步,采集一个月的运行数据进行实验,期间采用状态转移算法快速求解优化模型实时获取实时工况条件下最优的加药量优化值
Figure BDA0001927176170000092
与电压优化值
Figure BDA0001927176170000093
而当现场工况变化剧烈时,即废水流量和入口重金属离子浓度有一种数据相对误差大于5%或电解槽运行时间大于7天,进行操作模式匹配,工况波动下人工经验操作和多目标协调操作模式匹配的对比结果如表1和图2所示。
其结果表明,本发明所提出的方法充分考虑了重金属废水处理过程加药量与电压值的优化对工况波动下出口重金属离子稳定达标的重要性,为进一步的控制精度的提高有着重要意义。
表1
Figure BDA0001927176170000101
需要强调的是,本发明所述的实例是说明性的,而不是限定性的,因此本发明不限于具体实施方式中所述的实例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,不脱离本发明宗旨和范围的,不论是修改还是替换,同样属于本发明的保护范围。

Claims (7)

1.一种基于操作模式动态匹配的重金属废水净化控制方法,其特征在于:包括如下步骤:
S1:分别构建中和沉淀过程中重金属离子浓度与加药量、电化学过程中重金属离子浓度与槽电压的关系模型,并基于历史数据进行关系模型的参数辨识;
所述重金属离子浓度与加药量的关系模型用于表示沉淀反应池中沉淀反应池出口重金属离子浓度与加药量的关系,如下:
Figure FDA0002461393370000011
式中,V1为沉淀反应池体积,
Figure FDA0002461393370000012
为沉淀反应池中重金属离子浓度的变化,
Figure FDA0002461393370000013
为沉淀反应池入口重金属离子M浓度;
Figure FDA0002461393370000017
为沉淀反应池出口重金属离子M浓度;Q1为中和沉淀过程废水流量;G为加药量;k1和p为中和沉淀过程的辨识参数;
所述重金属离子浓度与槽电压关系模型用于表示电解槽中电解槽出口重金属离子浓度与槽电压的关系,如下:
Figure FDA0002461393370000014
式中,V2为电解槽体积,
Figure FDA0002461393370000015
为电解槽中重金属离子浓度的变化,
Figure FDA0002461393370000016
为电解槽入口重金属离子M浓度,
Figure FDA0002461393370000018
为电解槽出口重金属离子M浓度,Q2为电化学过程废水流量,i为槽电流密度,qmax为1摩尔氢氧化铁的吸附能力,KL为朗缪尔常数,S为电极板面积,z为电荷转移数,F为法拉第常数,U是槽电压,d是极板间距,σ是电导率,k2,k3,k4均为电化学过程的辨识参数;
S2:将加药量和电耗最小以及出口重金属离子浓度达标设定为优化目标并构建多目标协调优化模型;
其中,重金属废水净化过程为先进行沉淀反应后进行电化学反应,所述出口重金属离子浓度达标表示电解槽出口重金属离子浓度小于或等于预设的可排放重金属离子浓度上限值;所述电耗表示在电解槽内电化学反应消耗的电能,所述电耗与槽电压相关;
S3:定义输入条件和操作参数并基于历史数据中各个输入条件对应的操作参数构建操作模式知识库;
其中,输入条件包括中和沉淀过程废水流量,沉淀反应池入口重金属离子浓度以及电解槽运行时间;所述操作参数包括加药量协调值和槽电压协调值,所述加药量协调值、槽电压协调值分别为:同一输入条件下历史数据中加药量、槽电压的实际操作值与利用所述多目标协调优化模型得到的对应加药量、槽电压的优化值之差;
一个输入条件及其操作参数构成一个操作模式,所述操作模式知识库包括各类输入条件下的最优操作模式,所述最优操作模式为同一输入条件下加药量协调值和槽电压协调值最小的操作模式;
S4:获取现场实时输入条件,并将实时输入条件代入步骤S2中所述多目标协调优化模型得到实时输入条件下加药量、槽电压的优化值;
S5:根据实时输入条件判断是否需要进行操作匹配;
若需要,则根据实时输入条件匹配操作模式知识库中的操作模式获取实时输入条件匹配的操作参数,再依据获取的操作参数调节实时输入条件下加药量、槽电压的优化值得到加药量、槽电压的控制值并进行控制调节;
其中,依次计算实时输入条件下与操作模式知识库中各类输入条件的最优操作模式的相似度,并选取相似度最小的最优操作模式的操作参数作为实时输入条件匹配的操作参数;
若不需要,将实时输入条件下的加药量、槽电压的优化值作为加药量、槽电压的控制值并进行控制调节。
2.根据权利要求1所述的方法,其特征在于:所述多目标协调优化模型如下所示:
minJ1=minG
minJ2=minE
Figure FDA0002461393370000021
式中,J1、J2分别表示目标函数值,E是电耗;n是电解槽个数,t是电解时间,I是槽电流,θ1、θ2分别为中和沉淀过程、电化学过程的重金属去除效率,
Figure FDA0002461393370000022
为可排放重金属离子浓度上限。
3.根据权利要求1所述的方法,其特征在于:步骤S5中实时输入条件下与操作模式知识库中一类输入条件的最优操作模式的相似度计算公式如下:
Figure FDA0002461393370000023
式中,δ(ψ,ψt)表示实时输入条件下与操作模式知识库中一类输入条件的最优操作模式的相似度,ωj和ωt,j分别表示操作模式知识库中一类输入条件中、实时输入条件中的中和沉淀过程废水流量或沉淀反应池入口重金属离子浓度或电解槽运行时间;
j=1、2、3,其分别对应输入条件中中和沉淀过程废水流量、沉淀反应池入口重金属离子浓度、电解槽运行时间。
4.根据权利要求1所述的方法,其特征在于:步骤S5中根据实时输入条件判断是否需要进行操作匹配的标准如下:
若实时输入条件内中和沉淀过程废水流量大于步骤S1关系模型参数辨识时历史数据内中和沉淀过程废水流量的上限或小于下限,且相对误差大于预设阈值,则进行操作模式匹配;
或者,若实时输入条件内沉淀反应池入口重金属离子浓度大于步骤S1关系模型参数辨识时历史数据内沉淀反应池入口重金属离子浓度的上限或小于下限,且相对误差大于预设阈值,则进行操作模式匹配;
或者,若实时输入条件内电解槽运行时间大于预设时长,则进行操作模式匹配;
若均不满足,则不需要进行操作模式匹配。
5.根据权利要求4所述的方法,其特征在于:所述相对误差对应的预设阈值为5%。
6.根据权利要求1所述的方法,其特征在于:依据获取的操作参数调节实时输入条件下加药量、槽电压的优化值得到加药量、槽电压的控制值规律为:
加药量的控制值等于操作参数中加药量协调值与加药量优化值之和;
槽电压的控制值等于操作参数中槽电压协调值与槽电压优化值之和。
7.根据权利要求1所述的方法,其特征在于:加药量和槽电压的优化值的获取方式为:采用状态转移算法求解所述多目标协调优化模型。
CN201811622305.0A 2018-12-28 2018-12-28 一种基于操作模式动态匹配的重金属废水净化控制方法 Active CN109437456B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811622305.0A CN109437456B (zh) 2018-12-28 2018-12-28 一种基于操作模式动态匹配的重金属废水净化控制方法
PCT/CN2019/072269 WO2020133611A1 (zh) 2018-12-28 2019-01-18 一种基于操作模式动态匹配的重金属废水净化控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811622305.0A CN109437456B (zh) 2018-12-28 2018-12-28 一种基于操作模式动态匹配的重金属废水净化控制方法

Publications (2)

Publication Number Publication Date
CN109437456A CN109437456A (zh) 2019-03-08
CN109437456B true CN109437456B (zh) 2020-06-05

Family

ID=65540540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811622305.0A Active CN109437456B (zh) 2018-12-28 2018-12-28 一种基于操作模式动态匹配的重金属废水净化控制方法

Country Status (2)

Country Link
CN (1) CN109437456B (zh)
WO (1) WO2020133611A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357288A (zh) * 2019-07-25 2019-10-22 中国船舶重工集团公司第七一八研究所 一种利用纤维处理回收含重金属废水的方法
CN112875827B (zh) * 2021-01-28 2023-01-31 中冶赛迪信息技术(重庆)有限公司 基于图像识别和数据挖掘的智能加药系统和水处理系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1132346A1 (fr) * 2000-03-10 2001-09-12 Commissariat A L'energie Atomique Procédé de traitement de milieux liquides contenant des métaux lourds et des ions sulfates
JP2003236502A (ja) * 2002-02-19 2003-08-26 Hitachi Zosen Corp アルカリ灰中重金属の固定方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700145B2 (ja) * 1996-10-17 2011-06-15 栗田工業株式会社 水処理装置のモデル参照型自動制御装置
EP1343063A2 (en) * 2002-03-06 2003-09-10 Fuji Photo Film Co., Ltd. Wastewater treatment control system, terminal, computer program and accounting method
CN103543719B (zh) * 2013-10-17 2015-10-07 中国科学院软件研究所 一种基于工况的流程行业操作模式自适应调整方法
CN103570190B (zh) * 2013-10-20 2015-04-29 北京化工大学 一种基于模糊控制的再生水厂化学除磷药剂投加量方法
CN105955327A (zh) * 2016-06-21 2016-09-21 中南大学 一种重金属废水处理过程的协调控制方法及装置
CN106600506A (zh) * 2016-11-25 2017-04-26 中国科学院生态环境研究中心 用于消除湖库型黑臭水体的治理方法
WO2018183054A1 (en) * 2017-03-27 2018-10-04 Genscape Intangible Holding, Inc. System and method for monitoring disposal of wastewater in one or more disposal wells
CN107055732A (zh) * 2017-05-17 2017-08-18 北京易沃特科技有限公司 一种废水重金属去除方法及装置
CN107500388B (zh) * 2017-08-22 2020-03-27 中南大学 一种重金属废水电化学处理过程中电导率的控制方法及装置
CN107729711B (zh) * 2017-08-22 2020-03-27 中南大学 一种重金属废水电化学处理反应速率在线估计方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1132346A1 (fr) * 2000-03-10 2001-09-12 Commissariat A L'energie Atomique Procédé de traitement de milieux liquides contenant des métaux lourds et des ions sulfates
JP2003236502A (ja) * 2002-02-19 2003-08-26 Hitachi Zosen Corp アルカリ灰中重金属の固定方法

Also Published As

Publication number Publication date
WO2020133611A1 (zh) 2020-07-02
CN109437456A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN109437456B (zh) 一种基于操作模式动态匹配的重金属废水净化控制方法
CN104131285B (zh) 三氯化铁蚀刻废液的回收方法
CN103864181B (zh) 一种循环水电解处理装置及其方法
Sun et al. An integrated prediction model of cobalt ion concentration based on oxidation–reduction potential
Zhang et al. An integrated prediction model of heavy metal ion concentration for iron electrocoagulation process
CN109160581A (zh) 确定电化学处理高盐高氨氮废水的电解时间的方法和应用
CN107729711B (zh) 一种重金属废水电化学处理反应速率在线估计方法及装置
Sulaymon et al. Removal of cadmium from simulated wastewaters by electrodeposition on stainless steeel tubes bundle electrode
Dell'Era et al. Purification of nickel or cobalt ion containing effluents by electrolysis on reticulated vitreous carbon cathode
Zhang et al. Optimal setting strategy of electrocoagulation process in heavy metal wastewater treatment plant
CN104263960B (zh) 金湿法冶金置换过程中置换率和金泥品位的在线预测方法
Walker et al. Mass transfer in fluidised bed electrochemical reactors
CN212476405U (zh) 一种水质调控系统
CN107728664A (zh) 一种冶金过程多反应器级联pH值优化控制方法
CN105740605B (zh) 一种湿法炼锌除铜过程生产工况评估方法
CN107500388B (zh) 一种重金属废水电化学处理过程中电导率的控制方法及装置
Deng et al. Spatiotemporal distribution model for zinc electrowinning process and its parameter estimation
Kim et al. Electrochemical hydrodynamics modeling approach for a copper electrowinning cell
CN106048662B (zh) 一种湿法炼锌电解过程电解液酸锌比控制方法
CN101280432B (zh) 不锈钢酸洗后废酸再生的电解装置及再生方法
Körbahti Finite element modeling of continuous flow tubular electrochemical reactor for industrial and domestic wastewater treatment
Liu et al. Plant‐wide optimization for gold hydrometallurgy based on the fuzzy qualitative model and interval number
CN115081305B (zh) 多工况级联冶金反应过程氧化还原电位优化设定方法
CN110408971A (zh) 智能脱液方法及系统
CN102101706A (zh) 电化学氧化法除氨氮废水所用极板的工程计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant