CN109416029B - 从复合飞行器发动机部件收集能量 - Google Patents

从复合飞行器发动机部件收集能量 Download PDF

Info

Publication number
CN109416029B
CN109416029B CN201780038750.XA CN201780038750A CN109416029B CN 109416029 B CN109416029 B CN 109416029B CN 201780038750 A CN201780038750 A CN 201780038750A CN 109416029 B CN109416029 B CN 109416029B
Authority
CN
China
Prior art keywords
fibers
engine component
energy
engine
energy harvesting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780038750.XA
Other languages
English (en)
Other versions
CN109416029A (zh
Inventor
A·T·塞林格
N·J·克雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN109416029A publication Critical patent/CN109416029A/zh
Application granted granted Critical
Publication of CN109416029B publication Critical patent/CN109416029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/08Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching or like movements, e.g. from the vibrations of a machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/388Blades characterised by construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/181Circuits; Control arrangements or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • F01D25/06Antivibration arrangements for preventing blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/10Anti- vibration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/26Antivibration means not restricted to blade form or construction or to blade-to-blade connections or to the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/407Transmission of power through piezoelectric conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)

Abstract

本公开涉及用于燃气涡轮发动机的发动机部件,该发动机部件包括基体,该基体包括复合纤维并限定了表面。能量收集纤维定位在基体内。

Description

从复合飞行器发动机部件收集能量
技术领域
本发明整体涉及从燃气涡轮发动机废弃能量中产生动力。更具体地,本发明的主题涉及复合燃气涡轮发动机部件。
背景技术
飞行器燃气涡轮发动机递送用于飞行器运动的推进推力,并且为辅助飞行器系统和传感器、发动机传感器和发动机性能加强提供动力。这些传感器可以用来监测和传达发动机性能和健康度。另外,其它系统可以用来提取动力以影响发动机部件特性和操作行为。越来越普遍的实时发动机性能和健康度监测正用来更准确地和精确地预测可能的部件故障。这样,发动机可以较长时间保持在翼上,由此减少发动机脱翼和不产生收益的时间量。随着在监测飞行器发动机中分析变得日益普遍,另外的传感器和系统的需求产生了向这些传感器和系统提供动力以及将这些传感器包装和布线到电源的需要。
在常规上,用于这些传感器和系统的动力从来自飞行器的推进能量中提取,例如通过安装在发动机上的发电机、安装在飞行器上的燃料电池或者辅助动力单元。然而,通过增大推进发动机上的负载,向这样的传感器提供动力可能不利地影响整体发动机或飞行器性能、可操作性、燃料燃烧和规定的排放。通过增加从传感器到发动机发电机到发动机电子控制或预测单元的线束,推进发动机上的增大的负载可以采取增大的质量的形式。因此,存在使得从推进推力直接或间接取得的用于为辅助传感器和系统提供动力的能量最小化的需求。
发明内容
本发明的各方面和优点将在以下的描述中部分地说明,或者可以从说明书中是明显的,或者可以通过实施本发明而得以获悉。
本发明涉及用于燃气涡轮发动机的发动机部件,该发动机部件包括基体,该基体包括复合纤维并限定了表面。能量收集纤维定位在基体内。
在本发明的一个示例性实施例中,提供一种从燃气涡轮发动机部件收集能量的方法。该方法包括:将能量收集纤维结合到发动机部件的基体中,并且将能量收集纤维电连接到负载。该方法还包括:将机械能转换为电能,并将电能施加到该负载。
在本发明的另一个示例性实施例中,提供一种收集能量以吸收燃气涡轮发动机部件中的振动的方法。该方法包括:将能量收集纤维电联接到分流换能器,并且调谐分流换能器以将发动机部件衰减到非共振模式。该方法还包括:将能量收集纤维和分流换能器结合到发动机部件,将机械能转换为电能,以及将电能供应到分流换能器。
参考以下的说明书和所附的权利要求,将会更好地理解本发明的这些和其它特征、方面和优点。被并入本文中并且构成本说明书的一部分的附图示出了本发明的实施例,并且与说明书一起用于解释本发明的原理。
附图说明
参考附图,在说明书中描述了针对本领域普通技术人员的本发明的完全和全部公开,包括其最佳模式,其中:
图1为示例性高旁通涡轮风扇喷射发动机的示意性横截面图;
图2为示例性复合发动机部件和能量收集材料的透视图;
图3为图2所示的示例性复合发动机部件的横截面图;
图4A为图2所示的示例性发动机部件的复合结构的示例性实施例的透视图;
图4B为图2所示的示例性发动机部件的复合结构的另一个示例性实施例的透视图;
图5为具有能量收集材料的示例性发动机部件的方框图;
图6为具有能量收集材料的另一个示例性发动机部件的方框图;
图7为包括热电冷却器的图5的方框图;
图8为从发动机部件收集能量的本发明所公开的方法执行的步骤的流程图;
图9为从发动机部件收集能量的本发明所公开的另一个方法执行的步骤的流程图;
图10为另一个示例性复合发动机部件和能量收集材料的透视图;
图11为图10所示的示例性复合发动机部件的横截面图;以及
图12为收集能量以吸收发动机部件中的振动的本发明所公开的方法执行的步骤的流程图。
在说明书和附图中重复使用的附图标记旨在表示本发明相同或类似的部件或元件。
具体实施方式
现在,将详细参照本发明的实施例,在附图中示出了这些实施例的一个或多个实例。每个例子都提供为解释本发明,而非限制本发明。事实上,对于本领域的技术人员将显而易见的是,可在不脱离本发明范围或精神的前提下对本发明作出各种修改和变化。例如,示出为或描述为一个实施例的一部分的特征可以用于另一个实施例,从而又得到另一个实施例。因而,拟由本发明涵盖这些修改和变更,只要这些修改和变更落入后附的权利要求书及其等同物的范围即可。
如在此所用的,术语“第一”、“第二”和“第三”可以互换地使用,以将一个部件与另一个部件区分开,而并不表明各个部件的位置或重要性。
术语“上游”和“下游”指的是相对于流动通路中的流体流的相对方向。例如,“上游”指的是流体流自的方向,“下游”指的是流体流向的方向。
整体上提供在发动机部件的复合基体上定位有能量收集纤维的燃气涡轮发动机部件以及其制造和使用方法。在复合发动机部件中或上使用能量收集纤维可以降低传感器、系统和测量装置的重量、复杂度和成本,否则需要外部电源或大量的布线。另外,由定位在发动机部件中或上的能量收集纤维提供动力的传感器、系统和测量装置通过减少施加到发动机的布线量,减少对发动机部件上传感器施加的限制,并且减少对能够施加到发动机的传感器的数量的限制,可以提高传感器性能并改善失效率。结合定位在发动机部件的复合基体中的能量收集纤维减少了从感测位置到外部电源(例如电池或连接到发动机发电机)或连接点(例如继电器盘、接插板或滑环接口)的布线需要。通过利用燃气涡轮发动机的废弃能量为传感器提供动力而增加收集性能、健康度和安全数据,利用向传感器提供动力可以提高燃气涡轮发动机性能。
此外,结合到燃气涡轮发动机部件的复合基体中的能量收集纤维可以被构造成用作振动衰减器。通过在不改变某些发动机部件设计特征的情况下控制某些振动模式,这种构造可以提高燃气涡轮发动机性能。例如,发动机翼型件设计通常是在满足结构性能要求(包括振动响应、重量限制和异物损伤考虑)对理想空气动力学翼型件设计之间的折中。通过衰减某些振动模式而不有损于设计特征(例如较厚的表面、较重的材料或其组合),将能量收集纤维结合到复合翼型件中限制或消除了这些设计上的折中。
尽管以下参考涡轮风扇发动机10进行描述,但是本发明能够应用于所有的涡轮机械,包括涡轮螺旋桨、涡轮轴、涡轮喷射、工业和军用燃气涡轮发动机、以及辅助动力单元。
现在参考附图,图1为根据本发明示例性实施例的燃气涡轮发动机的示意性横截面图。更具体地,对于图1的实施例,燃气涡轮发动机是高旁通涡轮风扇喷射发动机10,在本文中称为“涡轮风扇发动机10。”如图1所示,涡轮风扇发动机10限定了轴向方向A(与供参考的纵向中心线12平行地延伸)和径向方向R。一般来讲,涡轮风扇10包括风扇部段14和设置在风扇部段14下游的芯部涡轮发动机16。
所示的示例性的芯部涡轮发动机16整体上包括大致管状的外部壳体18,该外部壳体限定了环形入口20。外部壳体18沿着串行流动关系包围:压缩机部段21,其包括增压器或低压(LP)压缩机22和高压(HP)压缩机24;燃烧部段26;涡轮部段31,其包括高压(HP)涡轮28和低压(LP)涡轮30;以及喷射排出喷嘴部段32。高压(HP)轴或线轴34将HP涡轮28驱动地连接到HP压缩机24。低压(LP)轴或线轴36将LP涡轮30驱动地连接到LP压缩机22。压缩机部段21、燃烧部段26、涡轮部段31和喷嘴部段32一起限定了芯部空气流动路径37。
对于图示的实施例,风扇部段14包括可变桨距风扇38,该可变桨距风扇具有多个风扇叶片40,这些风扇叶片以间隔开的方式联接到盘42。如所描绘的,风扇叶片40从盘42大致沿着径向方向R向外延伸。借助于风扇叶片40操作地联接到合适的致动构件44,每个风扇叶片40能够相对于盘42绕变桨轴线P旋转,该致动构件被构造成用以共同一致地改变风扇叶片40的桨距。借助于跨过动力齿轮箱46的轴36,风扇叶片40、盘42、和致动构件44能够一起绕纵向轴线12旋转。动力齿轮箱46包括多个齿轮,以用于将风扇38相对于LP轴36的旋转速度调谐到更加高效的风扇旋转速度。
仍然参考图1的示例性实施例,盘42由可旋转的前毂48覆盖,该前毂的轮廓在空气动力学上形成为用以促进空气流通过多个风扇叶片40。另外,示例性的风扇部段14包括环形的风扇壳体或外部机舱50,其沿周向围绕风扇38和/或芯部涡轮发动机16的至少一部分。应当理解,机舱50可以被构造成用以相对于芯部涡轮发动机16由多个周向间隔开的出口引导轮叶52支撑。此外,机舱50的下游部段54可以在芯部涡轮发动机16的整个外部部分上延伸,以便在它们之间限定旁通空气流通道56。
在涡轮风扇发动机10的操作期间,一定体积的空气58进入涡轮风扇10,穿过机舱50的相关入口60和/或风扇部段14。当所述一定体积的空气58穿过风扇叶片40,空气58的第一部分如箭头62所示被引导或导向到旁通空气流通道56中,空气58的第二部分如箭头64所示被引导或导向到芯部空气流动路径37中,或者更具体地被引导或导向到LP压缩机22中。空气的第一部分62和空气的第二部分64之间的比率通常称为旁通比。然后,空气的第二部分64的压力随着其被引导通过高压(HP)压缩机24进入燃烧部段26而增大,在该燃烧部段处,其与燃料混合并燃烧以提供燃烧气体66。
燃烧气体66被引导通过HP涡轮28,在该HP涡轮处,经由联接到外部壳体18的HP涡轮定子轮叶68和联接到HP轴或线轴34的HP涡轮转子叶片70的顺序级从燃烧气体66提取一部分热能和/或动能,由此使得HP轴或线轴34旋转,从而支撑HP压缩机24的操作。然后,燃烧气体66被引导通过LP涡轮30,在该LP涡轮处,经由联接到外部壳体18的LP涡轮定子轮叶72和联接到LP轴或线轴36的LP涡轮转子叶片74的顺序级从燃烧气体66提取热能和/或动能的第二部分,由此使得LP轴或线轴36旋转,从而支撑LP压缩机22的操作和/或风扇38的旋转。
接下来,燃烧气体66被引导通过芯部涡轮发动机16的喷射排出喷嘴部段32,以提供推进推力。同时,在从涡轮风扇10的风扇喷嘴排出部段76排出之前,空气的第一部分62的压力随着空气的第一部分62被引导通过旁通空气流通道56而显著增大,这也提供了推进推力。HP涡轮28、LP涡轮30和喷射排出喷嘴部段32至少部分地限定了热气体路径78,该热气体路径用于将燃烧气体66引导穿过芯部涡轮发动机16。
由于LP轴36和HP轴34的旋转或者由于通过和处于发动机10内的流体流(例如空气58),而使得正常操作下的涡轮风扇发动机10将经历一定量的振动。在另一个例子中,发动机10可能由于大量的问题而经历不正常量的振动,这些问题包括但不限于:旋转结构的任何构件中的不平衡;通过发动机10的油流中的问题,包括油损失、污染的油或者有缺陷的油流和压力;发动机阀失灵,包括排出阀、衰减器阀、压力阀或流量控制阀;即将发生的或者当前发生的发动机部件解除(例如断裂的或松开的部件);或者由于燃烧动力学导致的问题。
图2为用于燃气涡轮发动机10的发动机部件99的示例性实施例,其包括处于发动机部件99的基体104内的能量收集纤维106。基体104限定了表面102,该表面包括复合纤维134(参见图4A和4B)。图3为图2的示例性实施例的横截面图。图2和图3中的实施例示出了这样一种构造,其中能量收集纤维106嵌入在限定了翼型件100的发动机部件99的基体104中。能量收集纤维106电联接到发动机部件99的基体104内的传感器114。引线107从传感器114引出到发动机部件99的表面102,并且电联接到通信器116。能量收集纤维106将能量供应到传感器114和通信器116。传感器114包括多种类型,能够测量温度、压力、振动、间隙、流量、速度、叶端定时、应力、应变、气体取样、碎屑检测或者燃气涡轮发动机设计和操作中的其它相关测量。尽管发动机部件99的图2和图3所示的实施例限定了翼型件100,但是应当理解,可以应用其它形式和横截面的发动机部件,例如壳体、导管和结构构件。
在图2和图3的发动机部件99的一个实施例中,能量收集纤维106是压电纤维。压电纤维为能量收集纤维的形式。将压电纤维结合到经历显著量的压力变化或振动的复合发动机部件中可以向传感器提供动力,该传感器可以监测和传达发动机10上的发动机部件99的性能和结构健康度。压电材料的特征在于压电效应,这是响应于施加的机械应力而产生电荷时的效应。这可以以穿过翼型件或处于外壳内的空气的力或者燃气涡轮发动机操作导致的振动的形式存在。例如,结合在翼型件100的基体104中或上的压电换能器输出电压,该电压与所施加的力、压力、或在翼型件100上引起的应变成正比。输出电压可以与用于发动机10和翼型件100的典型或安全操作的已知值进行比较。然后,比较值可以设定为与发动机10相关联的性能和健康度监测分析方案中的极值。
机械负载101(例如但不限于振动、翼型件100旋转的离心力)、穿过翼型件100的空气58、组装或维护期间的工具撞击、或异物侵入(例如鸟撞击、冰霜侵入),可以由压电纤维用来向传感器114和通信器116产生电荷。传感器114可以包括来自压力换能器、热电偶、应变仪、加速度计、近程探针、电容间隙探针、非干涉结构测量系统、流量计、或其它测量装置的电信号。
例如,传感器114可以是应变仪或热电偶,其能够为通信器116提供结构健康度和安全数据。通信器116可以存储数据或者将数据从传感器114传递到全权数字发动机控制器(FADEC)或作为学习和发展方案一部分的另一个数据采集单元。能量收集纤维106可以是压电纤维,其中来自压力变化或机械负载101的能量用于向传感器114提供动力并且也提供为与应变仪测量值相关的数据。在另一个实施例中,热电纤维用来将温度和热梯度变化转换为用于传感器114的能量。
图4A为图2和图3所示的发动机部件99的实施例的透视图,示出了基体104的示例性实施例,该基体由复合纤维134的多个层136形成,其中定位的至少一个层136包括能量收集纤维106。尽管层136如图所示完全包括能量收集纤维106,但是层136可以包括能量收集纤维106和复合纤维134的混合物。
图4B为图2和图3所示的发动机部件99的实施例的透视图,示出了基体104的另一个示例性实施例,该基体由复合纤维134的多个层136形成,其中定位的若干层136包括能量收集纤维106。在图4B所示的实施例中,能量收集纤维106和第二层能量收集纤维105由复合纤维134的多个层136分隔开。能量收集纤维106和第二层能量收集纤维105限定了彼此垂直的关系(也就是能量收集纤维106相对于第二层能量收集纤维105旋转90度)。然而,在其它实施例中,能量收集纤维106和第二层能量收集纤维105可以限定彼此平行的关系。在其它实施例中,能量收集纤维106和第二层能量收集纤维105限定了相对于彼此的倾斜关系(也就是既不平行也不垂直)。在其它实施例中,能量收集纤维106或第二能量收集纤维105可以限定相对于复合纤维134的层136的垂直、平行或倾斜关系。在另一个实施例中,能量收集纤维106的另外的层136可以包含在基体104中(例如第三层能量收集纤维、第四层能量收集纤维、第N层能量收集纤维等)。在另一个实施例中,能量收集纤维106和第二能量收集纤维105,或者能量收集纤维106的任何另外的层136,可以连续地分层设置,而在它们之间没有复合纤维134的层136。另外,应当理解,在图4A和4B所示的基体104的实施例中,复合纤维134可以在发动机部件99的整个基体104上连续地延伸。然而,在其它实施例中,复合纤维134可以在基体104的一部分上延伸。
在图4A和图4B所示的基体104的一个实施例中,基体104包括形成聚合物基质复合材料(PMC)的基质135和复合纤维134。所采用的示例性PMC材料包括基于聚合物材料的基质135,其可以包括的材料例如但不限于合成聚合物、聚环氧化合物、聚氨酯或聚酯。在一个实施例中,合成聚合物包括实心泡沫合成聚合物,其包含合成弹性体。在另一个实施例中,合成弹性体是弹性体聚氨酯。嵌在基质135内的纤维134可以包括芳族聚酰胺类或芳纶,例如聚对苯二甲酰对苯二胺(PPTA)或对芳纶,或者超高分子量聚乙烯或金属、陶瓷、玻璃、碳、石墨、硼、尼龙、氧化铝、或碳化硅纤维、或它们的混合物。纤维134可以包括金属绞线、细丝、颗粒、晶须或填料。
在另一个实施例中,基体104包括形成陶瓷基质复合材料(CMC)的基质135和复合纤维134。所采用的示例性CMC材料可以包括碳化硅、硅、二氧化硅、碳、或氧化铝基质材料、或它们的组合。陶瓷纤维134可以嵌在基质135中,例如氧化稳定加强纤维,包括单丝状蓝宝石和碳化硅(例如,Textron's SCS-6),以及粗纱和纱线,包括碳化硅(例如,NipponCarbon's
Figure BDA0001915114750000101
Ube Industries'
Figure BDA0001915114750000102
和Dow Corning's
Figure BDA0001915114750000103
),氧化铝硅酸盐(例如,Nextel's 440和480),和短切晶须和纤维(例如,Nextel's 440和
Figure BDA0001915114750000104
),和可选地陶瓷颗粒(例如Si、Al、Zr、Y的氧化物以及它们的组合),以及无机填料(例如叶蜡石、钙硅石、云母、滑石粉、蓝晶石和蒙脱石)。
在图4A和图4B所示的基体104的一个实施例中,基质135和复合纤维134被构造成连续纤维强化PMC或CMC材料。例如,合适的连续纤维强化材料可以包括但不限于用连续碳纤维、氧化纤维、碳化硅单丝纤维和其它PMC或CMC材料加强的PMC或CMC材料,包括连续纤维夹板和/或织造纤维或织物预成型件。在其它实施例中,基质135和复合纤维134构造成不连续的强化PMC或CMC材料。例如,合适的不连续的强化PMC或CMC材料可以包括但不限于颗粒物、片状物、晶须、短纤维、原位和纳米复合强化PMC或CMC材料。在其它实施例中,加强纤维材料的方向可以是双轴向的、单向的、三轴向的或者任何其它合适的方向或其组合。
在另一个实施例中,由PMC或CMC材料制成的基体104可以是例如用基质材料预浸渍(预浸)的复合纤维134的层136,并且可以由预浸带或类似物形成。例如,基体104可以由预浸带形成,该预浸带包括期望的陶瓷或聚合物纤维134加强材料、PMC或CMC基质材料的一个或多个前体、和有机树脂粘结剂。预浸带通过将加强材料浸渍在浆料中而形成,该浆料包含陶瓷或聚合物前体和粘结剂。浆料可以包含用于粘结剂的溶剂,该溶剂促进浆料的流动性,以使得纤维增强材料以及一种或多种颗粒填料能够浸渍,以趋于存在于发动机部件99的陶瓷或聚合物基质135中,例如硅和/或Si-SiC基质情况下的SiC粉末。用于前体的优选材料将取决于发动机部件99的陶瓷或聚合物基质135所期望的具体组合物。例如,如果期望的基质材料为SiC,那么前体材料可以是SiC粉末和/或一种或多种含碳材料。含碳材料包括炭黑、酚树脂和呋喃树脂,包括呋喃甲醇(C4H3OCH2OH)。
在图2和图3中的限定了翼型件100的发动机部件99的示例性实施例中,限定了表面102的基体104由复合纤维134的多个层136形成,其中能量收集纤维106定位在层136之中。引线107适当地引出到发动机部件99上的边缘或其它引出点。在发动机部件99的实施例中,护套123设置在基体104的前边缘124处。护套123可以由PMC或CMC材料或金属制成,例如但不限于钛、镍、铝或它们与其它材料的合金。护套123和基体104例如但不限于通过机械压制、施加粘合剂材料、摩擦粘接、焊接、钎焊或这些过程的组合而一起形成。在其它实施例中,护套123挤出为单独的部件,并且发动机部件99整体由基体104形成。
图5示出了能量收集纤维106的方框图,该能量收集纤维电联接到通信器116和传感器114,其中能量收集纤维106提供输入电压以操作通信器116和传感器114。通信器116包括整流器、数据存储装置和无线通信器或者它们的组合。数据存储装置包括记录介质和/或处理器。记录介质包括易失性(例如半导体处理器中的随机存取存储器)和非易失性存储装置(例如硬盘驱动器或闪存存储器)。无线通信器包括发送器或收发机,其以电磁谱操作,以与数据采集单元通信。通信器116向传感器114提供输出电压,其中传感器114需要输入电压以用于操作,例如但不限于近程探针、非干涉结构测量探针或电容器探针。传感器114向通信器116提供模拟输出信号以用于发送到数据采集单元和/或用于记录在数据存储装置上。
在一个实施例中,通信器116包括整流器、易失性存储装置和发送器。例如,传感器114(例如近程探针)将为模拟信号形式的数据发送到通信器116,其中易失性存储装置被构造成将数据发送到发送器以用于操作性地立即传递到接收器,例如数据采集单元。数据采集单元可以大体是指计算机或可以是指用于控制发动机10或飞行器的多个电子器件,例如FADEC。
在另一个实施例中,通信器116包括整流器和非易失性存储装置。非易失性存储装置接收和存储来自传感器114的数据。存储的数据在之后的时间被检索,例如在发动机10操作之后。
在另一个实施例中,通信器116包括整流器、非易失性存储装置和收发机。非易失性存储装置接收和存储来自传感器114的数据。传感器114可以包括在一端时间内取得一定量测量值的换能器或其它测量装置。收发机可以被构造成传感器114和非易失性存储器,以便通过由收发机从FADEC或其它计算装置接收到的信号按照命令接收和存储数据。
图6的实施例包括能量收集纤维106,该能量收集纤维电联接到通信器116和传感器114,其中能量收集纤维106向通信器116提供输入电压。在该实施例中,传感器114是不需要来自能量收集纤维106的输入电压的类型。例如,传感器114可以是热电偶、应变仪、压力传感器或加速度计。传感器114通信地联接到通信器116,如相对于图5和本文所述的各个实施例所述。
图5或图6中的实施例或者本文所述的其它各种实施例可以发送来自发动机部件99的数据,以用于监测发动机10的性能、健康度和安全。通过不需要从多个传感器114穿过和跨越发动机10到外部电源或通信器所处的共同连接点的引线107,发动机部件99的基体104中的能量收集纤维106可以降低发动机10的重量和复杂度。此外,当电源上的功率输出或端子数量受到限制时,通过发动机部件99的基体内的能量收集纤维106向传感器114和通信器116提供动力使得较大数量的传感器114和通信器116能够设置在发动机10中或上。将较大数量的传感器114施加到发动机10,同时降低施加传感器114的复杂度和重量,能够进行另外的结构健康度和安全监测,同时使得对发动机性能和可操作性的不利影响最小化。
图7示出了图5所示的方框图。然而,能量收集纤维106作为热电冷却器118电联接,以用于传感器114和通信器116。另外,能量收集纤维106是压电或热电纤维,其向热电冷却器118提供输入电压,以便为传感器114和通信器116提供冷却。热电纤维为能量收集纤维的形式,其特征在于热电效应,该热电效应利用发动机部件上的温度变化来产生电压。和压电材料一样,该效应是可逆的,由此,施加的电压可以产生温度差。将热电材料结合到复合发动机部件中可以将发动机操作期间产生的废热转换为电能。这样的实施例可以应用于处于高温环境下的发动机部件99,例如但不限于发动机10的燃烧部段26或涡轮部段28、30,其中表面温度可能超过例如1200F。
热电冷却器118包括第二能量收集纤维130和第三能量收集纤维132,每个能量收集纤维的特征在于热电效应,以及第二和第三能量收集纤维130、132之间的串联电气布置中的P型和N型半导体131。第二能量收集纤维130接收来自第一能量收集纤维106的输入电压。第三能量收集纤维132电联接以将电压输出到第一能量收集纤维106。P型和N型半导体131包括两种不同半导体的交替布置。P型半导体的特征在于电子空穴是电荷的多数载流子,而N型半导体的特征在于电子是电荷的多数载流子。
热电冷却器118定位成与封闭件119相邻,该封闭件包括传感器114和通信器116。热电冷却器118的冷却表面117与封闭件119相邻,而热从与封闭件119相对的散热器120耗散。在另一个实施例中,布置有若干热电冷却器118,以加强封闭件119处的热传递。
封闭件119为导管、顶盖或框架,大致保护传感器114和通信器116免于周围环境影响。例如,封闭件119可以是对燃烧部段26或涡轮部段28、30附近的温度存在热抵抗的结构。在另一个例子中,封闭件119保护传感器114和通信器116免于旁通空气62影响。在另一个例子中,封闭件119是用于传感器114的壳体,该传感器是电容器探针,其中该电容器探针可以包括电容器传感器、布线和接线。在另一个例子中,封闭件119是用于传感器114的壳体,其中传感器114是非干涉结构测量探针,该探针可以包括激光器、布线、接线和流体冷却导管。通过降低传感器失效率或者使得传感器114能够设置在极端发动机环境下,包括高温、高压或高速流体流,图7所示的实施例提高发动机性能。
如图8和图9所示,概述了从发动机部件99收集废弃能量的方法。能量收集纤维106,例如但不限于特征为压电效应或热电效应的那些能量收集纤维,结合到基体104中或上,该基体限定了发动机部件99的表面102。能量收集纤维106包括引线107,该引线可能需要限定在发动机部件中的导管或沟槽或其它定位和保持特征结构,以便于将引线引出到传感器或通信器。另外,当发动机部件99在能量收集纤维106设置到发动机部件99的基体104上或内之后经受进一步的制造时,定位和保持特征结构可以限定为用以保护引线107。
能量收集纤维106的引线107电联接到负载98,该负载需要用于进行操作的输入电压。负载98包括传感器114和/或通信器116,或者可能需要输入电压的其它装置,例如但不限于热电冷却器118、分流换能器108或者其它发动机10和飞行器系统。
在另一个方法中,如图9中所述,图8的方法包括结合特征均在于热电效应的第二能量收集纤维130和第三能量收集纤维132。第二能量收集纤维130电联接成用以接收来自第一能量收集纤维106的输入电压,该第一能量收集纤维的特征在于压电效应或热电效应。P型和N型中至少一种类型的半导体131与第二和第三能量收集纤维130、132串联电气布置。第三能量收集纤维132电联接以将电压输出到第一能量收集纤维106。第一、第二和第三能量收集纤维106、130、132一起布置成热电冷却器118。
热电冷却器118设置成借助于封闭件119与传感器114和通信器116热连通。能量收集纤维106接收机械能(例如发动机操作或者异物或内部物体撞击到发动机10上导致的力)或者来自发动机10内的燃烧气体66的废热,并且将其转换为电能,该电能分配到传感器114和通信器116。当热电冷却器118电联接到第一能量收集纤维106时,机械能转换为电能,以便向第二和第三能量收集纤维130、132提供电流。
图10的实施例示出了发动机部件99,其限定了翼型件100,能量收集纤维106定位在基体104中,并且被构造为压电纤维,电联接到分流换能器108以形成压电致动器109。图11示出了图8的实施例的横截面,其中能量收集纤维106施加在发动机部件99的基体104中。能量收集纤维106电联接到发动机部件99的基体104中的分流换能器108。因为压电效应是可逆的,这意味着应力借助于施加的电荷而能施加到材料上,所以压电纤维可以被构造成振动衰减器。压电致动器109使用来自于结合有能量收集纤维106(例如压电纤维)的发动机部件99上的机械负载101的输入电压。当机械负载101施加到发动机部件99并且能量收集纤维106经受所引起的应力时,通过能量收集纤维106产生电流,并且该电流用作到分流换能器108的输入电压,该分流换能器包括感应器、电容器和电阻器的网络,其被调谐以向能量收集纤维106产生输出信号,该输出信号导致非共振模式。
作为非限制性实例,一些飞行器涡轮风扇的风扇叶片42必须承受大型鸟摄入测试,在该大型鸟摄入测试中,鸟以大约200海里/小时的速度撞击风扇叶片42的特定区域,风扇叶片42以等于安装有风扇叶片42的涡轮风扇10的最大额定起飞功率的至少大约90%的速度旋转。大型鸟(或等同形式的物体)通常必须以大约50%或更大的跨距(从根部121到末端122测量)撞击风扇叶片42的前边缘124。虽然单独使用复合材料可以满足这个要求,但是复合材料可能要求翼型件100具有比其较重的金属对应物更大的最大厚度128。较大的最大厚度128可能降低空气穿过翼型件100的抽吸侧126的速度,这可能促使流动分离、压力振荡、振动以及翼型件100和围绕外壳18的损坏。这可能导致翼型件100的结构寿命降低,可能导致翼型件100和发动机10失效或者需要更加频繁的维护周期。另外,鸟摄入或者任何异物或内部物体撞击在动机部件99上可能导致冲击的发动机部件99或发动机10中的另一个部件中产生不期望的振动响应。这种不期望的振动响应可能是另一个发动机部件失效的结果,或者是发动机部件从其正确的位置移出的结果,或者使通过发动机的流体流(包括空气、燃料或油)中断的结果。因此,为了限制异物或内部物体冲击的不利影响或者任何后续发动机操作问题,并且限制使用复合翼型件100的任何不利影响,被构造为用作压电致动器109的能量收集纤维106可以定位在风扇叶片42或其它发动机部件99的基体104中,在对发动机10的撞击或冲击之后调谐到非共振模式。
另外,风扇组件14可以在没有动力齿轮箱46的情况下借助于LP轴36机械地联接到LP涡轮30。因为LP涡轮30和风扇组件14的旋转速度可能相同,所以较大直径的风扇叶片42可以具有大风扇叶片末端122速度。该高风扇叶片末端122速度可能产生不期望的压力振荡和振动响应,这可能导致结构劣化和风扇叶片42随时间而失效。将诸如压电纤维的能量收集纤维106结合到风扇叶片42的基体104中,并且将能量收集纤维106构造到分流换能器108以产生用作自调谐压电振动衰减器的压电致动器109,可以在发动机操作期间衰减风扇叶片42。
如图12所示,概述了收集废弃能量以吸收发动机部件99中的振动的方法。构造为压电纤维的能量收集纤维106电联接到分流换能器108。通过包括至少一个感应器和电容器,分流换能器108可以被构造为振动吸收器。将电阻器包括到分流换能器108产生衰减振动吸收器。此外,电联接定位在整个发动机部件99上、被构造为压电纤维的另外的能量收集纤维106可以在多个振动模式上加强分流换能器108的实效性。另外,构造为在整个若干发动机部件99而不是单个发动机部件99上分布的压电纤维的能量收集纤维106可以电联接,以针对一个或若干发动机部件99在多个振动模式上加强分流换能器108的实效性。
因为每个发动机部件99的模式特征对发动机部件99及其在发动机10中的设置而言是独特的,所以分流换能器108被调谐以将在发动机操作期间发动机部件99可能经历的一个或若干个振动模式作为目标。在为了理解发动机部件99的振动模式的过程中,调谐分流换能器108包括在发动机部件99上执行抽样测试(ping test),以确定其自然频率。抽样测试包括在发动机部件99上利用加速度计,并且接通该加速度计以产生响应信号。加速度计将响应信号发送到信号处理器,该信号处理器的输出是基于时间的频率响应曲线图。发动机部件99的谐振频率可能出现在该曲线图上,该曲线图可以用作用于调谐分流换能器108的输入数据。
除了与用于发动机部件99的所关注的振动模式相关的其它数据(例如得自于发动机测试或其它详细发动机部件测试的数据)之外,抽样测试的结果用来建立数学模型,该数学模型尤其以将发动机部件99的振动模型吸收和衰减到非共振频率为目标。
能量收集纤维106和分流换能器108定位在发动机部件99的基体104中。基体104可以通过多种方法形成,包括但不限于复合纤维134的层136定位或交错在彼此之上。能量收集纤维106和分流换能器108在复合纤维134的层136上或之间分层设置。在其它实施例中,能量收集纤维106和分流换能器108定位到由发动机部件99的基体104限定的表面102上。
能量收集纤维106接收机械能(例如发动机操作或者异物或内部物体撞击到发动机上导致的力),并且将其转换为电能,该电能通过分流换能器108进行分配。因为压电效应是可逆的,这意味着施加到压电纤维的电流将引起机械变形,所以一个或多个能量收集纤维106与分流换能器108的电联接可以使得压电纤维改变其所施加的发动机部件99,从而衰减振动。
书写的说明书利用实例来公开本发明,包括最佳模式,并且还使得本领域任何技术人员能够实施本发明,包括制造和使用任何装置或系统以及执行任何结合的方法。本发明的专利范围由权利要求限定,并且可以包括本领域技术人员能够想到的其它例子。如果这样的其它例子具有与权利要求的文字语言不是不同的结构元件,或者如果它们包括与权利要求的文字语言差别不太明显的等同结构元件,那么它们将处于权利要求的范围内。

Claims (20)

1.一种用于燃气涡轮发动机的发动机部件,所述发动机部件包括:
翼型件,所述翼型件包括基体,所述基体限定了表面,其中所述基体包括:
多个复合纤维的层;以及
能量收集纤维;
其中,所述能量收集纤维定位在两个所述复合纤维的层之间;
其中,所述发动机部件还包括传感器和通信器,所述传感器电联接到所述能量收集纤维,并且所述通信器电联接到所述能量收集纤维,其中从所述通信器接收所述能量收集纤维的输入电压,并且所述传感器向所述通信器提供模拟信号。
2.根据权利要求1所述的发动机部件,其特征在于,其中所述多个复合纤维的层中的至少一个层包括所述能量收集纤维。
3.根据权利要求1所述的发动机部件,其特征在于,所述能量收集纤维是压电纤维。
4.根据权利要求3所述的发动机部件,其特征在于,所述压电纤维是压电纤维致动器。
5.根据权利要求4所述的发动机部件,其特征在于,所述压电纤维致动器包括分流换能器。
6.根据权利要求5所述的发动机部件,其特征在于,所述分流换能器包括:
感应器;
电容器;和
电阻器,其中所述感应器、所述电容器和所述电阻器被构造成将所述发动机部件的一个或多个振动模式衰减到非共振模式。
7.根据权利要求1所述的发动机部件,其特征在于,所述能量收集纤维是热电纤维。
8.根据权利要求7所述的发动机部件,其特征在于,所述热电纤维被构造为热电冷却器。
9.根据权利要求1所述的发动机部件,其特征在于,所述通信器包括:
无线通信器,其中所述无线通信器是以电磁谱操作的信号传递装置;和
整流器。
10.根据权利要求1所述的发动机部件,其特征在于,所述通信器包括数据存储装置。
11.根据权利要求1所述的发动机部件,其特征在于,所述基体还包括第二能量收集纤维,所述第二能量收集纤维定位在所述基体的所述表面。
12.根据权利要求1所述的发动机部件,其特征在于,所述传感器被构造为监测和传达发动机性能和健康度。
13.一种燃气涡轮发动机,其包括根据权利要求1所述的发动机部件。
14.一种从燃气涡轮发动机部件收集能量的方法,所述燃气涡轮发动机部件包括翼型件,所述翼型件包括基体,所述基体限定了表面,所述方法包括:
提供能量收集纤维;
提供多个复合纤维的层;
将所述能量收集纤维定位在两个所述复合纤维的层之间;
将所述能量收集纤维电联接到负载;
将机械能转换为电能;以及
将电能供应到所述负载;
其中,所述方法还包括:
将传感器电联接到所述能量收集纤维;
将通信器电联接到所述能量收集纤维;
从所述通信器接收所述能量收集纤维的输入电压;
接收来自所述传感器的模拟信号。
15.根据权利要求14所述的方法,其特征在于,所述方法还包括:将第二能量收集纤维定位在所述基体的所述表面。
16.根据权利要求14所述的方法,其特征在于,所述传感器被构造为监测和传达发动机性能和健康度。
17.根据权利要求14所述的方法,其特征在于,所述能量收集纤维是压电纤维。
18.一种收集能量以吸收燃气涡轮发动机部件中的振动的方法,所述燃气涡轮发动机部件包括翼型件,所述翼型件包括基体,所述基体限定了表面,所述方法包括:
提供能量收集纤维;
提供多个复合纤维的层;
将所述能量收集纤维定位在两个所述复合纤维的层之间;
将能量收集纤维电联接到分流换能器;
调谐所述分流换能器以将所述发动机部件衰减到非共振模式;
将所述能量收集纤维和分流换能器结合到所述发动机部件;
将机械能转换为电能;以及
将电能供应到所述分流换能器。
19.根据权利要求18所述的方法,其特征在于,所述方法还包括:
将电阻器结合到所述分流换能器,以将所述分流换能器和能量收集纤维构造成振动衰减器。
20.根据权利要求18所述的方法,其特征在于,所述方法还包括:
对发动机部件执行抽样测试,以找到所述发动机部件的共振频率。
CN201780038750.XA 2016-06-22 2017-06-22 从复合飞行器发动机部件收集能量 Active CN109416029B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/189,026 2016-06-22
US15/189,026 US10938328B2 (en) 2016-06-22 2016-06-22 Harvesting energy from composite aircraft engine components
PCT/US2017/038754 WO2018022224A2 (en) 2016-06-22 2017-06-22 Harvesting energy from composite aircraft engine components

Publications (2)

Publication Number Publication Date
CN109416029A CN109416029A (zh) 2019-03-01
CN109416029B true CN109416029B (zh) 2022-05-13

Family

ID=60382580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780038750.XA Active CN109416029B (zh) 2016-06-22 2017-06-22 从复合飞行器发动机部件收集能量

Country Status (3)

Country Link
US (1) US10938328B2 (zh)
CN (1) CN109416029B (zh)
WO (1) WO2018022224A2 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017139751A1 (en) 2016-02-12 2017-08-17 Rhode Island Board Of Education Temperature and thermal gradient sensor for ceramic matrix composites and methods of preparation thereof
US10371588B2 (en) * 2016-07-01 2019-08-06 Rhode Island Council On Postsecondary Education High resolution strain gages for ceramic matrix composites and methods of manufacture thereof
US10055905B2 (en) * 2016-08-05 2018-08-21 Siemens Energy, Inc. Hyper-redundant sensor nodes
IT201600130230A1 (it) * 2016-12-22 2018-06-22 Nuovo Pignone Tecnologie Srl Modulo di impianto con disposizione di sensori
US10782190B1 (en) 2017-12-14 2020-09-22 University Of Rhode Island Board Of Trustees Resistance temperature detector (RTD) for ceramic matrix composites
WO2020050293A1 (ja) * 2018-09-07 2020-03-12 リンテック株式会社 アクチュエータ
US20200119247A1 (en) * 2018-10-11 2020-04-16 Rolls-Royce Corporation Composite thermoelectric material
US11136888B2 (en) 2018-10-18 2021-10-05 Raytheon Technologies Corporation Rotor assembly with active damping for gas turbine engines
US11208916B2 (en) 2019-04-17 2021-12-28 Raytheon Technologies Corporation Self-healing remote dynamic data recording
US11492132B2 (en) 2019-04-17 2022-11-08 Raytheon Technologies Corporation Gas turbine engine configuration data synchronization with a ground-based system
US11913643B2 (en) * 2019-04-17 2024-02-27 Rtx Corporation Engine wireless sensor system with energy harvesting
EP3726324B1 (en) 2019-04-17 2023-03-01 Raytheon Technologies Corporation Gas turbine engine communication gateway with internal sensors
EP3726323B1 (en) 2019-04-17 2023-03-08 Raytheon Technologies Corporation Gas turbine engine communication gateway with integral antennas
US10977877B2 (en) 2019-04-17 2021-04-13 Raytheon Technologies Corporation Engine gateway with engine data storage
EP3726480B1 (en) 2019-04-17 2024-09-25 RTX Corporation Remote updates of a gas turbine engine
EP3726325B1 (en) 2019-04-17 2022-08-24 Raytheon Technologies Corporation Gas turbine engine with dynamic data recording
US11371433B2 (en) 2019-08-26 2022-06-28 General Electric Company Composite components having piezoelectric fibers
CN111490585B (zh) * 2020-03-31 2021-12-07 上海卫星工程研究所 一种深空撞击探测高冲击环境下系统辅助供电装置
CN112096634A (zh) * 2020-07-22 2020-12-18 上海大学 一种嵌有光纤和压电材料的智能风扇叶片
FR3117156B1 (fr) * 2020-12-08 2023-09-15 Safran Aircraft Engines Aube pour soufflante de turbomachine d’aéronef comportant un moyen de transmission d’une pluralité de données à distance
US11988103B2 (en) * 2021-10-27 2024-05-21 General Electric Company Airfoils for a fan section of a turbine engine
US11725520B2 (en) 2021-11-04 2023-08-15 Rolls-Royce Corporation Fan rotor for airfoil damping
US11560801B1 (en) 2021-12-23 2023-01-24 Rolls-Royce North American Technologies Inc. Fan blade with internal magnetorheological fluid damping
US11746659B2 (en) 2021-12-23 2023-09-05 Rolls-Royce North American Technologies Inc. Fan blade with internal shear-thickening fluid damping
FR3132322B1 (fr) * 2022-02-03 2023-12-22 Safran Aircraft Engines Aube composite pour soufflante de turbomachine d'aéronef comportant des moyens de mesure des déformations internes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2868896A1 (en) * 2013-11-05 2015-05-06 Rolls-Royce Deutschland Ltd & Co KG Turbo engine with an energy harvesting device, energy harvesting device and a method for energy harvesting

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1186096A1 (en) * 1999-06-01 2002-03-13 Continuum Control Corporation Electrical power extraction from mechanical disturbances
US7096727B2 (en) * 2002-05-10 2006-08-29 Michelin Recherche Et Technique S.A. System and method for generating electric power from a rotating tire's mechanical energy
US7618712B2 (en) 2002-09-23 2009-11-17 Siemens Energy, Inc. Apparatus and method of detecting wear in an abradable coating system
US6994762B2 (en) 2003-02-10 2006-02-07 The Boeing Company Single crystal piezo (SCP) apparatus and method of forming same
US20050012434A1 (en) * 2003-03-26 2005-01-20 Continuum Photonics, Inc. Robust piezoelectric power generation module
US7446451B2 (en) * 2004-06-29 2008-11-04 Lockheed Martin Corporation Systems and methods for converting heat to electrical power
JP2009509495A (ja) 2005-09-23 2009-03-05 ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア 周波整流を使用するエネルギーハーベスティング
WO2007131227A2 (en) * 2006-05-05 2007-11-15 Advanced Cerametrics, Inc. Self-powered portable electronic device
US7368827B2 (en) * 2006-09-06 2008-05-06 Siemens Power Generation, Inc. Electrical assembly for monitoring conditions in a combustion turbine operating environment
US7541720B2 (en) 2006-12-20 2009-06-02 The Boeing Company Energy harvesting apparatus and method
US7459837B2 (en) 2006-12-20 2008-12-02 The Boeing Company Broadband energy harvester apparatus and method
WO2009023644A1 (en) * 2007-08-13 2009-02-19 Smart Nanomaterials, Llc Nano-enhanced smart panel
US8026857B2 (en) 2008-01-17 2011-09-27 The Boeing Company Wireless data communication and power transmission using aircraft structures having properties of an electromagnetic cavity
US7860664B2 (en) 2008-04-15 2010-12-28 Spirit Aerosystems, Inc. System and method for self-contained structural health monitoring for composite structures
US7870778B2 (en) 2008-06-11 2011-01-18 The Boeing Company Method and apparatus for estimating engine power
US8143766B2 (en) 2009-02-27 2012-03-27 GM Global Technology Operations LLC Harvesting energy from vehicular vibrations using piezoelectric devices
US8570152B2 (en) 2009-07-23 2013-10-29 The Boeing Company Method and apparatus for wireless sensing with power harvesting of a wireless signal
WO2011050294A2 (en) 2009-10-22 2011-04-28 Cornell University Device and system for harvesting energy
US8487177B2 (en) 2010-02-27 2013-07-16 The Boeing Company Integrated thermoelectric honeycomb core and method
US8803406B2 (en) * 2010-11-30 2014-08-12 KAIST (Korea Advanced Institute of Science and Technology) Flexible nanocomposite generator and method for manufacturing the same
WO2013141937A1 (en) 2011-12-30 2013-09-26 Rolls-Royce North American Technologies, Inc. Gas turbine engine tip clearance control
US9325388B2 (en) 2012-06-21 2016-04-26 Siemens Energy, Inc. Wireless telemetry system including an induction power system
US9024510B1 (en) 2012-07-09 2015-05-05 The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) Compliant electrode and composite material for piezoelectric wind and mechanical energy conversions
US20150280102A1 (en) * 2012-10-12 2015-10-01 Kansai University Piezoelectric element
EP2946412B1 (en) 2013-01-18 2019-06-19 United Technologies Corporation Combined ceramic matrix composite and thermoelectric structure for electric power generation
EP2816200B1 (en) 2013-06-18 2017-02-01 General Electric Technology GmbH Method and device for suppressing the formation of ice on structures at the air intake of a turbomachine
US20150061375A1 (en) 2013-08-27 2015-03-05 Goodrich Corporation Energy harvesting system for an aircraft
US9115692B2 (en) * 2013-09-24 2015-08-25 Vinod Shekher Piezoelectric-based vertical axis wind turbine
US9587975B2 (en) 2014-03-18 2017-03-07 The Boeing Company Self charging door sensor system
CN108141153A (zh) * 2015-09-29 2018-06-08 雅马哈株式会社 振动结构

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2868896A1 (en) * 2013-11-05 2015-05-06 Rolls-Royce Deutschland Ltd & Co KG Turbo engine with an energy harvesting device, energy harvesting device and a method for energy harvesting

Also Published As

Publication number Publication date
WO2018022224A3 (en) 2018-03-08
US10938328B2 (en) 2021-03-02
WO2018022224A2 (en) 2018-02-01
US20170373612A1 (en) 2017-12-28
CN109416029A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
CN109416029B (zh) 从复合飞行器发动机部件收集能量
EP3018445B1 (en) Fan case assembly with capacitance probe for measuring fan blade tip clearance and corresponding method for measuring fan blade tip clearance
US10775269B2 (en) Blade health inspection using an excitation actuator and vibration sensor
EP3022399B1 (en) Airfoil and method for forming an airfoil
US8398374B2 (en) Method and apparatus for a segmented turbine bucket assembly
EP3214291A1 (en) Method and system for piping failure detection
CN111140539B (zh) 易碎燃气涡轮发动机翼型件
US10760428B2 (en) Frangible gas turbine engine airfoil
US20200116043A1 (en) Frangible Gas Turbine Engine Airfoil with Layup Change
EP3409927A1 (en) Transient control to extend part life in gas turbine engine
CN110475947B (zh) 用于涡轮发动机的压力传感器组件
EP3058197B1 (en) Integrated gas turbine engine support and sensor
US11668317B2 (en) Airfoil arrangement for a gas turbine engine utilizing a shape memory alloy
US20240288337A1 (en) Component and system for remote health monitoring
US11371433B2 (en) Composite components having piezoelectric fibers
US11209166B2 (en) Combustor assembly for a turbine engine
US20230003132A1 (en) Frangible airfoil
US11821319B2 (en) Frangible airfoil with shape memory alloy
Behbahani et al. Sensing challenges for controls and PHM in the hostile operating conditions of modern turbine engine
CN110967137B (zh) 扭矩测量系统
EP3239495B1 (en) Electronic module location for mechanical components
US20120277968A1 (en) Moisture monitoring system for gas turbine engines
DIRECTORATE SENSING CHALLENGES FOR CONTROLS AND PHM IN THE HOSTILE OPERATING CONDITIONS OF MODERN TURBINE ENGINE (POSTPRINT)
Behbahani et al. Sensing Challenges for Controls and PHM in the Hostile Operating Conditions of Modern Turbine Engine (Postprint)
CN117231369A (zh) 用于燃气涡轮发动机的绝缘组件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant