CN109408919A - 一种海域蒸发波导信道生成方法 - Google Patents

一种海域蒸发波导信道生成方法 Download PDF

Info

Publication number
CN109408919A
CN109408919A CN201811185527.0A CN201811185527A CN109408919A CN 109408919 A CN109408919 A CN 109408919A CN 201811185527 A CN201811185527 A CN 201811185527A CN 109408919 A CN109408919 A CN 109408919A
Authority
CN
China
Prior art keywords
channel
parameter
path
ray
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811185527.0A
Other languages
English (en)
Other versions
CN109408919B (zh
Inventor
王珏
周海锋
孙强
曹娟
冯伟
葛宁
杨永杰
徐晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Nantong Research Institute for Advanced Communication Technologies Co Ltd
Original Assignee
Nantong University
Nantong Research Institute for Advanced Communication Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University, Nantong Research Institute for Advanced Communication Technologies Co Ltd filed Critical Nantong University
Priority to CN201811185527.0A priority Critical patent/CN109408919B/zh
Publication of CN109408919A publication Critical patent/CN109408919A/zh
Application granted granted Critical
Publication of CN109408919B publication Critical patent/CN109408919B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开了一种海域蒸发波导信道生成方法,通过参数设定、射线传播类型判别、公式改写、跳跃次数判别、公式求解、收发角度判别、参数计算、信道生成等步骤实现波导信道生成,其优点是将经过统计的条到达路径的信道参数带入到信道生成模块,形成蒸发波导信道。利用波导层接收端到达路径的每条到达路径实际参数,这些参数一般仅为简单实数,采用快速有效的数值计算法替代了复杂的抛物线方程计算,以减少了生成信道所需的时间,降低了生成信道的复杂度。增强光学射线方法的适用性,从而生成更符合实际情况的蒸发波导信道。

Description

一种海域蒸发波导信道生成方法
技术领域
本发明涉及通信领域,特别涉及一种海域蒸发波导信道生成方法。
背景技术
随着海洋经济的不断增长和海洋活动的日益活跃,海域移动通信需求呈现指数增长。为了满足未来移动通信应用需求,需要开发出高速率、广覆盖、低延时的海域通信服务。近海区域能够使用陆地基站进行拓扑网络覆盖,但是由于地球曲率限制,远海区域仍存在大量通信盲区。尽管卫星可以用于覆盖这些偏远地区,但是个人终端无法负担卫星通信的高昂成本。
大气波导是一种在超视距通信领域极具发展潜力的自然现象。在海洋区域,由于海水蒸发在海洋表面形成了高湿度区域,湿度的变化会影响电磁波折射率的变化,对于一定入射角度的电磁波会产生“陷获”作用,使得电磁波在波导层内反复折射、向前传播,从而形成超视距通信。相对于卫星通信,使用蒸发波导建立的超视距通信有着很多优势,包括低传播延时、低成本和高安全性。
现有技术中,波导信道研究主要采用求解抛物线方程算法(PE)来计算场强。虽然PE方法能够近似求解波导场强和大尺度信道参数,但是无法提取出其他重要的多径信道参数,例如延时扩展,收发角度等。同时,PE法会引入大量复杂度,不能快速得到波导信道模型。因此,PE法不是波导信道建模的最佳方法。光学射线法在多径信道建模中能计算出具体射线轨迹,对于小尺度参数有着明显优势。由于现有技术中缺乏复杂海洋波浪对光学射线法建模的考虑,使得光学射线法在海域超视距信道建模领域仍处于空白阶段。
发明内容
本发明要解决的技术问题是提供一种生成时间少、适用性强的海域蒸发波导信道生成方法。
为了解决上述技术问题,本发明的技术方案为:一种海域蒸发波导信道生成方法,包括如下步骤:
(1)参数设定,设定自然环境参数和工作系统参数;
(2)射线传播类型判别,划分射线传播类型,进行下一步骤;
(3)公式改写,根据水平距离将射线分成三个阶段,将三阶段的射线传播公式改写成以反射角为未知量的超越方程;
(4)跳跃次数判别,确定海平面反射次数范围,遍历海平面反射次数范围,若在范围之内,进行下一步骤,若超出范围,跳转到步骤(2);
(5)公式求解,求解步骤(3)中的超越方程,反馈结果收发角度;
(6)收发角度判别,若同时满足陷获角度宽度和步骤二中角度限制要求,进行下一步骤的计算,若不满足条件时,跳转到步骤(4);
(7)参数计算,计算得到海平面反射次数、射线传播路径长度以及收发角度,记录为第条到达路径的参数,跳转到步骤四重复上述步骤,当遍历所有类型后,跳转到步骤(8);
(8)信道生成,将经过统计的条到达路径的信道参数带入到信道生成模块,形成蒸发波导信道。
进一步的,所述自然环境参数包括地球半径、折射因子、波导强度和波导高度;所述工作系统参数包括发送天线高度、接收天线高度和收发天线间距。
进一步的,步骤(4)中的海平面反射次数范围通过如下公式计算得到:
采用上述技术方案,利用波导层接收端到达路径的每条到达路径实际参数,这些参数一般仅为简单实数,采用快速有效的数值计算法替代了复杂的抛物线方程计算,以减少了生成信道所需的时间,降低了生成信道的复杂度,基于现实环境中海平面的粗糙程度和不同的收发间距,将反射系数和反射次数有效叠加在空间多径信道中,可以进一步增强光学射线方法的适用性,从而生成更符合实际情况的蒸发波导信道。
附图说明
图1为本发明的方法流程图;
图2为本发明中的射线传播类型分解图;
图3为本发明中的射线传播类型的另一种情况分解图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
本具体实施方式披露了一种海域蒸发波导信道生成方法,具体以使用空间多径信道(SCM)模型为例,仿真中需要生成如下公式所描述的信道:
其中:
m=1,2,...,M,表示第m条到达路径。
表示经过归一化后的第m条到达路径的增益,满足限制条件
λm表示第m条到达路径的反射次数。
表示反射系数,S为海浪遮蔽导致的阴影遮蔽因子,D为长距离传播导致的电磁波分散因子,Γ为不同介质导致的海面反射因子,h0为海浪高度,θΔ为射线入射海面角度。
Lm=l1+Nml2+l3,表示第m条到达路径的实际传播长度。
表示第m条到达路径经历实际传播长度带来的相位偏移,fc为工作系统中心频点,c为电磁波传播速度。
λmπ,表示第m条到达路径经过λm次镜面反射带来的相位偏移。
φ,表示随机海浪高度带来的相位偏移。
表示第m条到达路径的多普勒频移,v为船只移动速度,λ0为载波波长,θ0为第m条到达路径与船只移动方向的夹角。
由于发送端和接收端都采用单天线的情况,蒸发波导信道在第m条到达路径的参数计算步骤如下:
步骤一:参数设定,按照自然海洋环境输入地球半径R,折射因子n,波导强度ΔM,波导高度he。按照工作系统输入发送天线高度ht,接收天线高度hr,收发天线间距d。
步骤二:射线传播类型判别。如图2所示,将射线传播类型分解为三个阶段。
d=d1+Nd2+d3 (2)
其中,第一阶段水平距离d1,实际传播路径长度l1。在发射天线高度ht时,以发送角θt发射电磁波,第一种情况如图2所示,到达折射顶点pt,第二种情况如图3所示,到达海平面ps。hΔ表示该射线的折射顶点距离海平面的最高高度,θΔ表示射线入射海平面的夹角。
第二阶段水平距离Nd2,实际传播路径长度Nl2,包含了N次完整的跳跃过程。一个完整的跳跃过程如图2中可表示为pt→ps→pt,如图3可表示为 ps→pt→ps
第三阶段水平距离d3,实际传播路径长度l3。由于收发角度不同,该阶段共分为四种类型。
第一类:(Θ1t>0,θr>0),对应轨迹过程pt→ps→pr
第二类:(Θ2t>0,θr<0),对应轨迹过程pt→pr
第三类:(Θ3t<0,θr>0),对应轨迹过程ps→pr
第四类:(Θ4t<0,θr<0),对应轨迹过程ps→pt→pr
综合三个阶段,射线传播类型可分为4类,逐类进行下一步骤的计算,当遍历所有类型后,跳转到步骤八。
步骤三:公式改写。根据下表将公式2改写成以θt为未知量的超越方程。
步骤四:跳跃次数判别。
由表1可得到由于0<d1+d3<2d2。因此海平面反射次数范围为遍历海平面反射次数范围,若反射次数在范围之内,进行下一步骤的计算,若超出范围,跳转到步骤二,处理下一类型。
步骤五:公式求解。求解仅存在θt的超越方程,反馈计算结果θt,并得到接收角θr
步骤六:收发角度判别。收发角度不仅需要满足陷获角度宽度
而且需要满足步骤二中角度限制要求Θi。若同时满足两个条件,进行下一步骤的计算,若不满足条件时,跳转到步骤四。
步骤七:参数计算。根据下表计算出海平面反射次数,射线传播路径长度,并将此以及收发角度信息记录为第m条到达路径的参数。跳转到步骤四。
步骤八:信道生成。经过统计的M条到达路径的信道参数带入到SCM模型,从而形成蒸发波导信道。
利用波导层接收端到达路径的每条到达路径实际参数,这些参数一般仅为简单实数,采用快速有效的数值计算法替代了复杂的抛物线方程计算,以减少了生成信道所需的时间,降低了生成信道的复杂度,基于现实环境中海平面的粗糙程度和不同的收发间距,将反射系数和反射次数有效叠加在空间多径信道中,可以进一步增强光学射线方法的适用性,从而生成更符合实际情况的蒸发波导信道。
以上结合附图对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (3)

1.一种海域蒸发波导信道生成方法,其特征在于,包括如下步骤:
(1)参数设定,设定自然环境参数和工作系统参数;
(2)射线传播类型判别,划分射线传播类型,进行下一步骤;
(3)公式改写,根据水平距离将射线分成三个阶段,将三阶段的射线传播公式改写成以反射角为未知量的超越方程;
(4)跳跃次数判别,确定海平面反射次数范围,遍历海平面反射次数范围,若在范围之内,进行下一步骤,若超出范围,跳转到步骤(2);
(5)公式求解,求解步骤(3)中的超越方程,反馈结果收发角度;
(6)收发角度判别,若同时满足陷获角度宽度和步骤二中角度限制要求,进行下一步骤的计算,若不满足条件时,跳转到步骤(4);
(7)参数计算,计算得到海平面反射次数、射线传播路径长度以及收发角度,记录为第m条到达路径的参数,跳转到步骤四重复上述步骤,当遍历所有类型后,跳转到步骤(8);
(8)信道生成,将经过统计的M条到达路径的信道参数带入到信道生成模块,形成蒸发波导信道。
2.根据权利要求1所述的一种海域蒸发波导信道生成方法,其特征在于,所述自然环境参数包括地球半径、折射因子、波导强度和波导高度;所述工作系统参数包括发送天线高度、接收天线高度和收发天线间距。
3.根据权利要求1所述的一种海域蒸发波导信道生成方法,其特征在于,步骤(4)中的海平面反射次数范围通过如下公式计算得到:其中d表示信号传播距离,d2,min表示第二阶段信号传播距离。
CN201811185527.0A 2018-10-11 2018-10-11 一种海域蒸发波导信道生成方法 Active CN109408919B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811185527.0A CN109408919B (zh) 2018-10-11 2018-10-11 一种海域蒸发波导信道生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811185527.0A CN109408919B (zh) 2018-10-11 2018-10-11 一种海域蒸发波导信道生成方法

Publications (2)

Publication Number Publication Date
CN109408919A true CN109408919A (zh) 2019-03-01
CN109408919B CN109408919B (zh) 2022-07-22

Family

ID=65467638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811185527.0A Active CN109408919B (zh) 2018-10-11 2018-10-11 一种海域蒸发波导信道生成方法

Country Status (1)

Country Link
CN (1) CN109408919B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162845A (zh) * 2020-01-14 2020-05-15 南通先进通信技术研究院有限公司 一种海域视距信道生成方法
CN111917440A (zh) * 2019-11-27 2020-11-10 南通大学 一种海上超视距大规模天线阵列波束选择与有限反馈方法
CN118363046A (zh) * 2024-06-19 2024-07-19 山东大学 一种gnss海面蒸发波导探测实时软件接收机设计方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108540248A (zh) * 2018-03-16 2018-09-14 西安电子科技大学 海上无线通信动态多径信道模型及方法、无线通信系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108540248A (zh) * 2018-03-16 2018-09-14 西安电子科技大学 海上无线通信动态多径信道模型及方法、无线通信系统

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
REHMAN S U等: "Investigations into the occurrence of evaporation ducts near Karachi", 《2017 INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGIES (COMTECH). IEEE》 *
孙亿平等: "海面蒸发波导信道的建模及仿真研究", 《计算机仿真》 *
肖金光等: "一种海洋蒸发波导通信带限信道建模方法", 《电讯技术》 *
肖金光等: "基于PE的海洋蒸发波导宽带通信信道建模方法", 《计算机仿真》 *
陈超等: "海上蒸发波导多径传输建模", 《南京邮电大学学报(自然科学版)》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111917440A (zh) * 2019-11-27 2020-11-10 南通大学 一种海上超视距大规模天线阵列波束选择与有限反馈方法
CN111917440B (zh) * 2019-11-27 2022-03-15 南通大学 一种海上超视距大规模天线阵列波束选择与有限反馈方法
CN111162845A (zh) * 2020-01-14 2020-05-15 南通先进通信技术研究院有限公司 一种海域视距信道生成方法
CN118363046A (zh) * 2024-06-19 2024-07-19 山东大学 一种gnss海面蒸发波导探测实时软件接收机设计方法

Also Published As

Publication number Publication date
CN109408919B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
Cox Jr Simulation, modeling, and design of underwater optical communication systems
CN109408919A (zh) 一种海域蒸发波导信道生成方法
KR100948186B1 (ko) 3차원 광선 추적법을 이용한 전파 모델 생성 장치, 방법 및이를 구현한 컴퓨터로 실행 가능한 기록매체
CN102594440B (zh) 一种光子传输性能仿真方法
Sevgi Groundwave modeling and simulation strategies and path loss prediction virtual tools
Wu et al. Ray tracing based wireless channel modeling over the sea surface near Diaoyu islands
Pederick et al. Semiempirical model for ionospheric absorption based on the NRLMSISE-00 atmospheric model
CN108540248B (zh) 海上无线通信动态多径信道模型及构建方法
Schmitz et al. Efficient rasterization for outdoor radio wave propagation
Blom The influence of irregular terrain on infrasonic propagation in the troposphere
CN113098643A (zh) 一种改进的贝叶斯海上无线通信信道衰落估计方法
CN114726433A (zh) 一种对流层散射传输损耗及传播延迟计算方法
Gherm et al. HF propagation in a wideband ionospheric fluctuating reflection channel: Physically based software simulator of the channel
Huang et al. Comparing TID simulations using 3-D ray tracing and mirror reflection
Nilsson Radio-wave propagation modelling over rough sea surfaces and inhomogeneous atmosphere
Schmitz et al. Efficient and accurate urban outdoor radio wave propagation
Lindquist Wave propagation models in the troposphere for long-range UHF/SHF radio connections
Walsh et al. Communications in a cave environment
Sirkova Anomalous tropospheric propagation: Usage possibilities and limitations in radar and wireless communications systems
Ozgun et al. Two-way split-step parabolic equation algorithm for tropospheric propagation: Tests and comparisons
CN111162845A (zh) 一种海域视距信道生成方法
Freitas et al. Ray tracing and applications to an evaporation duct model based on data from oceanographic buoy sensors
Hamim et al. An overview of outdoor propagation prediction models
Reeder et al. Short-range acoustic propagation variability on a shelf area with strong nonlinear internal waves
Bianchi et al. A channel model for multipath interference on terrestrial line-of-sight digital radio

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant