CN109408665A - Information recommendation method and device and storage medium - Google Patents
Information recommendation method and device and storage medium Download PDFInfo
- Publication number
- CN109408665A CN109408665A CN201811642134.8A CN201811642134A CN109408665A CN 109408665 A CN109408665 A CN 109408665A CN 201811642134 A CN201811642134 A CN 201811642134A CN 109408665 A CN109408665 A CN 109408665A
- Authority
- CN
- China
- Prior art keywords
- song
- preset
- data
- historical
- scoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000003860 storage Methods 0.000 title claims abstract description 14
- 238000011156 evaluation Methods 0.000 claims abstract description 63
- 238000010972 statistical evaluation Methods 0.000 claims abstract description 46
- 238000012545 processing Methods 0.000 claims abstract description 32
- 230000015654 memory Effects 0.000 claims description 22
- 238000012549 training Methods 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000012163 sequencing technique Methods 0.000 claims 10
- 238000010586 diagram Methods 0.000 description 10
- 238000004590 computer program Methods 0.000 description 7
- 239000013598 vector Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000033764 rhythmic process Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明实施例公开了一种信息推荐方法及装置、存储介质,该方法包括:获取预设统计周期内的目标用户针对全量历史选择歌曲的历史操作数据;基于预设的操作数据与操作分值的对应关系、以及所述历史操作数据,得到所述全量历史选择歌曲中每首历史选择歌曲的历史评价数据;所述历史评价数据用于表征所述目标用户对歌曲的喜欢程度;对所述历史评价数据进行时间衰减处理,得到所述每首历史选择歌曲的历史统计评价数据;根据所述历史统计评价数据,对所述全量历史选择歌曲进行排序,得到所述全量历史选择歌曲的排序结果;根据所述排序结果和预设全量歌单,推荐目标歌曲。
The embodiment of the present invention discloses an information recommendation method, a device, and a storage medium. The method includes: acquiring historical operation data of songs selected by a target user for a full history within a preset statistical period; based on the preset operation data and operation scores The corresponding relationship and the historical operation data, obtain the historical evaluation data of each historically selected song in the full amount of historically selected songs; the historical evaluation data is used to characterize the target user's liking for the song; The historical evaluation data is subjected to time decay processing to obtain the historical statistical evaluation data of each historically selected song; according to the historical statistical evaluation data, the full amount of historically selected songs is sorted to obtain the sorting result of the full amount of historically selected songs ; Recommend target songs according to the sorting result and the preset full playlist.
Description
技术领域technical field
本发明涉及信息处理技术,尤其涉及一种信息推荐方法及装置、存储介质。The present invention relates to information processing technology, and in particular, to an information recommendation method and device, and a storage medium.
背景技术Background technique
随着终端和互联网技术的发展,用户普遍通过音乐应用来收听音乐,音乐应用通过一些音乐推荐算法,为用户推荐符合其个人爱好的音乐,目前使用的音乐推荐算法,是将多个兴趣相投的用户构成一个群体,利用群体中所有用户感兴趣的信息和不感兴趣的信息,生成推荐信息,将推荐信息向所有用户进行推荐,这样得到个人的推荐信息受所属群体中其他用户的影响较大,如果其他用户中存在异常用户或其他用户感兴趣的信息不准确,都会导致推荐信息与个人爱好的偏差较大的问题,也就是说,推荐信息的准确度较低。With the development of terminal and Internet technology, users generally listen to music through music applications. Music applications recommend music that suits their personal hobbies through some music recommendation algorithms. The currently used music recommendation algorithm combines multiple interests. Users form a group, use the information that all users in the group are interested in and the information they are not interested in, generate recommended information, and recommend the recommended information to all users. In this way, the personal recommendation information obtained is greatly influenced by other users in the group. If there are abnormal users in other users or the information that other users are interested in is inaccurate, it will lead to a problem that the recommended information deviates greatly from personal hobbies, that is, the accuracy of the recommended information is low.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的在于提出一种信息推荐方法及装置、存储介质,能够提高推荐信息的准确度。The main purpose of the present invention is to provide an information recommendation method, device, and storage medium, which can improve the accuracy of recommended information.
本发明的技术方案是这样实现的:The technical scheme of the present invention is realized as follows:
本发明实施例提供了一种信息推荐方法,所述方法包括:An embodiment of the present invention provides an information recommendation method, and the method includes:
获取预设统计周期内的目标用户针对全量历史选择歌曲的历史操作数据;Obtain the historical operation data of the songs selected by the target users in the preset statistical period for the full amount of history;
基于预设的操作数据与操作分值的对应关系、以及所述历史操作数据,得到所述全量历史选择歌曲中每首历史选择歌曲的历史评价数据;所述历史评价数据用于表征所述目标用户对歌曲的喜欢程度;Based on the preset corresponding relationship between the operation data and the operation score, and the historical operation data, the historical evaluation data of each historically selected song in the full amount of historically selected songs is obtained; the historical evaluation data is used to represent the target The user's liking to the song;
对所述历史评价数据进行时间衰减处理,得到所述每首历史选择歌曲的历史统计评价数据;Performing time decay processing on the historical evaluation data to obtain historical statistical evaluation data of each of the historically selected songs;
根据所述历史统计评价数据,对所述全量历史选择歌曲进行排序,得到所述全量历史选择歌曲的排序结果;According to the historical statistical evaluation data, sort the full amount of historically selected songs to obtain a sorting result of the full amount of historically selected songs;
根据所述排序结果和预设全量歌单,推荐目标歌曲。According to the sorting result and the preset full playlist, the target song is recommended.
上述方案中,所述预设统计周期包括至少一个预设时间段;所述历史评价数据包括所述至少一个预设时间段中每个时间段对应的时段评价数据;In the above solution, the preset statistical period includes at least one preset time period; the historical evaluation data includes period evaluation data corresponding to each time period in the at least one preset time period;
所述对所述历史评价数据进行时间衰减处理,得到所述每首历史选择歌曲的历史统计评价数据,包括:The time decay processing is performed on the historical evaluation data to obtain the historical statistical evaluation data of each historically selected song, including:
根据预设衰减系数和时间的对应关系、以及所述每个时间段表征的时间信息,得到所述每个时间段对应的衰减系数;According to the corresponding relationship between the preset attenuation coefficient and time, and the time information represented by each time period, the attenuation coefficient corresponding to each time period is obtained;
根据所述衰减系数,对所述至少一个预设时间段对应的时段评价数据进行求和,得到所述历史统计评价数据。According to the attenuation coefficient, the period evaluation data corresponding to the at least one preset time period are summed to obtain the historical statistical evaluation data.
上述方案中,所述根据所述排序结果和预设全量歌单,推荐目标歌曲,包括:In the above solution, the recommended target songs are recommended according to the sorting results and the preset full playlist, including:
根据所述排序结果,从所述全量历史选择歌曲中确定出参考歌曲;According to the sorting result, a reference song is determined from the full amount of historically selected songs;
根据所述参考歌曲,从所述预设全量歌单中确定出参考歌单;According to the reference song, determine a reference playlist from the preset full playlist;
根据所述参考歌单,推荐所述目标歌曲。According to the reference playlist, the target song is recommended.
上述方案中,所述参考歌单包括所述参考歌曲中每个参考歌曲对应的子参考歌单;In the above scheme, the reference song list includes a sub-reference song list corresponding to each reference song in the reference song;
所述根据所述参考歌单,推荐所述目标歌曲,包括:The recommending the target song according to the reference playlist includes:
根据所述子参考歌单中每首歌曲的重复次数,从所述参考歌单中确定出所述目标歌曲,推荐所述目标歌曲。According to the repetition times of each song in the sub-reference playlist, the target song is determined from the reference playlist, and the target song is recommended.
上述方案中,所述根据所述子参考歌单中每首歌曲的重复次数,从所述参考歌单中确定出所述目标歌曲,包括:In the above scheme, the target song is determined from the reference song list according to the number of repetitions of each song in the sub-reference song list, including:
对所述每首参考歌曲的历史统计评价数据进行排序,得到所述每首参考歌曲的数据排序序号;Sort the historical statistical evaluation data of each of the reference songs, and obtain the data sorting sequence number of each of the reference songs;
对所述子参考歌单中每首歌曲的重复次数进行排序,得到所述子参考歌单中每首歌曲的次数排序序号;Sort the repetition times of each song in the sub-reference playlist, obtain the ordering sequence number of the times of each song in the sub-reference playlist;
根据所述次数排序序号,从所述子参考歌单中确定出所述每首参考歌曲对应的待推荐歌曲,得到至少一个待推荐歌曲;According to the sequence number of the times, determine the song to be recommended corresponding to each reference song from the sub-reference song list, and obtain at least one song to be recommended;
根据所述数据排序序号和所述待推荐歌曲的次数排序序号,确定所述待推荐歌曲的喜好分值;According to the data sorting sequence number and the frequency sorting sequence number of the songs to be recommended, determine the preference score of the songs to be recommended;
根据所述喜好分值,从所述至少一个待推荐歌曲中确定出所述目标歌曲。According to the preference score, the target song is determined from the at least one to-be-recommended song.
上述方案中,在所述根据所述参考歌曲,从所述预设全量歌单中确定出参考歌单之后,所述方法还包括:In the above solution, after determining the reference playlist from the preset full playlist according to the reference song, the method further includes:
根据预设歌曲属性,对所述参考歌单中每个歌单的歌曲进行量化,得到所述参考歌单中每个歌单的参考属性特征;According to the preset song attributes, the songs of each playlist in the reference playlist are quantified to obtain the reference attribute feature of each playlist in the reference playlist;
根据预设歌单评分模型和所述参考属性特征,得到包含所述参考歌单中每个歌单的评分结果的评分数据;所述预设歌单评分模型表征属性特征与评分数据的对应关系;According to the preset playlist scoring model and the reference attribute feature, scoring data including the scoring result of each playlist in the reference playlist is obtained; the preset playlist scoring model represents the corresponding relationship between the attribute feature and the scoring data ;
当所述评分数据中存在第一评分数据小于预设评分阈值时,将所述参考歌单中与所述第一评分数据对应的歌单从所述参考歌单中删除,得到更新后的参考歌单。When the first scoring data in the scoring data is smaller than the preset scoring threshold, delete the playlist corresponding to the first scoring data in the reference playlist from the reference playlist to obtain an updated reference song list.
上述方案中,在所述根据预设歌单评分模型和所述参考属性特征,得到包含所述参考歌单中每个歌单的评分结果的评分数据之前,所述方法还包括:In the above scheme, before the scoring data including the scoring result of each playlist in the reference playlist is obtained according to the preset playlist scoring model and the reference attribute feature, the method further includes:
在预设训练周期内,获取目标用户针对全量样本歌曲的样本操作数据;During the preset training period, obtain the sample operation data of the target user for the full sample songs;
根据所述样本操作数据,从所述预设全量歌单中确定出正样本歌单和负样本歌单;According to the sample operation data, determine a positive sample playlist and a negative sample playlist from the preset full playlist;
获取所述正样本歌单对应的正评分数据,所述正样本歌单和所述正评分数据构成正样本;Obtain the positive scoring data corresponding to the positive sample playlist, and the positive sample playlist and the positive scoring data constitute a positive sample;
获取所述负样本歌单对应的负评分数据,所述负样本歌单和所述负评分数据构成负样本;obtaining negative score data corresponding to the negative sample playlist, where the negative sample playlist and the negative score data constitute a negative sample;
利用所述正样本和所述负样本,对预设初始歌单评分模型进行训练,直至训练后的初始歌单评分模型的准确率不小于预设准确阈值;Using the positive samples and the negative samples, the preset initial playlist scoring model is trained until the accuracy of the trained initial playlist scoring model is not less than the preset accuracy threshold;
将所述训练后的初始歌单评分模型,作为所述预设歌单评分模型。The trained initial song list scoring model is used as the preset song list scoring model.
本发明实施例提供了一种信息推荐装置,所述装置包括:获取单元、计算单元、衰减处理单元和推荐单元;其中,An embodiment of the present invention provides an information recommendation device, the device includes: an acquisition unit, a calculation unit, an attenuation processing unit, and a recommendation unit; wherein,
所述获取单元,用于获取预设统计周期内的目标用户针对全量历史选择歌曲的历史操作数据;The obtaining unit is used to obtain the historical operation data of the songs selected by the target users in the preset statistical period for the full amount of history;
所述计算单元,用于基于预设的操作数据与操作分值的对应关系、以及所述历史操作数据,得到所述全量历史选择歌曲中每首历史选择歌曲的历史评价数据;所述历史评价数据用于表征所述目标用户对歌曲的喜欢程度;The computing unit is configured to obtain historical evaluation data of each historically selected song in the full amount of historically selected songs based on the preset corresponding relationship between the operation data and the operation score and the historical operation data; the historical evaluation The data is used to characterize the liking of the target user to the song;
所述衰减处理单元,用于对所述历史评价数据进行时间衰减处理,得到所述每首历史选择歌曲的历史统计评价数据;The attenuation processing unit is used to perform time attenuation processing on the historical evaluation data to obtain the historical statistical evaluation data of each historically selected song;
所述推荐单元,用于根据所述历史统计评价数据,对所述全量历史选择歌曲进行排序,得到所述全量历史选择歌曲的排序结果;以及根据所述排序结果和预设全量歌单,推荐目标歌曲。The recommending unit is configured to sort the full amount of historically selected songs according to the historical statistical evaluation data to obtain a sorting result of the full amount of historically selected songs; target song.
上述方案中,所述预设统计周期包括至少一个预设时间段;所述历史评价数据包括所述至少一个预设时间段中每个时间段对应的时段评价数据;In the above solution, the preset statistical period includes at least one preset time period; the historical evaluation data includes period evaluation data corresponding to each time period in the at least one preset time period;
所述衰减处理单元,具体用于根据预设衰减系数和时间的对应关系、以及所述每个时间段表征的时间信息,得到所述每个时间段对应的衰减系数;以及根据所述衰减系数,对所述至少一个预设时间段对应的时段评价数据进行求和,得到所述历史统计评价数据。The attenuation processing unit is specifically configured to obtain the attenuation coefficient corresponding to each time period according to the corresponding relationship between the preset attenuation coefficient and time and the time information represented by each time period; and according to the attenuation coefficient , summing the time period evaluation data corresponding to the at least one preset time period to obtain the historical statistical evaluation data.
上述方案中,所述推荐单元,具体用于根据所述排序结果,从所述全量历史选择歌曲中确定出参考歌曲;及根据所述参考歌曲,从所述预设全量歌单中确定出参考歌单;以及根据所述参考歌单,推荐所述目标歌曲。In the above solution, the recommending unit is specifically configured to determine a reference song from the full historical selection songs according to the sorting result; and determine a reference song from the preset full song list according to the reference song a playlist; and recommending the target song based on the reference playlist.
上述方案中,所述参考歌单包括所述参考歌曲中每个参考歌曲对应的子参考歌单;In the above scheme, the reference song list includes a sub-reference song list corresponding to each reference song in the reference song;
所述推荐单元,具体用于根据所述子参考歌单中每首歌曲的重复次数,从所述参考歌单中确定出所述目标歌曲,推荐所述目标歌曲。The recommending unit is specifically configured to determine the target song from the reference playlist according to the repetition times of each song in the sub-reference playlist, and recommend the target song.
上述方案中,所述推荐单元,具体用于对所述每首参考歌曲的历史统计评价数据进行排序,得到所述每首参考歌曲的数据排序序号;及对所述子参考歌单中每首歌曲的重复次数进行排序,得到所述子参考歌单中每首歌曲的次数排序序号;及根据所述次数排序序号,从所述子参考歌单中确定出所述每首参考歌曲对应的待推荐歌曲,得到至少一个待推荐歌曲;及根据所述数据排序序号和所述待推荐歌曲的次数排序序号,确定所述待推荐歌曲的喜好分值;以及根据所述喜好分值,从所述至少一个待推荐歌曲中确定出所述目标歌曲。In the above scheme, the recommending unit is specifically used to sort the historical statistical evaluation data of each reference song to obtain the data sorting sequence number of each reference song; and to each song in the sub-reference song list. The number of repetitions of the songs is sorted to obtain the sequence number of the number of times of each song in the sub-reference playlist; recommending songs, and obtaining at least one song to be recommended; and determining the preference score of the song to be recommended according to the data sorting sequence number and the frequency sorting sequence number of the song to be recommended; and according to the preference score, from the The target song is determined from at least one song to be recommended.
上述方案中,所述推荐单元,还用于在所述根据所述参考歌曲,从所述预设全量歌单中确定出参考歌单之后,根据预设歌曲属性,对所述参考歌单中每个歌单的歌曲进行量化,得到所述参考歌单中每个歌单的参考属性特征;及根据预设歌单评分模型和所述参考属性特征,得到包含所述参考歌单中每个歌单的评分结果的评分数据;所述预设歌单评分模型表征属性特征与评分数据的对应关系;以及当所述评分数据中存在第一评分数据小于预设评分阈值时,将所述参考歌单中与所述第一评分数据对应的歌单从所述参考歌单中删除,得到更新后的参考歌单。In the above solution, the recommending unit is further configured to, after the reference song list is determined from the preset full-volume song list according to the reference song, according to the preset song attribute, perform an update on the reference song list. The songs of each playlist are quantified to obtain the reference attribute feature of each playlist in the reference playlist; The scoring data of the scoring result of the playlist; the preset playlist scoring model represents the corresponding relationship between the attribute feature and the scoring data; and when the first scoring data in the scoring data is smaller than the preset scoring threshold, the reference The playlist corresponding to the first scoring data in the playlist is deleted from the reference playlist to obtain an updated reference playlist.
上述方案中,所述装置还包括:模型训练单元,用于在所述根据预设歌单评分模型和所述参考属性特征,得到包含所述参考歌单中每个歌单的评分结果的评分数据之前,在预设训练周期内,获取目标用户针对全量样本歌曲的样本操作数据;及根据所述样本操作数据,从所述预设全量歌单中确定出正样本歌单和负样本歌单;及获取所述正样本歌单对应的正评分数据,所述正样本歌单和所述正评分数据构成正样本;及获取所述负样本歌单对应的负评分数据,所述负样本歌单和所述负评分数据构成负样本;及利用所述正样本和所述负样本,对预设初始歌单评分模型进行训练,直至训练后的初始歌单评分模型的准确率不小于预设准确阈值;以及将所述训练后的初始歌单评分模型,作为所述预设歌单评分模型。In the above solution, the device further includes: a model training unit for obtaining a score including the scoring result of each playlist in the reference playlist according to the preset playlist scoring model and the reference attribute feature. Before the data, within the preset training period, obtain the sample operation data of the target user for the full sample songs; and according to the sample operation data, determine the positive sample playlist and the negative sample playlist from the preset full playlist and obtain the positive scoring data corresponding to the positive sample song list, the positive sample song list and the positive scoring data constitute a positive sample; and obtain the negative scoring data corresponding to the negative sample song list, the negative sample song list The list and the negative scoring data constitute a negative sample; and using the positive sample and the negative sample, the preset initial song list scoring model is trained until the accuracy of the trained initial song list scoring model is not less than the preset an accurate threshold; and using the trained initial playlist scoring model as the preset playlist scoring model.
本发明实施例提供了一种信息推荐装置,所述装置包括:处理器、存储器和通信总线,所述存储器通过所述通信总线与所述处理器进行通信,所述存储器存储所述处理器可执行的一个或者多个程序,当所述一个或者多个程序被执行时,通过所述处理器执行如上述任一项信息推荐方法的步骤。An embodiment of the present invention provides an apparatus for recommending information. The apparatus includes: a processor, a memory, and a communication bus. The memory communicates with the processor through the communication bus, and the memory stores the information available to the processor. One or more programs to be executed, when the one or more programs are executed, the processor executes the steps of any one of the above information recommendation methods.
本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,当所述程序被至少一个处理器执行时,导致所述至少一个处理器执行如上述任一项信息推荐方法的步骤。An embodiment of the present invention provides a computer-readable storage medium, where a program is stored in the computer-readable storage medium, and when the program is executed by at least one processor, the at least one processor is caused to execute any one of the foregoing The steps of the information recommendation method.
本发明实施例提供一种信息推荐方法及装置、存储介质,所述方法包括:获取预设统计周期内的目标用户针对全量历史选择歌曲的历史操作数据;基于预设的操作数据与操作分值的对应关系、以及所述历史操作数据,得到所述全量历史选择歌曲中每首历史选择歌曲的历史评价数据;所述历史评价数据用于表征所述目标用户对歌曲的喜欢程度;对所述历史评价数据进行时间衰减处理,得到所述每首历史选择歌曲的历史统计评价数据;根据所述历史统计评价数据,对所述全量历史选择歌曲进行排序,得到所述全量历史选择歌曲的排序结果;根据所述排序结果和预设全量歌单,推荐目标歌曲。采用上述技术实现方案,对预设统计周期内的历史评价数据进行时间衰减处理,得到时间衰减处理后的历史统计评价数据,进而得到全量历史选择歌曲的排序结果,根据排序结果推荐目标歌曲,由于历史评价数据表示在预设时间段内目标用户对歌曲的喜欢程度,那么对预设统计周期内的历史评价数据进行时间衰减处理,能够得到表示用户目前喜好的历史统计评价数据,进而利用全量历史歌曲的历史统计评价数据的排序结果,得到的目标歌曲更符合目标用户当前喜好,提高了推荐信息的准确度。Embodiments of the present invention provide an information recommendation method, device, and storage medium. The method includes: acquiring historical operation data of songs selected by a target user for a full amount of history within a preset statistical period; based on the preset operation data and operation scores The corresponding relationship and the historical operation data, obtain the historical evaluation data of each historically selected song in the full amount of historically selected songs; the historical evaluation data is used to characterize the target user's liking for the song; The historical evaluation data is subjected to time decay processing to obtain the historical statistical evaluation data of each historically selected song; according to the historical statistical evaluation data, the full amount of historically selected songs is sorted to obtain the sorting result of the full amount of historically selected songs ; Recommend target songs according to the sorting result and the preset full playlist. Using the above technical implementation scheme, the historical evaluation data within the preset statistical period is subjected to time decay processing to obtain the historical statistical evaluation data after time decay processing, and then the sorting results of the full historical selection songs are obtained, and the target songs are recommended according to the sorting results. The historical evaluation data indicates how much the target user likes the song within the preset time period. Then, the historical evaluation data in the preset statistical period is subjected to time decay processing to obtain the historical statistical evaluation data representing the user's current preferences, and then use the full amount of history. The sorting result of the historical statistical evaluation data of songs, the obtained target songs are more in line with the current preferences of the target users, and the accuracy of the recommendation information is improved.
附图说明Description of drawings
图1为本发明实施例提供的一种信息推荐系统的结构示意图;FIG. 1 is a schematic structural diagram of an information recommendation system according to an embodiment of the present invention;
图2为本发明实施例提供的一种信息推荐方法的流程图一;FIG. 2 is a flowchart 1 of an information recommendation method provided by an embodiment of the present invention;
图3为本发明实施例提供的一种信息推荐方法的流程图二;FIG. 3 is a second flowchart of an information recommendation method provided by an embodiment of the present invention;
图4为本发明实施例提供的一种信息推荐装置的结构示意图一;FIG. 4 is a schematic structural diagram 1 of an information recommendation apparatus provided by an embodiment of the present invention;
图5为本发明实施例提供的一种信息推荐装置的结构示意图二。FIG. 5 is a second schematic structural diagram of an information recommendation apparatus according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention.
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”可以混合地使用。In the following description, suffixes such as 'module', 'component' or 'unit' used to represent elements are used only to facilitate the description of the present invention and have no specific meaning per se. Thus, "module", "component" or "unit" may be used interchangeably.
如图1所示,其为实现本发明各个实施例的一种信息推荐系统的结构示意图,该系统1可以包括:服务器10和终端11;其中,服务器10可以存储应用程序的数据文件、应用程序的用户数据等,还可以对用户数据进行广播和同步等;终端11在运行应用程序时,与服务器10进行数据交互,可以通过网络从服务器10上下载该应用程序的数据文件,还可以向服务器10上传用户操作该应用程序产生的操作数据,终端11可以以各种形式来实施,例如,可以为包括诸如手机、平板电脑、笔记本电脑、掌上电脑等移动终端,以及诸如台式计算机等固定终端;应该程序包括音乐类应用程序。As shown in FIG. 1, which is a schematic structural diagram of an information recommendation system for implementing various embodiments of the present invention, the system 1 may include: a server 10 and a terminal 11; wherein, the server 10 may store data files of application programs, application programs User data, etc., can also broadcast and synchronize user data; when the terminal 11 runs the application program, it interacts with the server 10, and can download the data file of the application program from the server 10 through the network, and can also send to the server. 10 Upload the operation data generated by the user operating the application, the terminal 11 can be implemented in various forms, for example, can include mobile terminals such as mobile phones, tablet computers, notebook computers, PDAs, etc., and fixed terminals such as desktop computers; The program should include music applications.
本领域技术人员可以理解,图1中示出的信息推荐系统结构并不构成对推荐信息推荐系统的限定,信息推荐系统可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。Those skilled in the art can understand that the structure of the information recommendation system shown in FIG. 1 does not constitute a limitation on the recommended information recommendation system, and the information recommendation system may include more or less components than those shown in the figure, or combine some components, Or a different component arrangement.
需要说明的是,本发明实施例可以基于图1所示的信息推荐系统所实现,信息推荐装置可以为服务器10。It should be noted that the embodiment of the present invention may be implemented based on the information recommendation system shown in FIG. 1 , and the information recommendation device may be the server 10 .
实施例一Example 1
本发明实施例提供一种信息推荐方法,如图2所示,该方法包括:An embodiment of the present invention provides an information recommendation method, as shown in FIG. 2 , the method includes:
S201:获取预设统计周期内的目标用户针对全量历史选择歌曲的历史操作数据。S201: Acquire historical operation data of songs selected by a target user for a full amount of history within a preset statistical period.
信息推荐装置按照预设时间段从终端中,获取目标用户针对全量历史选择歌曲的时段操作数据,将预设时间段和时段操作数据对应进行保存,直至获取预设统计周期内的历史操作数据,预设统计周期包括至少一个预设时间段,历史操作数据包括至少一个预设时间段中每个时间段内的时段操作数据;例如,预设时间段可以为一天、或一个小时等。The information recommendation device obtains, from the terminal according to a preset time period, the time period operation data of the target user's selection of songs for the full history, and stores the preset time period and the time period operation data correspondingly until the historical operation data within the preset statistical period is obtained, The preset statistical period includes at least one preset time period, and the historical operation data includes period operation data in each time period in the at least one preset time period; for example, the preset time period may be one day or one hour.
示例性地,以音乐类应用程序为例,用户在终端上使用音乐类应用程序时,终端对用户的登录账号信息(例如,用户身份标识号码(ID,IDentity))进行记录,终端还对操作数据进行记录,操作数据是用户对音乐类应用程序中的歌曲进行选择操作后产生的数据,终端将用户ID和操作数据对应进行保存,并将每个时间段内的时段操作数据结合用户ID发送至服务器,服务器按照用户ID对每个用户的时段操作数据进行保存;其中,针对歌曲的选择操作包括:点赞操作、收藏操作、评论操作、分享操作、收听操作、切歌操作、试听操作、购买操作、设为彩铃操作、下载操作等,操作数据包括歌曲的歌曲标识(例如,歌曲ID)、以及选择操作的操作种类。Exemplarily, taking a music application as an example, when a user uses a music application on the terminal, the terminal records the user's login account information (for example, user identification number (ID, IDentity)), and the terminal also records the operation information. The data is recorded, and the operation data is the data generated after the user selects the songs in the music application. The terminal stores the user ID and the operation data correspondingly, and sends the operation data of each time period in combination with the user ID. to the server, and the server saves the time period operation data of each user according to the user ID; wherein, the selection operations for songs include: like operation, collection operation, comment operation, sharing operation, listening operation, song cutting operation, audition operation, For the purchase operation, the setting of the CRBT operation, the download operation, etc., the operation data includes the song identification (eg, song ID) of the song, and the operation type of the selection operation.
S202:基于预设的操作数据与操作分值的对应关系、以及历史操作数据,得到全量历史选择歌曲中每首历史选择歌曲的历史评价数据;历史评价数据用于表征目标用户对歌曲的喜欢程度。S202: Based on the preset corresponding relationship between the operation data and the operation score, as well as the historical operation data, obtain the historical evaluation data of each historically selected song in the full amount of historically selected songs; the historical evaluation data is used to represent the target user's liking of the song. .
信息推荐装置从历史操作数据确定目标用户中每个用户的历史操作数据,根据预设的操作数据与操作分值的对应关系,对每个用户的历史操作数据中每个时间段对应的时段操作数据进行操作分值计算,得到每个时间段对应的时段评价数据,进而得到每个用户的由所有时间段对应的时段评价数据组成的历史评价数据。The information recommendation device determines the historical operation data of each user in the target users from the historical operation data, and operates on the time period corresponding to each time period in the historical operation data of each user according to the preset corresponding relationship between the operation data and the operation score. The operation score is calculated on the data to obtain the time period evaluation data corresponding to each time period, and then the historical evaluation data of each user composed of the time period evaluation data corresponding to all time periods is obtained.
示例性地,预设时间段为一天,计算每个时间段对应的时段评价数据,就是计算用户单日对不同歌曲的喜欢程度,信息推荐装置可以根据日常使用习惯,针对每个操作种类设置对应的喜欢分值,该喜好分值反映每个操作种类的选择操作所表达的用户喜欢程度,得到如下表1所示的预设的操作数据与操作分值的对应关系:Exemplarily, the preset time period is one day, and calculating the time period evaluation data corresponding to each time period is to calculate the user's liking for different songs in a single day. The preference score reflects the user's liking degree expressed by the selection operation of each operation type, and the corresponding relationship between the preset operation data and the operation score as shown in the following table 1 is obtained:
表1Table 1
示例性地,信息推荐装置根据表1的对应关系、以及历史操作数据中的选择操作的操作种类,计算全量历史选择歌曲中每首历史选择歌曲的历史评价数据,并按照如下形式进行记录:“用户ID-歌曲ID-操作分值-日期”,日期为至少一个预设时间段中每个时间段对应的时间信息。Exemplarily, the information recommendation device calculates the historical evaluation data of each historically selected song in the full amount of historically selected songs according to the corresponding relationship in Table 1 and the operation type of the selection operation in the historical operation data, and records it in the following form: " User ID-Song ID-Operation Score-Date", the date is the time information corresponding to each time period in the at least one preset time period.
示例性地,服务器获取每个时间段的时段操作数据之后,利用时段操作数据,计算每个用户针对每首历史选择歌曲的时段评价数据,例如,历史选择歌曲A的时段操作数据包括:在一天内,用户B搜索5次、分享4次、收藏1次、评论2次、下载2次、以及切歌3次,则根据表1的对应关系,得到公式(1),利用公式(1)计算得到用户B在一天内针对历史选择歌曲A的时段评价数据为23.5:Exemplarily, after acquiring the period operation data of each time period, the server uses the period operation data to calculate the period evaluation data of each user for each historically selected song, for example, the period operation data of the historically selected song A includes: If user B searches 5 times, shares 4 times, favorites 1 time, comments 2 times, downloads 2 times, and cuts songs 3 times, then according to the corresponding relationship in Table 1, formula (1) is obtained, and formula (1) is used to calculate The time period evaluation data of user B's historical selection of song A in one day is 23.5:
5×1+4×2+1×2+2×1+2×4+3×(-0.5)=23.5 (1)5×1+4×2+1×2+2×1+2×4+3×(-0.5)=23.5 (1)
当这一天对应的时间信息为2018年10月11日,则可以按照如下形式对历史选择歌曲A的时段评价数据进行记录:用户B—歌曲A—23.5—20181011。When the time information corresponding to this day is October 11, 2018, the time period evaluation data of the historically selected song A can be recorded in the following form: user B—song A—23.5—20181011.
S203:对历史评价数据进行时间衰减处理,得到每首历史选择歌曲的历史统计评价数据。S203: Perform time decay processing on the historical evaluation data to obtain historical statistical evaluation data of each historically selected song.
信息推荐装置获取的每个用户的历史评价数据,是由每个时间段对应的时段评价数据组成的,对所有时间段对应的时段评价数据进行时间衰减处理,得到每个用户对应的历史统计评价数据。The historical evaluation data of each user obtained by the information recommendation device is composed of the time period evaluation data corresponding to each time period, and the time decay processing is performed on the time period evaluation data corresponding to all time periods to obtain the historical statistical evaluation corresponding to each user. data.
需要说明的是,由于用户对歌曲的喜好可能是动态变化的,仅根据一个预设时间段内的时段评价数据往往不能准确地确定该用户的当前喜好,因而信息推荐装置依据预设统计周期内的历史评价数据,确定用户的兴趣爱好;例如,预设以90天为一个统计周期,根据用户针对每首历史选择歌曲的90个单日喜欢分值,来确定用户在90天内的针对每首历史选择歌曲的喜欢总分。It should be noted that, since the user's preferences for songs may change dynamically, it is often impossible to accurately determine the user's current preferences only based on the period evaluation data within a preset time period. For example, a preset statistical period of 90 days is used to determine the user's 90-day liking scores for each song selected by the user within 90 days. The total likes score for the selected song in history.
在一些实施例中,信息推荐装置根据预设衰减系数和时间的对应关系、以及每个时间段表征的时间信息,得到每个时间段对应的衰减系数;根据衰减系数,对至少一个预设时间段对应的时段评价数据进行求和,得到历史统计评价数据。In some embodiments, the information recommendation apparatus obtains the attenuation coefficient corresponding to each time period according to the corresponding relationship between the preset attenuation coefficient and time, and the time information represented by each time period; according to the attenuation coefficient, for at least one preset time period The evaluation data corresponding to the segment is summed to obtain historical statistical evaluation data.
示例性地,由于用户对歌曲的喜好是动态变化的,因而用户近期的时段评价数据往往比早期的时段评价数据更准确地反应用户对歌曲的当前喜好,也就是说,时段评价数据随着与当前时间的时间间隔的增加,对用户当前喜好的反映准确度逐渐衰减,因而信息推荐装置在预设统计周期的结束时刻,根据每个时间段对应的时间信息与预设统计周期对应的初始时刻的时间间隔,确定每个时间段对应的衰减系数,根据衰减系数,对所有时间段对应的时段评价数据进行加权求和,得到历史统计评价数据。Exemplarily, since the user's preference for songs changes dynamically, the user's recent period evaluation data tends to reflect the user's current preference for songs more accurately than the earlier period evaluation data. As the time interval of the current time increases, the accuracy of reflecting the user's current preferences gradually decreases. Therefore, at the end of the preset statistical period, the information recommending device uses the time information corresponding to each time period and the initial time corresponding to the preset statistical period. According to the attenuation coefficient, the weighted summation of the period evaluation data corresponding to all time periods is carried out to obtain the historical statistical evaluation data.
示例性地,预设衰减系数和时间的对应关系表示为公式(2):Exemplarily, the corresponding relationship between the preset attenuation coefficient and time is expressed as formula (2):
N(t)=N0e-t/T (2)N(t)=N 0 e -t/T (2)
其中,N0表示预设统计周期的开始时刻的初始衰减系数,t表示每个时间段对应的时间信息与预设统计周期的开始时刻的时间间隔,N(t)表示每个时间段对应的衰减系数,e表示指数,T表示预设统计周期的结束时刻。Among them, N 0 represents the initial attenuation coefficient at the start of the preset statistical period, t represents the time interval between the time information corresponding to each time period and the start of the preset statistical period, and N(t) represents the corresponding Attenuation coefficient, e represents the exponent, and T represents the end time of the preset statistical period.
S204:根据历史统计评价数据,对全量历史选择歌曲进行排序,得到全量历史选择歌曲的排序结果。S204: Rank the full historically selected songs according to the historical statistical evaluation data, and obtain a sorting result of the full historically selected songs.
信息推荐装置根据每个用户的历史统计评价数据,按照历史统计评价数据的大小,对全量历史选择歌曲进行升序排序或降序排序,得到排序结果。According to the historical statistical evaluation data of each user and the size of the historical statistical evaluation data, the information recommendation device performs ascending or descending sorting on all historically selected songs to obtain a sorting result.
S205:根据排序结果和预设全量歌单,推荐目标歌曲。S205: Recommend target songs according to the sorting result and the preset full playlist.
信息推荐装置对每个用户,基于排序结果从全量历史选择歌曲中n首参考歌曲,n为大于0的整数,n首参考歌曲的历史统计评价数据大于全量历史选择歌曲中其他歌曲的历史统计评价数据,n首参考歌曲为每个用户最喜欢的n首参考歌曲,再根据n首参考歌曲和音乐类应用程序的预设全量歌单,确定出目标歌曲。For each user, the information recommendation device selects n reference songs from the full history based on the sorting result, where n is an integer greater than 0, and the historical statistical evaluation data of the n reference songs is greater than the historical statistical evaluation of other songs in the full historical selection. data, the n reference songs are the favorite n reference songs of each user, and then the target songs are determined according to the n reference songs and the preset full playlist of the music application.
需要说明的是,如图3所示的一种信息推荐方法,步骤S205的具体实施如执行S2051-S2053,包括:It should be noted that, for an information recommendation method as shown in FIG. 3 , the specific implementation of step S205 is to execute S2051-S2053, including:
S2051:根据排序结果,从全量历史选择歌曲中确定出参考歌曲;S2051: According to the sorting result, determine the reference song from the full amount of historically selected songs;
信息推荐装置从全量历史选择歌曲中选择n首参考歌曲。The information recommendation device selects n reference songs from the full amount of historically selected songs.
S2052:根据参考歌曲,从预设全量歌单中确定出参考歌单;S2052: According to the reference song, determine the reference playlist from the preset full playlist;
信息推荐装置对参考歌曲中每个参考歌曲,从预设全量歌单中确定出包含每个参考歌曲的所有歌单,将所有歌单作为每个参考歌曲的子参考歌单,进而得到由所有子参考歌单组成的参考歌单。For each reference song in the reference song, the information recommendation device determines all the playlists including each reference song from the preset full playlist, and uses all the playlists as the sub-reference playlists of each reference song, and then obtains all the playlists from all the reference songs. A reference playlist composed of sub-reference playlists.
S2053:根据参考歌单,推荐目标歌曲。S2053: Recommend the target song according to the reference song list.
信息推荐装置从参考歌单的歌曲中确定目标歌曲,并通过发送至终端向用户推荐目标歌曲。The information recommendation device determines the target song from the songs in the reference playlist, and recommends the target song to the user by sending it to the terminal.
在一些实施例中,参考歌单包括参考歌曲中每个参考歌曲对应的子参考歌单;信息推荐装置根据子参考歌单中每首歌曲的重复次数,从参考歌单中确定出目标歌曲,推荐目标歌曲。In some embodiments, the reference song list includes a sub-reference song list corresponding to each reference song in the reference song; the information recommendation device determines the target song from the reference song list according to the repetition times of each song in the sub-reference song list, Recommend target songs.
示例性地,以用户最喜欢的n首参考歌曲中一首参考歌曲AL为例,L为大于0且不大于n的整数,信息推荐装置可以从预设全量歌单中确定包含参考歌曲AL的子参考歌单,该子参考歌单表示为{歌单L1,歌单L2,…,歌单LN},N为大于2的整数,统计该子参考歌单中每首歌曲的重复次数,对该子参考歌单中所有歌曲的重复次数进行排序,得到该子参考歌单中每首歌曲的次数排序序号;将次数排序序号属于前q位的歌曲确定为参考歌曲AL对应的待推荐歌曲TL,q为大于0的正整数,进而得到由n首参考歌曲对应的待推荐歌曲组成的至少一个待推荐歌曲,其中,待推荐歌曲TL可以包括至少一个歌曲。Exemplarily, taking a reference song A L among the n reference songs that the user likes the most as an example, where L is an integer greater than 0 and not greater than n, the information recommendation device may determine that the reference song A is included in the preset full playlist. The sub-reference playlist of L , the sub-reference playlist is expressed as {playlist L1, playlist L2, ..., playlist LN}, N is an integer greater than 2, and count the number of repetitions of each song in the sub-reference playlist , sort the repetition times of all songs in the sub-reference playlist, and obtain the sequence number of each song in the sub-reference playlist; determine the song whose sequence number belongs to the top q as the reference song AL corresponding to the The recommended songs TL and q are positive integers greater than 0, and then at least one to-be-recommended song composed of to-be-recommended songs corresponding to n reference songs is obtained, wherein the to-be-recommended song TL may include at least one song.
在一些实施例中,信息推荐装置对每首参考歌曲的历史统计评价数据进行排序,得到每首参考歌曲的数据排序序号;对子参考歌单中每首歌曲的重复次数进行排序,得到子参考歌单中每首歌曲的次数排序序号;根据次数排序序号,从子参考歌单中确定出每首参考歌曲对应的待推荐歌曲,得到至少一个待推荐歌曲;根据数据排序序号和待推荐歌曲的次数排序序号,确定待推荐歌曲的喜好分值;根据喜好分值,从至少一个待推荐歌曲中确定出目标歌曲。In some embodiments, the information recommendation device sorts the historical statistical evaluation data of each reference song to obtain the data sorting serial number of each reference song; sorts the repetition times of each song in the sub-reference playlist to obtain the sub-reference The number of times of each song in the playlist is sorted; according to the number of times, the song to be recommended corresponding to each reference song is determined from the sub-reference playlist, and at least one song to be recommended is obtained; The number of times is sorted and the preference score of the song to be recommended is determined; according to the preference score, the target song is determined from at least one of the songs to be recommended.
示例性地,信息推荐装置对n首参考歌曲的历史统计评价数据进行降序排序,得到每首参考歌曲的数据排序序号g;再从该子参考歌单中每首歌曲的次数排序序号中,确定出每首参考歌曲对应的待推荐歌曲的次数排序序号h;根据公式(3)计算待推荐歌曲的喜好分值Score:Exemplarily, the information recommendation device sorts the historical statistical evaluation data of n reference songs in descending order, and obtains the data sorting sequence number g of each reference song; Get the number h of the songs to be recommended corresponding to each reference song; calculate the preference score Score of the songs to be recommended according to formula (3):
根据待推荐歌曲的喜好分值,从至少一个待推荐歌曲中确定出喜好分值较高的目标歌曲,并推荐给用户。According to the preference score of the song to be recommended, a target song with a higher preference score is determined from at least one of the songs to be recommended, and is recommended to the user.
需要说明的是,在步骤S2052之后,信息推荐装置根据预设歌曲属性,对参考歌单中每个歌单的歌曲进行量化,得到参考歌单中每个歌单的参考属性特征;根据预设歌单评分模型和参考属性特征,得到包含参考歌单中每个歌单的评分结果的评分数据;预设歌单评分模型表征属性特征与评分数据的对应关系;当评分数据中存在第一评分数据小于预设评分阈值时,将参考歌单中与第一评分数据对应的歌单从参考歌单中删除,得到更新后的参考歌单。It should be noted that, after step S2052, the information recommendation device quantifies the songs of each playlist in the reference playlist according to the preset song attributes, and obtains the reference attribute features of each playlist in the reference playlist; Playlist scoring model and reference attribute features to obtain scoring data including the scoring results of each playlist in the reference playlist; the preset playlist scoring model represents the corresponding relationship between attribute features and scoring data; when there is a first score in the scoring data When the data is less than the preset score threshold, the playlist corresponding to the first scoring data in the reference playlist is deleted from the reference playlist to obtain an updated reference playlist.
示例性地,信息推荐装置为避免劣质歌单的影响,根据预设歌曲属性,对每个歌单中每首歌曲进行量化,得到每首歌曲的多维属性向量,预设歌曲属性中每个歌曲属性对应一维数据;利用每个歌单中所有歌曲的属性向量生成多维属性矩阵,多维属性矩阵就是每个歌单的参考属性特征;利用预设歌单评分模型和每个歌单的多维属性矩阵,计算每个歌单的评分结果;最后根据每个歌单的评分结果,对参考歌单进行筛选。Exemplarily, in order to avoid the influence of inferior playlists, the information recommendation device quantifies each song in each playlist according to the preset song attributes, obtains a multi-dimensional attribute vector of each song, and presets each song in the song attributes. Attributes correspond to one-dimensional data; use the attribute vectors of all songs in each playlist to generate a multi-dimensional attribute matrix, which is the reference attribute feature of each playlist; use the preset playlist scoring model and the multi-dimensional attributes of each playlist Matrix, calculate the scoring results of each playlist; finally, filter the reference playlists according to the scoring results of each playlist.
示例性地,预设歌曲属性包括歌曲发行年代、歌手年龄、歌手性别信息、歌曲节奏信息、歌曲音调信息等,歌手性别信息包括男歌手的歌手性别信息等于0、以及女歌手的歌手性别信息等于1,歌曲节奏信息为歌曲每分钟节拍数,歌曲音调信息包括歌曲的CDEFGAB调分别对应1-7,以1979年出生的男歌手,在2007年发行歌曲,该发行歌曲为A调、每分钟60拍,该发行歌曲的多维属性向量表示为{2007,1979,0,60,6};其中,预设歌曲属性中每个歌曲属性在多维属性向量中的位置可以改变,只需要保证多维属性向量的歌曲属性顺序与预设歌单评分模型对应的歌曲属性顺序一致即可。Exemplarily, the preset song attributes include song release year, singer age, singer gender information, song rhythm information, song pitch information, etc. The singer gender information includes singer gender information of male singers equal to 0, and singer gender information of female singers equal to 0. 1. The rhythm information of the song is the number of beats per minute of the song, and the tone information of the song includes the CDEFGAB key of the song corresponding to 1-7 respectively. The male singer born in 1979 released the song in 2007. The released song is in the key of A and 60 per minute. beat, the multi-dimensional attribute vector of the released song is expressed as {2007, 1979, 0, 60, 6}; wherein, the position of each song attribute in the preset song attribute in the multi-dimensional attribute vector can be changed, and it is only necessary to ensure that the multi-dimensional attribute vector The order of the attributes of the song is the same as the order of the attributes of the songs corresponding to the preset playlist scoring model.
在一些实施例中,信息推荐装置在预设训练周期内,获取目标用户针对全量样本歌曲的样本操作数据;根据样本操作数据,从预设全量歌单中确定出正样本歌单和负样本歌单;获取正样本歌单对应的正评分数据,正样本歌单和正评分数据构成正样本;获取负样本歌单对应的负评分数据,负样本歌单和负评分数据构成负样本;利用正样本和负样本,对预设初始歌单评分模型进行训练,直至训练后的初始歌单评分模型的准确率不小于预设准确阈值;将训练后的初始歌单评分模型,作为预设歌单评分模型。In some embodiments, the information recommendation device obtains sample operation data of the target user for the full sample songs within a preset training period; according to the sample operation data, determines the positive sample song list and the negative sample song from the preset full song list single; obtain the positive score data corresponding to the positive sample playlist, and the positive sample playlist and the positive score data constitute a positive sample; obtain the negative score data corresponding to the negative sample playlist, and the negative sample playlist and the negative score data constitute a negative sample; use the positive sample and negative samples, train the preset initial playlist scoring model until the accuracy of the trained initial playlist scoring model is not less than the preset accuracy threshold; use the trained initial playlist scoring model as the preset playlist scoring Model.
示例性地,信息推荐装置在预设训练周期内,获取目标用户针对全量样本歌曲的样本操作数据;根据样本操作数据,得到每首样本歌曲的样本统计评价数据;根据样本统计评价数据,对全量样本歌曲进行排序,得到全量样本歌曲的样本排序结果;根据样本排序结果,从预设全量歌单中确定出正样本歌单和负样本歌单,正样本歌单为包含用户最喜欢的几首歌曲的歌单,负样本歌单为包含用户最不喜欢的几首歌曲的歌单;根据预设歌曲属性,对正样本歌单中每个歌单的歌曲进行量化,得正样本歌单中每个歌单的正属性特征,根据预设歌曲属性,对负样本歌单中每个歌单的歌曲进行量化,得负样本歌单中每个歌单的负属性特征;正属性特征和正评分数据构成正样本,负属性特征和负评分数据构成负样本。Exemplarily, within a preset training period, the information recommendation device obtains sample operation data of the target user for the full amount of sample songs; obtains the sample statistical evaluation data of each sample song according to the sample operation data; Sort the sample songs to obtain the sample sorting results of the full sample songs; according to the sample sorting results, determine the positive sample playlist and the negative sample playlist from the preset full playlist, and the positive sample playlist contains the user's favorite songs. The playlist of songs, the negative sample playlist is the playlist that contains the most disliked songs of the user; according to the preset song attributes, quantify the songs of each playlist in the positive sample playlist, and get the positive sample playlist. The positive attribute features of each playlist, according to the preset song attributes, quantify the songs of each playlist in the negative sample playlist to obtain the negative attribute features of each playlist in the negative sample playlist; positive attribute features and positive scores The data constitutes a positive sample, and the negative attribute features and negative rating data constitute a negative sample.
示例性地,当正评分数据为1、负评分数据为-1时,信息推荐装置根据每个歌单的评分结果,将评分结果小于0的歌单从参考歌单中删除。Exemplarily, when the positive score data is 1 and the negative score data is -1, the information recommendation apparatus deletes the playlists whose score results are less than 0 from the reference playlist according to the score result of each playlist.
需要说明的是,全量样本歌曲对应前述的全量历史选择歌曲,全量样本歌曲和全量历史选择歌曲只是获取时间不一样,同样地,样本操作数据对应前述的历史操作数据,样本操作数据和历史操作歌曲只是获取时间不一样;因此,基于样本操作数据来获取样本统计评价数据和样本排序结果的过程,与基于历史操作数据来获取历史统计评价数据和排序结果的过程一致。It should be noted that the full sample songs correspond to the aforementioned full historical selection songs, and the full sample songs and the full historical selection songs are only at different acquisition times. Similarly, the sample operation data corresponds to the aforementioned historical operation data, sample operation data and historical operation songs. Only the acquisition time is different; therefore, the process of acquiring sample statistical evaluation data and sample sorting results based on sample operation data is consistent with the process of acquiring historical statistical evaluation data and sorting results based on historical operation data.
示例性地,可以采用Adboost算法获取预设歌单评分模型,具体包括:设置初始歌单评分模型,初始歌单评分模型包括每相邻两个维度数据对应的弱分类器;按照多维数据中每个维度数据的初始数据权重,利用正样本和负样本对应的每相邻两个维度数据训练一个弱分类器,计算每个弱分类器的分类器权重,利用每个弱分类器和分类器权重生成强分类器;计算强分类器的准确率,当准确率小于预设准确阈值时,调整初始数据权重,直至强分类器的准确率不小于预设准确阈值;将强分类器作为预设歌单评分模型。Exemplarily, the Adboost algorithm can be used to obtain a preset song list scoring model, which specifically includes: setting an initial song list scoring model, and the initial song list scoring model includes a weak classifier corresponding to each adjacent two-dimensional data; The initial data weight of each dimension data, use each adjacent two dimension data corresponding to the positive sample and the negative sample to train a weak classifier, calculate the classifier weight of each weak classifier, use each weak classifier and the classifier weight Generate a strong classifier; calculate the accuracy of the strong classifier, when the accuracy is less than the preset accuracy threshold, adjust the initial data weight until the accuracy of the strong classifier is not less than the preset accuracy threshold; use the strong classifier as the preset song Single scoring model.
示例性地,预设歌曲属性包括5个歌曲属性,分别是歌曲发行年代、歌手年龄、歌手性别信息、歌曲节奏信息和歌曲音调信息,强分类器由K=5个弱分类器生成,例如,当每相邻两个维度数据表示为{第一歌曲属性x、第二歌曲属性y}时,根据正样本和负样本得到样本输入为{(x1,y1),(x2,y2),...,(xm,ym)},样本输出为{-1,+1},m为大于0的整数;按照初始数据权重,利用样本输入和样本输出训练预设初始歌单评分模型,得到第一歌曲属性x对应的弱分类器G1(x),进而得到每个歌曲属性对应的弱分类器;其中,初始数据权重D(1)如公式(4)所示:Exemplarily, the preset song attributes include 5 song attributes, which are the release year of the song, the singer's age, the singer's gender information, the song rhythm information, and the song pitch information, and the strong classifier is generated by K=5 weak classifiers, for example, When every two adjacent dimensional data is represented as {first song attribute x, second song attribute y}, the sample input is obtained according to positive samples and negative samples as {(x 1 , y 1 ), (x 2 , y 2 ),...,(x m ,y m )}, the sample output is {-1,+1}, m is an integer greater than 0; according to the initial data weight, use the sample input and sample output to train the preset initial playlist The scoring model obtains the weak classifier G 1 (x) corresponding to the first song attribute x, and then obtains the weak classifier corresponding to each song attribute; wherein, the initial data weight D(1) is shown in formula (4):
D(1)=(w11,w12,…,w1m) (4)D(1)=(w 11 ,w 12 ,...,w 1m ) (4)
其中, in,
进一步地,对弱分类器Gk(x)进行训练,具体包括:使用弱分类器Gk(x)对应的数据权重D(k),对初始歌单评分模型进行训练,得到弱分类器Gk(x),其中,k=1,2,...K,数据权重D(k)如公式(5)所示:Further, training the weak classifier G k (x) specifically includes: using the data weight D(k) corresponding to the weak classifier G k (x) to train the initial song list scoring model to obtain the weak classifier G k (x), where k=1,2,...K, and the data weight D(k) is shown in formula (5):
D(k)=(wk1,wk2,…,wkm) (5)D(k)=(w k1 ,w k2 ,...,w km ) (5)
其中,利用公式(6)计算弱分类器Gk(x)的分类误差率ek:in, Use formula (6) to calculate the classification error rate ek of the weak classifier G k (x):
其中,向弱分类器Gk(xi)输入(xi,yi)后输出评分结果,该评分结果不等于yi对应的预设阈值I。Wherein, after inputting (x i , y i ) to the weak classifier G k ( xi ), a scoring result is output, and the scoring result is not equal to the preset threshold I corresponding to yi .
利用公式(7)计算弱分类器Gk(x)的分类器权重ak:Calculate the classifier weight ak of the weak classifier G k (x) using formula (7):
利用公式(8)计算弱分类器k+1对应的数据权重D(k+1):Use formula (8) to calculate the data weight D(k+1) corresponding to the weak classifier k+1:
其中,Zk是规范化因子,如公式(9)所示:where Z k is the normalization factor, as shown in Equation (9):
利用公式(10)生成强分类器:Use formula (10) to generate a strong classifier:
需要说明的是,弱分离器的分类误差率率越大,该弱分类器的分类器权重越小。It should be noted that the larger the classification error rate of the weak classifier, the smaller the classifier weight of the weak classifier.
可以理解的是,信息推荐装置对预设统计周期内的历史评价数据进行时间衰减处理,得到时间衰减处理后的历史统计评价数据,进而得到全量历史选择歌曲的排序结果,根据排序结果推荐目标歌曲,由于历史评价数据表示在预设时间段内目标用户对歌曲的喜欢程度,那么对预设统计周期内的历史评价数据进行时间衰减处理,能够得到表示用户目前喜好的历史统计评价数据,进而利用全量历史歌曲的历史统计评价数据的排序结果,得到的目标歌曲更符合目标用户当前喜好,提高了推荐信息的准确度。It can be understood that the information recommendation device performs time decay processing on the historical evaluation data within the preset statistical period, obtains the historical statistical evaluation data after the time decay process, and then obtains the sorting result of all the historically selected songs, and recommends the target song according to the sorting result. , since the historical evaluation data represents the target user's liking of the song within the preset time period, then the historical evaluation data in the preset statistical period is subjected to time decay processing to obtain the historical statistical evaluation data representing the user's current preferences, and then use The sorting result of the historical statistical evaluation data of the full amount of historical songs, the obtained target songs are more in line with the current preferences of the target users, and the accuracy of the recommendation information is improved.
实施例二Embodiment 2
基于实施例一的同一发明构思,进行进一步的说明。Based on the same inventive concept of the first embodiment, further description will be made.
本发明实施例提供一种信息推荐装置4,如图4所示,该装置4包括:获取单元40、计算单元41、衰减处理单元42和推荐单元43;其中,An embodiment of the present invention provides an information recommendation device 4. As shown in FIG. 4, the device 4 includes: an acquisition unit 40, a calculation unit 41, an attenuation processing unit 42, and a recommendation unit 43; wherein,
所述获取单元40,用于获取预设统计周期内的目标用户针对全量历史选择歌曲的历史操作数据;The obtaining unit 40 is used to obtain the historical operation data of the target user's selection of songs for the full amount of history within the preset statistical period;
所述计算单元41,用于基于预设的操作数据与操作分值的对应关系、以及所述历史操作数据,得到所述全量历史选择歌曲中每首历史选择歌曲的历史评价数据;所述历史评价数据用于表征所述目标用户对歌曲的喜欢程度;The computing unit 41 is used to obtain historical evaluation data of each historically selected song in the full amount of historically selected songs based on the preset corresponding relationship between the operation data and the operation score and the historical operation data; the historical The evaluation data is used to represent the liking of the target user to the song;
所述衰减处理单元42,用于对所述历史评价数据进行时间衰减处理,得到所述每首历史选择歌曲的历史统计评价数据;The attenuation processing unit 42 is configured to perform time attenuation processing on the historical evaluation data to obtain historical statistical evaluation data of each historically selected song;
所述推荐单元43,用于根据所述历史统计评价数据,对所述全量历史选择歌曲进行排序,得到所述全量历史选择歌曲的排序结果;以及根据所述排序结果和预设全量歌单,推荐目标歌曲。The recommending unit 43 is configured to sort the full amount of historically selected songs according to the historical statistical evaluation data to obtain a sorting result of the full amount of historically selected songs; and according to the sorting result and the preset full amount of playlists, Recommend target songs.
在一些实施例中,所述预设统计周期包括至少一个预设时间段;所述历史评价数据包括所述至少一个预设时间段中每个时间段对应的时段评价数据;In some embodiments, the preset statistical period includes at least one preset time period; the historical evaluation data includes period evaluation data corresponding to each time period in the at least one preset time period;
所述衰减处理单元42,具体用于根据预设衰减系数和时间的对应关系、以及所述每个时间段表征的时间信息,得到所述每个时间段对应的衰减系数;以及根据所述衰减系数,对所述至少一个预设时间段对应的时段评价数据进行求和,得到所述历史统计评价数据。The attenuation processing unit 42 is specifically configured to obtain the attenuation coefficient corresponding to each time period according to the corresponding relationship between the preset attenuation coefficient and time, and the time information represented by each time period; and according to the attenuation coefficient, and summing the period evaluation data corresponding to the at least one preset period of time to obtain the historical statistical evaluation data.
在一些实施例中,所述推荐单元43,具体用于根据所述排序结果,从所述全量历史选择歌曲中确定出参考歌曲;及根据所述参考歌曲,从所述预设全量歌单中确定出参考歌单;以及根据所述参考歌单,推荐所述目标歌曲。In some embodiments, the recommending unit 43 is specifically configured to, according to the sorting result, determine a reference song from the full historical selection of songs; and according to the reference song, select a reference song from the preset full song list A reference playlist is determined; and the target song is recommended according to the reference playlist.
在一些实施例中,所述参考歌单包括所述参考歌曲中每个参考歌曲对应的子参考歌单;In some embodiments, the reference playlist includes a sub-reference playlist corresponding to each reference song in the reference songs;
所述推荐单元43,具体用于根据所述子参考歌单中每首歌曲的重复次数,从所述参考歌单中确定出所述目标歌曲,推荐所述目标歌曲。The recommending unit 43 is specifically configured to determine the target song from the reference playlist according to the repetition times of each song in the sub-reference playlist, and recommend the target song.
在一些实施例中,所述推荐单元43,具体用于对所述每首参考歌曲的历史统计评价数据进行排序,得到所述每首参考歌曲的数据排序序号;及对所述子参考歌单中每首歌曲的重复次数进行排序,得到所述子参考歌单中每首歌曲的次数排序序号;及根据所述次数排序序号,从所述子参考歌单中确定出所述每首参考歌曲对应的待推荐歌曲,得到至少一个待推荐歌曲;及根据所述数据排序序号和所述待推荐歌曲的次数排序序号,确定所述待推荐歌曲的喜好分值;以及根据所述喜好分值,从所述至少一个待推荐歌曲中确定出所述目标歌曲。In some embodiments, the recommending unit 43 is specifically configured to sort the historical statistical evaluation data of each reference song to obtain the data sorting sequence number of each reference song; and to sort the sub-reference song list Sort the number of repetitions of each song in the sub-reference playlist to obtain the number of times sorting sequence number of each song in the sub-reference playlist; Corresponding songs to be recommended, obtain at least one song to be recommended; and determine the preference score of the song to be recommended according to the data sorting sequence number and the frequency sorting sequence number of the song to be recommended; and according to the preference score, The target song is determined from the at least one song to be recommended.
在一些实施例中,所述推荐单元43,还用于在所述根据所述参考歌曲,从所述预设全量歌单中确定出参考歌单之后,根据预设歌曲属性,对所述参考歌单中每个歌单的歌曲进行量化,得到所述参考歌单中每个歌单的参考属性特征;及根据预设歌单评分模型和所述参考属性特征,得到包含所述参考歌单中每个歌单的评分结果的评分数据;所述预设歌单评分模型表征属性特征与评分数据的对应关系;以及当所述评分数据中存在第一评分数据小于预设评分阈值时,将所述参考歌单中与所述第一评分数据对应的歌单从所述参考歌单中删除,得到更新后的参考歌单。In some embodiments, the recommending unit 43 is further configured to, after the reference playlist is determined from the preset full playlist according to the reference song, according to the preset song attribute The songs of each playlist in the playlist are quantified to obtain the reference attribute feature of each playlist in the reference playlist; and according to the preset playlist scoring model and the reference attribute feature, obtain the reference playlist containing the reference playlist The scoring data of the scoring result of each playlist in the playlist; the preset playlist scoring model represents the corresponding relationship between the attribute feature and the scoring data; and when there is a first scoring data in the scoring data that is less than the preset scoring threshold, the The playlist corresponding to the first scoring data in the reference playlist is deleted from the reference playlist to obtain an updated reference playlist.
在一些实施例中,模型训练单元,用于在所述根据预设歌单评分模型和所述参考属性特征,得到包含所述参考歌单中每个歌单的评分结果的评分数据之前,在预设训练周期内,获取目标用户针对全量样本歌曲的样本操作数据;及根据所述样本操作数据,从所述预设全量歌单中确定出正样本歌单和负样本歌单;及获取所述正样本歌单对应的正评分数据,所述正样本歌单和所述正评分数据构成正样本;及获取所述负样本歌单对应的负评分数据,所述负样本歌单和所述负评分数据构成负样本;及利用所述正样本和所述负样本,对预设初始歌单评分模型进行训练,直至训练后的初始歌单评分模型的准确率不小于预设准确阈值;以及将所述训练后的初始歌单评分模型,作为所述预设歌单评分模型。In some embodiments, the model training unit is configured to, before obtaining the scoring data including the scoring result of each playlist in the reference playlist according to the preset playlist scoring model and the reference attribute feature, perform a During the preset training period, obtain the sample operation data of the target user for the full sample songs; and according to the sample operation data, determine a positive sample playlist and a negative sample playlist from the preset full playlist; and obtain all the sample playlists. the positive score data corresponding to the positive sample playlist, the positive sample playlist and the positive score data constitute a positive sample; and obtain the negative score data corresponding to the negative sample playlist, the negative sample playlist and the The negative scoring data constitutes a negative sample; and using the positive sample and the negative sample, a preset initial playlist scoring model is trained until the accuracy of the trained initial playlist scoring model is not less than a preset accuracy threshold; and The trained initial song list scoring model is used as the preset song list scoring model.
需要说明的是,在实际应用中,上述获取单元40、计算单元41、衰减处理单元42和推荐单元43,可由位于信息推荐装置4上的处理器44实现,具体为CPU(Central ProcessingUnit,中央处理器)、MPU(Microprocessor Unit,微处理器)、DSP(Digital SignalProcessing,数字信号处理器)或现场可编程门阵列(FPGA,Field Programmable GateArray)等实现。It should be noted that, in practical applications, the above-mentioned acquisition unit 40 , calculation unit 41 , attenuation processing unit 42 and recommendation unit 43 may be implemented by the processor 44 located on the information recommendation device 4 , specifically a CPU (Central Processing Unit, central processing unit). device), MPU (Microprocessor Unit, microprocessor), DSP (Digital SignalProcessing, digital signal processor) or Field Programmable Gate Array (FPGA, Field Programmable GateArray) and other implementations.
本发明实施例还提供了一种信息推荐装置4,如图5所示,该装置4包括:处理器44、存储器45和通信总线46,存储器45通过通信总线46与处理器44进行通信,存储器45存储处理器44可执行的一个或者多个程序,当一个或者多个程序被执行时,通过处理器44执行如前述实施例所述的任意一种信息推荐方法。The embodiment of the present invention also provides an information recommendation device 4. As shown in FIG. 5, the device 4 includes: a processor 44, a memory 45, and a communication bus 46. The memory 45 communicates with the processor 44 through the communication bus 46, and the memory 45 stores one or more programs executable by the processor 44. When the one or more programs are executed, any one of the information recommendation methods described in the foregoing embodiments is executed by the processor 44.
在实际应用中,存储器45可以是易失性第一存储器(volatile memory),例如随机存取第一存储器(Random-Access Memory,RAM);或者非易失性第一存储器(non-volatilememory),例如只读第一存储器(Read-Only Memory,ROM),快闪第一存储器(flashmemory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);或者上述种类的第一存储器的组合,并向处理器44提供程序和数据。In practical applications, the memory 45 may be a volatile first memory (volatile memory), such as a random-access first memory (Random-Access Memory, RAM); or a non-volatile first memory (non-volatile memory), For example, a read-only first memory (Read-Only Memory, ROM), a flash first memory (flashmemory), a hard disk (Hard Disk Drive, HDD) or a solid-state drive (Solid-State Drive, SSD); A combination of memories and provides programs and data to processor 44 .
本发明实施例提供了一种计算机可读存储介质,计算机可读存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,所述程序被处理器44执行时实现如前述实施例所述的任意一种信息推荐方法。An embodiment of the present invention provides a computer-readable storage medium, where the computer-readable storage medium stores one or more programs, the one or more programs can be executed by one or more processors, and the programs are executed by the processor 44 At the same time, any one of the information recommendation methods described in the foregoing embodiments is implemented.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by one skilled in the art, embodiments of the present invention may be provided as a method, system, or computer program product. Accordingly, the invention may take the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。The above descriptions are merely preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811642134.8A CN109408665B (en) | 2018-12-29 | 2018-12-29 | Information recommendation method and device and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811642134.8A CN109408665B (en) | 2018-12-29 | 2018-12-29 | Information recommendation method and device and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109408665A true CN109408665A (en) | 2019-03-01 |
CN109408665B CN109408665B (en) | 2021-11-23 |
Family
ID=65462618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811642134.8A Active CN109408665B (en) | 2018-12-29 | 2018-12-29 | Information recommendation method and device and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109408665B (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109982155A (en) * | 2019-03-25 | 2019-07-05 | 北京奇艺世纪科技有限公司 | One kind broadcasting single recommended method and system |
CN109992694A (en) * | 2019-04-17 | 2019-07-09 | 重庆誉存大数据科技有限公司 | A kind of music intelligent recommendation method and system |
CN110363569A (en) * | 2019-06-17 | 2019-10-22 | 深圳壹账通智能科技有限公司 | Data product recommended method, device, computer equipment and storage medium |
CN110599052A (en) * | 2019-09-19 | 2019-12-20 | 携程计算机技术(上海)有限公司 | OTA hotel evaluation method, system, electronic device and medium |
CN110659425A (en) * | 2019-09-25 | 2020-01-07 | 秒针信息技术有限公司 | Resource allocation method and device, electronic equipment and readable storage medium |
CN110910209A (en) * | 2019-11-12 | 2020-03-24 | 腾讯科技(深圳)有限公司 | Data processing method and device and computer readable storage medium |
CN110990621A (en) * | 2019-12-16 | 2020-04-10 | 腾讯科技(深圳)有限公司 | Song recommendation method and device |
CN110996177A (en) * | 2019-11-27 | 2020-04-10 | 北京爱奇艺智慧娱乐科技有限公司 | Video recommendation method, device and equipment for video-on-demand cinema |
CN111078931A (en) * | 2019-12-10 | 2020-04-28 | 腾讯科技(深圳)有限公司 | Singing sheet pushing method and device, computer equipment and storage medium |
CN111383049A (en) * | 2020-02-21 | 2020-07-07 | 中国平安财产保险股份有限公司 | Product recommendation method, device and storage medium |
CN111488484A (en) * | 2020-04-16 | 2020-08-04 | 北京雷石天地电子技术有限公司 | Song recommendation method, medium and device based on class exponential distribution and TF-IDF features |
CN111581452A (en) * | 2020-03-26 | 2020-08-25 | 浙江口碑网络技术有限公司 | Method and device for obtaining recommendation object data and electronic equipment |
CN111626615A (en) * | 2020-05-27 | 2020-09-04 | 腾讯音乐娱乐科技(深圳)有限公司 | Method, device and computer storage medium for determining singing order score |
CN112052379A (en) * | 2020-01-20 | 2020-12-08 | 河南紫联物联网技术有限公司 | Intelligent terminal, and recommendation method and system of intelligent household equipment |
CN112231511A (en) * | 2020-10-20 | 2021-01-15 | 腾讯音乐娱乐科技(深圳)有限公司 | Neural network model training method and song mining method and device |
CN113127674A (en) * | 2019-12-31 | 2021-07-16 | 中移(成都)信息通信科技有限公司 | Singing bill recommendation method and device, electronic equipment and computer storage medium |
CN113536027A (en) * | 2021-07-27 | 2021-10-22 | 咪咕音乐有限公司 | Music recommendation method, device, equipment and computer readable storage medium |
CN113570257A (en) * | 2021-07-30 | 2021-10-29 | 北京房江湖科技有限公司 | Index data evaluation method and device based on scoring model, medium and equipment |
CN113688314A (en) * | 2021-08-13 | 2021-11-23 | 今彩慧健康科技(苏州)有限公司 | Physiotherapy store recommendation method and device |
CN113821717A (en) * | 2021-01-29 | 2021-12-21 | 北京沃东天骏信息技术有限公司 | Information processing method, information processing apparatus, storage medium, and electronic device |
CN114691989A (en) * | 2022-03-23 | 2022-07-01 | 南京邮电大学 | Recommendation method and recommendation system based on user implicit feedback behavior |
CN114691989B (en) * | 2022-03-23 | 2025-02-25 | 南京邮电大学 | A recommendation method and recommendation system based on user implicit feedback behavior |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103678388A (en) * | 2012-09-19 | 2014-03-26 | 腾讯科技(深圳)有限公司 | Online music recommendation method and device |
CN104090912A (en) * | 2014-06-10 | 2014-10-08 | 腾讯科技(深圳)有限公司 | Information pushing method and device |
CN108595550A (en) * | 2018-04-10 | 2018-09-28 | 南京邮电大学 | A kind of music commending system and recommendation method based on convolutional neural networks |
US20180285896A1 (en) * | 2017-03-31 | 2018-10-04 | International Business Machines Corporation | Determining music to influence customer behavior |
-
2018
- 2018-12-29 CN CN201811642134.8A patent/CN109408665B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103678388A (en) * | 2012-09-19 | 2014-03-26 | 腾讯科技(深圳)有限公司 | Online music recommendation method and device |
CN104090912A (en) * | 2014-06-10 | 2014-10-08 | 腾讯科技(深圳)有限公司 | Information pushing method and device |
US20180285896A1 (en) * | 2017-03-31 | 2018-10-04 | International Business Machines Corporation | Determining music to influence customer behavior |
CN108595550A (en) * | 2018-04-10 | 2018-09-28 | 南京邮电大学 | A kind of music commending system and recommendation method based on convolutional neural networks |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109982155B (en) * | 2019-03-25 | 2021-10-12 | 北京奇艺世纪科技有限公司 | Playlist recommendation method and system |
CN109982155A (en) * | 2019-03-25 | 2019-07-05 | 北京奇艺世纪科技有限公司 | One kind broadcasting single recommended method and system |
CN109992694A (en) * | 2019-04-17 | 2019-07-09 | 重庆誉存大数据科技有限公司 | A kind of music intelligent recommendation method and system |
CN110363569A (en) * | 2019-06-17 | 2019-10-22 | 深圳壹账通智能科技有限公司 | Data product recommended method, device, computer equipment and storage medium |
CN110599052A (en) * | 2019-09-19 | 2019-12-20 | 携程计算机技术(上海)有限公司 | OTA hotel evaluation method, system, electronic device and medium |
CN110599052B (en) * | 2019-09-19 | 2023-07-21 | 携程计算机技术(上海)有限公司 | OTA hotel evaluation method, system, electronic equipment and medium |
CN110659425A (en) * | 2019-09-25 | 2020-01-07 | 秒针信息技术有限公司 | Resource allocation method and device, electronic equipment and readable storage medium |
CN110659425B (en) * | 2019-09-25 | 2022-05-17 | 秒针信息技术有限公司 | Resource allocation method and device, electronic equipment and readable storage medium |
CN110910209A (en) * | 2019-11-12 | 2020-03-24 | 腾讯科技(深圳)有限公司 | Data processing method and device and computer readable storage medium |
CN110910209B (en) * | 2019-11-12 | 2024-05-31 | 腾讯科技(深圳)有限公司 | A data processing method, device and computer readable storage medium |
CN110996177A (en) * | 2019-11-27 | 2020-04-10 | 北京爱奇艺智慧娱乐科技有限公司 | Video recommendation method, device and equipment for video-on-demand cinema |
CN111078931A (en) * | 2019-12-10 | 2020-04-28 | 腾讯科技(深圳)有限公司 | Singing sheet pushing method and device, computer equipment and storage medium |
CN111078931B (en) * | 2019-12-10 | 2023-08-01 | 腾讯科技(深圳)有限公司 | Song list pushing method, device, computer equipment and storage medium |
CN110990621B (en) * | 2019-12-16 | 2023-10-13 | 腾讯科技(深圳)有限公司 | Song recommendation method and device |
CN110990621A (en) * | 2019-12-16 | 2020-04-10 | 腾讯科技(深圳)有限公司 | Song recommendation method and device |
CN113127674A (en) * | 2019-12-31 | 2021-07-16 | 中移(成都)信息通信科技有限公司 | Singing bill recommendation method and device, electronic equipment and computer storage medium |
CN113127674B (en) * | 2019-12-31 | 2023-07-21 | 中移(成都)信息通信科技有限公司 | Song list recommendation method, device, electronic equipment and computer storage medium |
CN112052379A (en) * | 2020-01-20 | 2020-12-08 | 河南紫联物联网技术有限公司 | Intelligent terminal, and recommendation method and system of intelligent household equipment |
CN111383049A (en) * | 2020-02-21 | 2020-07-07 | 中国平安财产保险股份有限公司 | Product recommendation method, device and storage medium |
CN111581452A (en) * | 2020-03-26 | 2020-08-25 | 浙江口碑网络技术有限公司 | Method and device for obtaining recommendation object data and electronic equipment |
CN111581452B (en) * | 2020-03-26 | 2023-10-17 | 浙江口碑网络技术有限公司 | Recommendation object data obtaining method and device and electronic equipment |
CN111488484A (en) * | 2020-04-16 | 2020-08-04 | 北京雷石天地电子技术有限公司 | Song recommendation method, medium and device based on class exponential distribution and TF-IDF features |
CN111488484B (en) * | 2020-04-16 | 2023-04-28 | 北京雷石天地电子技术有限公司 | Song recommendation method, medium and device based on class exponential distribution and TF-IDF features |
CN111626615A (en) * | 2020-05-27 | 2020-09-04 | 腾讯音乐娱乐科技(深圳)有限公司 | Method, device and computer storage medium for determining singing order score |
CN112231511A (en) * | 2020-10-20 | 2021-01-15 | 腾讯音乐娱乐科技(深圳)有限公司 | Neural network model training method and song mining method and device |
CN113821717A (en) * | 2021-01-29 | 2021-12-21 | 北京沃东天骏信息技术有限公司 | Information processing method, information processing apparatus, storage medium, and electronic device |
CN113536027A (en) * | 2021-07-27 | 2021-10-22 | 咪咕音乐有限公司 | Music recommendation method, device, equipment and computer readable storage medium |
CN113570257A (en) * | 2021-07-30 | 2021-10-29 | 北京房江湖科技有限公司 | Index data evaluation method and device based on scoring model, medium and equipment |
CN113688314A (en) * | 2021-08-13 | 2021-11-23 | 今彩慧健康科技(苏州)有限公司 | Physiotherapy store recommendation method and device |
CN113688314B (en) * | 2021-08-13 | 2024-03-19 | 今彩慧健康科技(苏州)有限公司 | Physical therapy store recommending method and device |
CN114691989A (en) * | 2022-03-23 | 2022-07-01 | 南京邮电大学 | Recommendation method and recommendation system based on user implicit feedback behavior |
CN114691989B (en) * | 2022-03-23 | 2025-02-25 | 南京邮电大学 | A recommendation method and recommendation system based on user implicit feedback behavior |
Also Published As
Publication number | Publication date |
---|---|
CN109408665B (en) | 2021-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109408665B (en) | Information recommendation method and device and storage medium | |
CN110489644B (en) | Information push method, device, computer readable storage medium and computer equipment | |
US20220284053A1 (en) | User-specific media playlists | |
CN108537567B (en) | Method and device for determining target user group | |
CN107885745B (en) | Song recommendation method and device | |
CN108833458B (en) | Application recommendation method, device, medium and equipment | |
CN110287420B (en) | A training method and device for an information recommendation system | |
CN109783671B (en) | Method for searching picture by picture, computer readable medium and server | |
CN104731861B (en) | Multi-medium data method for pushing and device | |
CN106599047B (en) | Method and device for pushing information | |
CN108665148B (en) | Electronic resource quality evaluation method and device and storage medium | |
CN106951527B (en) | Method and device for recommending songs | |
CN102799591A (en) | Method and device for providing recommended word | |
CN111444380B (en) | Music search ordering method, device, equipment and storage medium | |
CN108717407A (en) | Entity vector determines method and device, information retrieval method and device | |
CN112287094B (en) | Similar case text retrieval system | |
US11109085B2 (en) | Utilizing one hash permutation and populated-value-slot-based densification for generating audience segment trait recommendations | |
CN107885852A (en) | A kind of APP based on APP usage records recommends method and system | |
CN110197404A (en) | The personalized long-tail Method of Commodity Recommendation and system of popularity deviation can be reduced | |
CN111753124B (en) | Music recommendation method and server | |
CN112328775B (en) | Case text information retrieval system | |
JP5048852B2 (en) | Search device, search method, search program, and computer-readable recording medium storing the program | |
CN101771957B (en) | User interest point determining method and device | |
CN111143695B (en) | Searching method, searching device, server and storage medium | |
CN114924673B (en) | Media menu recommendation method and device based on barrage interaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |