CN109419509A - 来自辐射的自由基的mri检测 - Google Patents

来自辐射的自由基的mri检测 Download PDF

Info

Publication number
CN109419509A
CN109419509A CN201810959458.8A CN201810959458A CN109419509A CN 109419509 A CN109419509 A CN 109419509A CN 201810959458 A CN201810959458 A CN 201810959458A CN 109419509 A CN109419509 A CN 109419509A
Authority
CN
China
Prior art keywords
substance
radiation
mri system
magnetic coil
mri
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810959458.8A
Other languages
English (en)
Inventor
欧文·N·温伯格
斯坦利·托马斯·弗里克
亚历山大·尼尔森·纳塞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WEINBERG MEDICINE PHYSICS CO Ltd
Weinberg Medical Physics Inc
Original Assignee
WEINBERG MEDICINE PHYSICS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WEINBERG MEDICINE PHYSICS CO Ltd filed Critical WEINBERG MEDICINE PHYSICS CO Ltd
Publication of CN109419509A publication Critical patent/CN109419509A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/60Arrangements or instruments for measuring magnetic variables involving magnetic resonance using electron paramagnetic resonance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0515Magnetic particle imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4848Monitoring or testing the effects of treatment, e.g. of medication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1039Treatment planning systems using functional images, e.g. PET or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1071Monitoring, verifying, controlling systems and methods for verifying the dose delivered by the treatment plan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/288Provisions within MR facilities for enhancing safety during MR, e.g. reduction of the specific absorption rate [SAR], detection of ferromagnetic objects in the scanner room
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5601Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution involving use of a contrast agent for contrast manipulation, e.g. a paramagnetic, super-paramagnetic, ferromagnetic or hyperpolarised contrast agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14539Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring pH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1055Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using magnetic resonance imaging [MRI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3808Magnet assemblies for single-sided MR wherein the magnet assembly is located on one side of a subject only; Magnet assemblies for inside-out MR, e.g. for MR in a borehole or in a blood vessel, or magnet assemblies for fringe-field MR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4804Spatially selective measurement of temperature or pH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4808Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/50NMR imaging systems based on the determination of relaxation times, e.g. T1 measurement by IR sequences; T2 measurement by multiple-echo sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/543Control of the operation of the MR system, e.g. setting of acquisition parameters prior to or during MR data acquisition, dynamic shimming, use of one or more scout images for scan plane prescription

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Signal Processing (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明涉及来自辐射的自由基的MRI检测。本文现在公开的实施方式提供了一种可以在不改变MRI静态场的情况下通过MRI检测物质中的自由基的装置和方法。

Description

来自辐射的自由基的MRI检测
交叉引用和优先权声明
本专利申请要求2017年8月22日提交的临时专利申请序列号为62/548,641的美国临时申请“MRI DETECTION OF FREE-RADICALS FROM RADIATION”的优先权,其公开内容通过引用整体并入本文。
技术领域
所公开的实施方式涉及在医疗、防御、安全、和其它技术领域中对来自辐射的损伤的评估。
背景技术
所公开的实施方式代表发明人自其早先的名称为“ULTRA-FAST MAGNETIC FIELDFOR ELECTRON PARAMAGNETIC RESONANCE IMAGING USED IN MONITORING DOSE FROMPROTON OR HADRON THERAPY”、专利申请号为13/475,005所做的工作的拓展,该专利申请现在作为美国专利9,612,308(通过引用整体并入)发布。
在该创新之前,通过基于通过在被照射的患者的部位的预期位置中放置“体模”进行监测来估计患者接收的辐射剂量来改进传统的外射束放射治疗,其中,体模通常配备有仪器(例如,放射量测定器),该仪器可以跟踪暴露于体模内的一个或多个位置的辐射量。
US 9,612,308提供了在放射治疗后直接评估患者中的自由基的存在的能力。更具体地,US 9,612,308公开了一种用于使用磁共振成像(Magnetic Resonance Imaging,MRI)来检测由在各种材料(包括组织)中的辐射生成的自由基的方法和装置。
发明内容
以下呈现简化的概述,以便提供对本发明的各个实施方式的一些方面的基本理解。该概述不是对本发明的广泛综述。它既不旨在标识本发明的关键或重要要素,也不旨在勾画本发明的范围。以下概述仅以简化形式呈现本发明的一些概念,作为下面更详细描述的前奏。
与US 9,612,308类似,根据至少一个公开的实施方式,提供了仪器和方法,所述仪器和方法能够通过使用质子束和其它形式的电离辐射来直接测量由于放射治疗而在患者中产生的自由基。因此,根据至少一个公开的实施方式,所述仪器和方法可以与放射治疗结合使用,以在这种放射治疗期间检测、监测和/或控制癌组织中自由基的生成。类似地,所公开的实施方式实现了用于使用MRI来检测由在各种材料(包括活体或死亡的受试者的组织)中的辐射生成的自由基的方法和装置。
更具体地,所述公开的实施方式提供了这种能力,其具有出于以下目的的技术效用:例如,描绘由放射治疗对恶性肿瘤造成的损害以及对正常细胞造成的损害。
然而,与US 9,612,308不同,本文现在公开的实施方式提供了一种可以在不改变MRI静态场的情况下通过MRI检测自由基的装置和方法。
附图说明
具体地参考附图进行详细描述,在附图中:
图1示出了磁共振信号不随着和随着硫酸铜水溶液对来自激光的光的暴露程度的增加而增加的效果。
图2示出了评估身体部位或其它结构或物质中受激发材料的存在的单侧MRI系统。
具体实施方式
如US 9,612,308中所公开的,可以通过将MRI静态场从低值(在该低值自由电子可以被磁激发)转变为更高的场(在该更高的场可以评估质子的磁矩),并且利用自由电子将磁化转移到质子的能力来检测由辐射产生的自由基。
本文现在公开的实施方式提供了一种可以在不改变MRI静态场的情况下通过MRI检测自由基的装置和方法。
具体实施方式的描述不旨在限制本发明。相反,本领域技术人员应该理解,在不脱离本发明的范围的情况下,可以采用许多变型和等同物。这些等同物和变型旨在包含在本发明中。
在本发明的各种实施方式的以下描述中,对附图进行参考,所述附图形成了本发明的一部分,并且在附图中通过例示的方式示出了可以实践本发明的各种实施方式。应当理解,在不脱离本发明的范围和精神的情况下,可以利用其它实施方式并且可以进行结构和功能修改。
如上所述,根据至少一个公开的实施方式,提供了仪器和方法,所述仪器和方法能够通过使用质子束和其它形式的电离辐射来直接测量由于放射治疗而在患者中产生的自由基。因此,根据至少一个公开的实施方式,所述仪器和方法可以与放射治疗结合使用,以在这种放射治疗期间检测、监测和/或控制癌组织中自由基的生成。
通常,已知放射治疗产生活性氧簇(species),出于本说明书的目的称为“受激发的(excited)物质簇”。术语“受激发的物质簇”还包括自由基、离子化氢或此类不处于其稳定状态的其它材料。分子氧O2+e-的减少(其中自由电子与O2分子结合)产生超氧化物该超氧化物是其它活性氧簇的前体,其它活性氧簇诸如:
O2这两者都是顺磁性的。顺磁性超氧化物和/或单二氧化物可以构成由辐射的施加而产生的临时内源性MRI组织对比剂。受试者的组织在放射治疗期间或暴露于有害辐射(例如来自“脏弹”)期间会经历这种辐射的施加。反差机制可以是由于通过MRI评估的质子与邻近的质子和/或电子之间的磁相互作用。
这些磁相互作用可以影响用MRI评估的质子的衰变特性,该用MRI评估的质子与未受影响的质子产生反差(contrast),如图1中的脉冲序列可见。
更具体地,图1示出了磁共振信号不随着硫酸铜水溶液对来自激光的光的暴露水平的增加而增加10,以及磁共振信号随着硫酸铜水溶液对来自激光的光的暴露水平的增加而增加20、30、40,所述来自激光的光被认为与溶液中超氧化物和/或自由电子的生成有关。
替选地,自由基或超氧化物或离子化氢物质簇的存在可以影响溶液或组织的pH。这种pH的变化可以用MRI测量,如从Vipul R.Sheth等人于2012年在“对比剂分子成像(Contrast Media Molecular Imaging)”杂志上的名称为“Improved pH measurementswith a single PARACEST MRI contrast agent”(通过引用并入本文)的发表物中所知的。
出于本说明书的目的,术语“反差”包括存在用MRI可检测到的信号,该信号在暴露于辐射的一部分材料中与未暴露于辐射的一部分材料中是不同的。
根据至少一些公开的实施方式,应该理解,与材料先前暴露于辐射有关的MRI反差的存在可以用于控制或改变材料随后暴露于辐射,例如,根据需要实现和/或修改所开具的用于治疗癌症的放射计划方案。已知,例如由于在放射计划过程中未考虑到的身体部位的运动或者由于用流体或其它物质对一些身体部位的填充,放射治疗可能并不总是根据放射计划方案进行。这种差异的示例在K Parodi等人2007年在“国际放射肿瘤学和生物物理学杂志(International Journal of Radiation Oncology and Biological Physics)”上的名称为“Patient Study of In Vivo Verification of Beam Delivery and Range,UsingPositron Emission Tomography and Computed Tomography Imaging After ProtonTherapy”(通过引用并入本文)的发表物中描述。
应当理解,响应于MRI提供的关于剂量的信息,对身体部位的继续放射治疗的修改可以潜在地产生更有效的癌组织的摧毁和/或对非癌组织的更小伤害。
来自受激发的物质簇的信号可以快速衰减(例如以毫秒衰减)。因此,这些快速衰减的信号将需要快速成像序列来定位空间中的信号。可以使用的快速成像序列的示例包括:1)具有小于一毫秒的回波时间(Echo Time,TE)的梯度回波成像序列;2)基于自旋回波的具有小于一毫秒的回波时间的成像序列;3)在小于一毫秒内获取频率信息的单点成像方案。这些快速MRI序列中的大多数序列将需要比回波时间的施加和移除快得多的梯度脉冲。
在这些情况下,梯度脉冲可以大约为100-400微秒。然后,这些梯度脉冲需要以快于10微秒的速度上升和下降,以便限制外周神经刺激。与传统已知的慢速MRI扫描仪相比,这些快速成像序列可以更好地检测快速衰减信号。
图2示出了评估在受试者身体部位或其它结构或物质220中受激发的材料210(例如,超氧化物簇)的存在的单侧MRI系统200,其中受激发的材料由辐射源230产生。
应当理解,用于施加用于成像和/或操纵的磁场的装置200可以使用电永磁体,如Irving Weinberg在美国专利公布号20170227617(通过引用并入本文)(与名称为“METHODAND APPARATUS FOR MANIPULATING ELECTROPERMANENT MAGNETS FOR MAGNETICRESONANCE IMAGING AND IMAGE GUIDED THERAPY”的美国专利申请序列号15/427,426对应)中所教导的。
这种电永磁体可以一次或多次产生用于受试者的身体部位或其它材料的成像的磁场配置。应该理解,成像能力可以通过磁共振成像方法实现。
应该理解,术语“辐射”包括电离辐射的情况。电离辐射通常用于放射治疗。
应当理解,系统200施加到受试者的组织或身体部位220的一个或多个磁场可以如此快速地施加,以便不引起令人不愉快的神经刺激,如Irving Weinberg在已授权的名称为“APPARATUS AND METHOD FOR DECREASING BIO-EFFECTS OF MAGNETIC FIELDS”的美国专利8,154,286中、以及通过优先权声明而相关的Irving Weinberg的专利申请中所教导的,这些专利申请全部通过引用并入本文。
应当理解,术语“受试者”指的是人和其它动物并包括人和其它动物,无论他(它)们是活着的还是曾经存活的。类似地,术语“身体部位或其它结构”可以指活体或曾经存活的生物体(诸如人或其它动物)中的含有组织的结构。
应当理解,如本文描述的辐射暴露对材料或物质的影响的测量,可以在暴露于正在进行的辐射期间或在暴露于辐射之后发生。
应当理解,物质的MRI通常被描述为至少一个设置在邻近物质或物质附近的磁性线圈的集合。术语“附近”可以小于1米、小于10米或小于100米。应当理解,通常将计算机连接到至少一个线圈,用于收集、重建、显示和/或解释来自所述至少一个线圈的数据。应该理解,MRI可以是一侧、两侧或三侧的,或可以围绕感兴趣的物质。
应当理解,所公开的实施方式还可以用于评估材料是否已经被辐射,这可能发生在不期望的情况(诸如“脏弹”)中或期望的情况(诸如医疗材料或食品的消毒)中。
应当理解,在以下描述中,阐明了在各元件之间各种连接;然而,一般而言,这些连接可以是直接的或间接的、永久的或暂时的、以及是专用的或共享的,除非另有说明,并且本说明书不旨在这方面进行限制。
虽然已经结合上面概述的具体实施方式描述了本发明,但显然许多替选、修改和变型对于本领域技术人员而言将是显而易见的。因此,如上所述,本发明的各种实施方式旨在是说明性的而非限制性的。在不脱离本发明的精神和范围的情况下,可以作出各种改变。
此外,应该理解,结合本发明的各种实施方式描述的各种部件所描述的功能可以以使得本发明的架构与本文明确公开的内容有一些不同的方式彼此组合或分离。再者,应该理解,没有必要要求以示出的顺序执行方法操作,除非另有说明;因此,本领域普通技术人员将认识到,一些操作可以以一个或多个替代顺序执行和/或同时执行。
本发明的各种部件可以以由在各种不同实体或个体的控制下或代表各种不同实体或个体操作的替选的组合提供。
进一步地,应当理解,根据本发明的至少一个实施方式,系统部件可以一起或单独实现,并且可以存在任何或所有公开的系统部件中的一个或多个部件。进一步地,系统部件可以是专用系统,或者这种功能可以被实现为通过软件实现方式在通用设备上实现的虚拟系统。
应当理解,如上所述,本文公开的部件可以与其它部件(例如计算机处理器)结合使用。另外,所公开的装置可以包括或利用用于生成磁场和/或电磁场的电源和/或线圈、或与用于生成磁场和/或电磁场的电源和/或线圈结合使用,以便生成电场。如此,尽管本文未详细示出,但应该理解,所公开的实施方式可以与支撑结构结合使用,该支撑结构可以保持用于对材料进行激发的线圈,其中该支撑结构包括用于施加电场的线圈,以及可选地,该支撑结构包括能够定位和/或监测受激发的材料的成像系统。此外,应该理解,未示出相关的显示系统,但应理解为显示系统存在以便观看由成像系统产生的图像。
应当理解,本文阐述的操作可以与运行软件算法的一个或多个通用计算机结合或在运行软件算法的一个或多个通用计算机的控制下实现,以提供当前公开的功能并将这些计算机转换成专用计算机。
此外,考虑到上述教导,本领域技术人员将认识到,上述示例性实施方式可以基于由合适的计算机程序编程的一个或多个编程处理器的使用。然而,可以使用硬件部件等同物(诸如专用硬件和/或专用处理器)来实现所公开的实施方式。类似地,通用计算机、基于微处理器的计算机、微控制器、光学计算机、模拟计算机、专用处理器、应用程序专用电路和/或专用硬连线逻辑可用于构建可替选的等同实施方式。
此外,应当理解,可以使用可以存储在有形的非暂时性存储设备(诸如存储指令的非暂时性计算机可读存储设备)中的软件指令来提供上述部件的控制和协作,当软件指令在一个或多个编程处理器上执行时,该软件指令执行上面描述的方法操作和所产生的功能。在这种情况下,术语“非暂时性”旨在排除发送的信号和传播波,但不排除可擦除或依赖于电源以保留信息的存储设备。
考虑到上述教导,本领域技术人员将理解,用于实现上述特定实施方式的程序操作和进程以及相关数据可以使用磁盘存储器以及其它形式的存储设备来实现,其它形式的存储设备包括但不限于非暂时性存储介质(其中非暂时性旨在仅用于排除传播信号而不排除暂时性信号,因为暂时性信号是通过移除电源或明确的擦除动作来擦除的),所述非暂时性存储介质诸如例如只读存储器(ROM)设备、随机存取存储器(RAM)设备、网络存储设备、光存储元件、磁存储元件、磁光存储元件、闪存、磁心存储器和/或其它等同的易失性和非易失性存储技术,而不脱离特定实施方式。这样的替选存储设备应被视为等同设备。
虽然已经描述了特定的示例性实施方式,但是显然根据前面的描述,许多替选、修改、置换和变化对于本领域技术人员而言将变得显而易见。因此,如上所述的各种实施方式旨在是示例性的而非限制性的。在不脱离本发明的精神和范围的情况下,可以做出各种改变。
因此,对于本领域技术人员将显而易见的是,所描述的示例性实施方式仅是示例,并且可以在所附权利要求限定的本发明的范围内作出各种修改。

Claims (26)

1.一种用于测量物质受到的辐射照射量的装置,所述装置包括:
至少一个磁性线圈,所述至少一个磁性线圈位于所述物质附近并被操作以在所述物质暴露于辐射期间或之后从所述物质中的受激发的物质簇收集一个或多个信号。
2.根据权利要求1所述的装置,还包括:联接到所述至少一个磁性线圈的计算机,所述计算机用于控制所述至少一个磁性线圈的操作以及分析从来自所述物质中的受激发的物质簇的所述一个或多个信号收集的数据。
3.根据权利要求1所述的装置,还包括辐射源,所述辐射源被控制以出于治疗目的而将所述物质暴露于辐射。
4.根据权利要求3所述的装置,其中,响应于来自所述物质中的受激发的物质簇的所述信号,使所述物质继续暴露于辐射。
5.根据权利要求1所述的装置,其中,所述物质是受试者的身体部位。
6.根据权利要求1所述的装置,还包括MRI系统,所述MRI系统包括所述至少一个磁性线圈。
7.根据权利要求6所述的装置,其中,所述MRI系统是单侧MRI系统。
8.根据权利要求6所述的装置,其中,所述MRI系统包括多个电永久部分。
9.根据权利要求6所述的装置,其中,所述MRI系统对来自所述物质中的受激发的物质簇的信号敏感。
10.根据权利要求6所述的装置,其中,所述MRI系统生成能够评估来自所述物质中的受激发的物质簇的信号的脉冲序列,在所述脉冲序列中,所述信号在10毫秒内衰减。
11.根据权利要求6所述的装置,其中,所述MRI具有脉冲序列,所述脉冲序列的上升时间、下降时间或持续时间小于10微秒长。
12.根据权利要求1所述的装置,其中,所述物质是受试者的一部分,以及,所述至少一个磁性线圈生成在不引起所述受试者的神经刺激的如此短的时间内上升或下降的磁场。
13.根据权利要求1所述的装置,其中,所述至少一个磁性线圈生成在小于10微秒内上升或下降的磁场。
14.一种使用MRI评估物质受到的辐射照射量的方法,所述方法包括:
在所述物质附近放置至少一个磁性线圈;和
在所述物质暴露于辐射期间或之后,操作所述至少一个磁性线圈以从所述物质收集一个或多个信号。
15.根据权利要求14所述的方法,还包括:使用联接到所述至少一个磁性线圈的计算机来控制所述至少一个磁性线圈,以及分析从所述一个或多个信号收集的数据。
16.根据权利要求14所述的方法,还包括:出于治疗目的而将所述物质暴露于辐射。
17.根据权利要求16所述的方法,还包括:响应于来自所述物质中的受激发的物质簇的所述信号,改变所述物质在辐射中的继续暴露。
18.根据权利要求14所述的方法,其中,所述至少一个磁性线圈是MRI系统的一部分。
19.根据权利要求18所述的方法,其中,所述MRI系统是单侧MRI系统。
20.根据权利要求18所述的方法,其中,所述MRI系统包括多个电永久部分。
21.根据权利要求18所述的方法,其中,所述MRI系统对来自所述物质中的受激发的物质簇的信号敏感。
22.根据权利要求18所述的方法,其中,所述MRI系统生成能够评估来自所述物质中的受激发的物质簇的信号的脉冲序列,在所述脉冲序列中,所述信号在10毫秒内衰减。
23.根据权利要求18所述的方法,其中,所述MRI具有脉冲序列,所述脉冲序列的上升时间、下降时间或持续时间小于10微秒长。
24.根据权利要求14所述的方法,其中,所述物质是受试者的身体部位。
25.根据权利要求14所述的方法,其中,所述物质是受试者的一部分,以及,所述至少一个磁性线圈生成在不引起所述受试者的神经刺激的如此短的时间内上升或下降的磁场。
26.根据权利要求14所述的方法,其中,所述至少一个磁性线圈生成在小于10微秒内上升或下降的磁场。
CN201810959458.8A 2017-08-22 2018-08-22 来自辐射的自由基的mri检测 Pending CN109419509A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762548641P 2017-08-22 2017-08-22
US62/548,641 2017-08-22

Publications (1)

Publication Number Publication Date
CN109419509A true CN109419509A (zh) 2019-03-05

Family

ID=65514679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810959458.8A Pending CN109419509A (zh) 2017-08-22 2018-08-22 来自辐射的自由基的mri检测

Country Status (2)

Country Link
US (1) US11709218B2 (zh)
CN (1) CN109419509A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203332A (en) * 1987-06-23 1993-04-20 Nycomed Imaging As Magnetic resonance imaging
US6198957B1 (en) * 1997-12-19 2001-03-06 Varian, Inc. Radiotherapy machine including magnetic resonance imaging system
WO2010004464A1 (en) * 2008-07-09 2010-01-14 Koninklijke Philips Electronics N.V. Physiological pharmacokinetic analysis for combined molecular mri and dynamic pet imaging
US20120223711A1 (en) * 2008-06-20 2012-09-06 Weinberg Medical Physics Llc Apparatus and method for decreasing bio-effects of magnetic gradient field gradients
US20130225974A1 (en) * 2010-11-09 2013-08-29 Koninklijke Philips Electronics N.V. Magnetic resonance imaging system and radiotherapy apparatus with an adjustable axis of rotation
US20170003291A1 (en) * 2015-06-27 2017-01-05 William Beaumont Hospital Methods for detecting, diagnosing and treating endometrial cancer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2294436B1 (en) * 2008-06-20 2022-02-09 Irving Weinberg Method for decreasing bio-effects of magnetic field gradients
US9612308B2 (en) * 2008-06-20 2017-04-04 Weinberg Medical Physics Inc Ultra-fast magnetic field for electron paramagnetic resonance imaging used in monitoring dose from proton or hadron therapy
US20170227617A1 (en) * 2016-02-09 2017-08-10 Weinberg Medical Physics, Inc. Method and apparatus for manipulating electropermanent magnets for magnetic resonance imaging and image guided therapy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203332A (en) * 1987-06-23 1993-04-20 Nycomed Imaging As Magnetic resonance imaging
US6198957B1 (en) * 1997-12-19 2001-03-06 Varian, Inc. Radiotherapy machine including magnetic resonance imaging system
US20120223711A1 (en) * 2008-06-20 2012-09-06 Weinberg Medical Physics Llc Apparatus and method for decreasing bio-effects of magnetic gradient field gradients
WO2010004464A1 (en) * 2008-07-09 2010-01-14 Koninklijke Philips Electronics N.V. Physiological pharmacokinetic analysis for combined molecular mri and dynamic pet imaging
US20130225974A1 (en) * 2010-11-09 2013-08-29 Koninklijke Philips Electronics N.V. Magnetic resonance imaging system and radiotherapy apparatus with an adjustable axis of rotation
US20170003291A1 (en) * 2015-06-27 2017-01-05 William Beaumont Hospital Methods for detecting, diagnosing and treating endometrial cancer

Also Published As

Publication number Publication date
US11709218B2 (en) 2023-07-25
US20190086502A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
Schreiner True 3D chemical dosimetry (gels, plastics): Development and clinical role
CN104902956B (zh) 利用对放射疗法的生理反应的成像对治疗评估的系统
Malyapa et al. Physiologic FDG-PET three-dimensional brachytherapy treatment planning for cervical cancer
Stock et al. IGRT induced dose burden for a variety of imaging protocols at two different anatomical sites
Ohira et al. Effect of collimator angle on HyperArc stereotactic radiosurgery planning for single and multiple brain metastases
Andoh et al. Boron neutron capture therapy (BNCT) as a new approach for clear cell sarcoma (CCS) treatment: trial using a lung metastasis model of CCS
Hsieh et al. Polymer gel dosimeters for pretreatment radiotherapy verification using the three-dimensional gamma evaluation and pass rate maps
Isacsson et al. A method to separate the rectum from the prostate during proton beam radiotherapy of prostate cancer patients
Lim et al. Magnetic resonance for radiotherapy management and treatment planning in prostatic carcinoma
Bisogni et al. The INSIDE bimodal system for range monitoring in particle therapy toward clinical validation
CN109419509A (zh) 来自辐射的自由基的mri检测
Holzscheiter et al. Biological effectiveness of antiproton annihilation
Kawamura et al. Evaluation of three-dimensional polymer gel dosimetry using X-ray CT and R2 MRI
d'Errico Dosimetric issues in radiation protection of radiotherapy patients
Kline et al. Treatment planning for adenocarcinoma of the rectum and sigmoid: a patterns of care study
Nezhad et al. Investigation of isotropic radiation of low energy X-ray intra-operative radiotherapy by MAGAT gel dosimeter
CN209612027U (zh) 用于放射治疗系统的医用加速器
RU2825529C2 (ru) Устройство лучевой терапии
Cutajar Spectroscopic dosimetry: the development of the urethral mini-dosimetry system
Russell Physical and Biological Characterisation of Clinically Relevant Combined MRI-radiation Exposures with Conventional and Nanoparticle Contrast Agents
Alharbi Optical fibre dosimetry in external beam radiotherapy
Hoffmans et al. PO-0912: Short-and long term stability of the isocenter of a three-source Co60 MR guided radiotherapy device
Niver OPTIMIZATION OF COLLIMATOR HEAD ANGLE TO REDUCE EXTRA-PTV HOTSPOT OCCURRENCE
Cartechini A new prompt gamma spectroscopy-based approach for range verification in proton therapy
Gholami et al. Therapeutic Analysis of the MR-Linac Radiation Therapy for Stereotactic Radio-Surgery Treatments

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190305

WD01 Invention patent application deemed withdrawn after publication