CN109405937B - A wide range ratio water meter calibration standard device and water meter calibration method thereof - Google Patents
A wide range ratio water meter calibration standard device and water meter calibration method thereof Download PDFInfo
- Publication number
- CN109405937B CN109405937B CN201811600405.3A CN201811600405A CN109405937B CN 109405937 B CN109405937 B CN 109405937B CN 201811600405 A CN201811600405 A CN 201811600405A CN 109405937 B CN109405937 B CN 109405937B
- Authority
- CN
- China
- Prior art keywords
- piston
- cylinder
- water
- ball valve
- disc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 840
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000002093 peripheral effect Effects 0.000 claims abstract description 13
- 230000002441 reversible effect Effects 0.000 claims description 120
- 239000002184 metal Substances 0.000 claims description 73
- 230000001360 synchronised effect Effects 0.000 claims description 67
- 239000003638 chemical reducing agent Substances 0.000 claims description 58
- 238000007667 floating Methods 0.000 claims description 48
- 238000009825 accumulation Methods 0.000 claims description 42
- 238000012360 testing method Methods 0.000 claims description 40
- 238000002955 isolation Methods 0.000 claims description 30
- 210000000476 body water Anatomy 0.000 claims description 29
- 238000007789 sealing Methods 0.000 claims description 23
- 230000001186 cumulative effect Effects 0.000 claims description 20
- 238000012795 verification Methods 0.000 claims description 12
- 238000007689 inspection Methods 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 230000009471 action Effects 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000006641 stabilisation Effects 0.000 claims description 4
- 238000011105 stabilization Methods 0.000 claims description 4
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 abstract description 4
- 238000005259 measurement Methods 0.000 abstract description 2
- 230000003068 static effect Effects 0.000 description 15
- 239000007788 liquid Substances 0.000 description 14
- 230000007547 defect Effects 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
- G01F25/10—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Reciprocating Pumps (AREA)
Abstract
本发明公开了一种用于水表校验的宽量程比水表校验标准装置及水表校验的方法。本发明所提供的宽量程比水表校验标准装置包括作为主标准器的活塞式装置及外围系统、检定装置、加压系统、高位水箱和排气系统。本发明不仅实现了水表的校验,更重要的是通过采用柱盘结合形标准器,大大提高了校验装置下限测量的能力,克服了装置难以提供水表小流量校验的难题;另外,小流量背压系统有效克服了水表小流量校验时因背压不足带来的工作不正常难题。
The present invention discloses a wide-range ratio water meter calibration standard device for water meter calibration and a water meter calibration method. The wide-range ratio water meter calibration standard device provided by the present invention includes a piston-type device as a main standard and a peripheral system, a calibration device, a pressurizing system, a high-level water tank and an exhaust system. The present invention not only realizes the calibration of the water meter, but more importantly, by adopting a column-disc combined standard, the lower limit measurement capability of the calibration device is greatly improved, overcoming the difficulty that the device is difficult to provide small flow calibration of the water meter; in addition, the small flow back pressure system effectively overcomes the problem of abnormal operation caused by insufficient back pressure during small flow calibration of the water meter.
Description
技术领域Technical Field
本发明涉及一种用于水表校验的宽量程比水表校验标准装置及水表校验的方法。The invention relates to a wide range ratio water meter calibration standard device for water meter calibration and a water meter calibration method.
背景技术Background technique
目前对水表进行校验时,采用的校验装置主要是静态容积法或静态质量法液体流量标准装置。这两类液体流量标准装置在一定程度上满足了水表的校验要求,但在使用中也存在着较明显的缺陷,主要表现为:(i)静态容积法液体流量标准装置对水表校验效率低。由于静态容积法液体流量标准装置的工作量器一般是带有计量颈的葫芦形量器。利用装置水表进行流量校验时,只有液体达到计量颈处,量器中的容积才能被读出。因此,校验流量较小时,校验用时较长,表现为校验效率低下;(ii)流量稳定时间长。将水表由一个目标流量点调整到另一个目标流量点时,则对应的管道内的压力将随之发生变化,管道内压力的变化又会影响稳压容器内的压力发生变化,而稳压容器内压力的变化又会影响水泵给稳压容器供水水量发生变化,这一变化过程需要较长调节时间才能将稳压容器内的压力稳定在恒压范围内,保证管道内流量的稳定,进而实现水表流量的校验;(iii)静态质量法液体流量标准装置中的称重衡器易受环境(如振动,温度,湿度等)影响,而且环境条件难以保证,特别是水泵、管道振动,因而称重衡器很受环境影响容易发生零漂,准确度难以得到保证;(iv)静态容积法或静态质量法液体流量标准装置占用空间大,一旦建成则很难移动,而用于水表流量的校验液体流量标准装置一般要求设备紧凑,占用空间小,因此装置难以满足要求;(v)静态容积法或静态质量法液体流量标准装置不易节能,水泵一旦启动,即使检定期间更换水表,装置也不再停下,因此耗能严重。At present, the calibration devices used for water meter calibration are mainly static volumetric method or static mass method liquid flow standard devices. These two types of liquid flow standard devices meet the calibration requirements of water meters to a certain extent, but they also have obvious defects in use, mainly manifested as: (i) The static volumetric method liquid flow standard device has low efficiency in water meter calibration. Since the working measuring instrument of the static volumetric method liquid flow standard device is generally a gourd-shaped measuring instrument with a measuring neck. When the device water meter is used for flow calibration, the volume in the measuring instrument can only be read when the liquid reaches the measuring neck. Therefore, when the calibration flow is small, the calibration takes a long time, which is manifested as low calibration efficiency; (ii) The flow stabilization time is long. When the water meter is adjusted from one target flow point to another target flow point, the pressure in the corresponding pipeline will change accordingly. The change in the pressure in the pipeline will affect the change in the pressure in the pressure-stabilizing container, and the change in the pressure in the pressure-stabilizing container will affect the change in the amount of water supplied to the pressure-stabilizing container by the water pump. This change process requires a long adjustment time to stabilize the pressure in the pressure-stabilizing container within the constant pressure range, ensure the stability of the flow in the pipeline, and then realize the calibration of the water meter flow; (iii) The weighing scale in the static mass method liquid flow standard device is easily affected by the environment (such as vibration, temperature, humidity, etc.), and the environmental conditions are difficult to guarantee, especially the vibration of the water pump and the pipeline. Therefore, the weighing scale is easily affected by the environment and prone to zero drift, and the accuracy is difficult to guarantee; (iv) The static volume method or static mass method liquid flow standard device occupies a large space and is difficult to move once built. The liquid flow standard device used for calibrating the water meter flow generally requires compact equipment and small space, so the device is difficult to meet the requirements; (v) The static volume method or static mass method liquid flow standard device is not easy to save energy. Once the water pump is started, even if the water meter is replaced during the calibration period, the device will no longer stop, so the energy consumption is serious.
专利号为:ZL 2011 1 0339915.1,专利名称为:一种水表检定装置及水表检定的方法,公开了一种水表检定装置及水表检定的方法。该发明中的水表检定装置的各计时计频装置分别与对应的光电采样器和伺服电机的脉冲控制线路连接;保护套筒与液压缸的缸体固定连接,伺服电机固定在保护套筒上,伺服电机的转动轴通过联轴器与丝杠的一端固定连接,丝杠的另一端与丝杠螺母连接,丝杠螺母与液压缸的活塞的一端连接;液压缸设有缸体进水口和缸体出水口,水箱设有水箱进水口和水箱出水口,缸体进水口通过第一进水管与水箱出水口连通,缸体出水口处安装有出水管;水箱进水口处安装有第二进水管,第一进水管、第二进水管和出水管上均安装有开关阀。该发明的装置用于水表校验时存在的不足之处如下:(i)无法实现流量输出的宽量程比。仅以缸体作为容积标准,并采用活塞与缸体相配合,将缸体内的水由活塞的移动排出缸体,在出水管内按照一定的流速流经被检水表,实现被检水表的校验;由于活塞的水平移动是由伺服电机的转动通过丝杠、丝杠螺母的配合转换而成的,在流量较小时,需要丝杠以较低的角速度转动推动活塞缓慢运行,而丝杠的转动是由伺服电机驱动的,因此伺服电机必须以较低的角速度转动才能提供给丝杠较低的转动角速度,然而伺服电机在较低的转动速度下将会出现爬行现象,造成整个活塞系统运行不稳定,故该型活塞不能提供较小的流量;因此,在该型活塞所能提供的最大流量一定的前提下,由于该型活塞只能提供较大的流量,而无法提供较小流量,造成该型活塞所能提供的最大与最小流量之比较小,因而无法实现宽量程比。(ii)小流量条件下无法在被检水表下游提供足够的背压。校验被检水表时,为保证能够使被检水表正常工作,需要在被检水表下游提供足够的背压,而在小流量时由于被检水表下游管道中的水流损失较小,下游背压管由于厂房或实验室层高的限制,其高度一般不超过2m(校验台高度一般1m),该高度的背压管在水表下游形成的背压加上水流在被检水表下游管道中流动时克服管道的压损在被检水表下游形成的背压,不足以向被检水表提供足够的背压,因此小流量时,因无法向被检水表提供足够的背压,很容易造成被检水表不能正常工作,给被检水表校验带来困难。The patent number is: ZL 2011 1 0339915.1, and the patent name is: A water meter calibration device and a water meter calibration method, which discloses a water meter calibration device and a water meter calibration method. The timing and frequency counting devices of the water meter calibration device in the invention are respectively connected to the corresponding photoelectric sampler and the pulse control circuit of the servo motor; the protective sleeve is fixedly connected to the cylinder body of the hydraulic cylinder, the servo motor is fixed on the protective sleeve, the rotating shaft of the servo motor is fixedly connected to one end of the lead screw through a coupling, the other end of the lead screw is connected to the lead screw nut, and the lead screw nut is connected to one end of the piston of the hydraulic cylinder; the hydraulic cylinder is provided with a cylinder body water inlet and a cylinder body water outlet, the water tank is provided with a water tank water inlet and a water tank water outlet, the cylinder body water inlet is connected to the water tank water outlet through a first water inlet pipe, and a water outlet pipe is installed at the cylinder body water outlet; a second water inlet pipe is installed at the water tank water inlet, and switch valves are installed on the first water inlet pipe, the second water inlet pipe and the water outlet pipe. The device of the invention has the following shortcomings when used for water meter calibration: (i) It is impossible to achieve a wide range ratio of flow output. Only the cylinder body is used as the volume standard, and the piston is used to cooperate with the cylinder body. The water in the cylinder body is discharged from the cylinder body by the movement of the piston, and flows through the water meter to be tested at a certain flow rate in the outlet pipe to achieve the calibration of the water meter to be tested; because the horizontal movement of the piston is converted by the rotation of the servo motor through the cooperation of the lead screw and the lead screw nut, when the flow rate is small, the lead screw needs to rotate at a low angular velocity to push the piston to run slowly, and the rotation of the lead screw is driven by the servo motor, so the servo motor must rotate at a low angular velocity to provide the lead screw with a low rotation angular velocity. However, the servo motor will creep at a low rotation speed, causing the entire piston system to run unstably, so this type of piston cannot provide a small flow rate; therefore, under the premise that the maximum flow rate that this type of piston can provide is certain, since this type of piston can only provide a large flow rate and cannot provide a small flow rate, the ratio of the maximum and minimum flow rates that this type of piston can provide is small, so a wide range ratio cannot be achieved. (ii) Under low flow conditions, it is impossible to provide sufficient back pressure downstream of the water meter to be tested. When calibrating the water meter under test, in order to ensure that the water meter under test can work normally, it is necessary to provide sufficient back pressure downstream of the water meter under test. At low flow rates, due to the small water flow loss in the pipe downstream of the water meter under test, the height of the downstream back pressure pipe is generally not more than 2m due to the height limit of the factory building or laboratory (the height of the calibration table is generally 1m). The back pressure formed by the back pressure pipe of this height downstream of the water meter plus the back pressure formed downstream of the water meter under test when the water flows in the pipe downstream of the water meter under test to overcome the pressure loss of the pipe is not enough to provide sufficient back pressure to the water meter under test. Therefore, at low flow rates, due to the inability to provide sufficient back pressure to the water meter under test, it is easy to cause the water meter under test to malfunction, which brings difficulties to the calibration of the water meter under test.
专利号为:ZL 2016 1 0120739.1,专利名称为:一种恒流阀流量和差压校验的标准装置及校验的方法,公开了一种恒流阀流量和差压校验的标准装置及校验的方法。该发明中的恒流阀流量和差压校验标准装置的步进电机固定在减速机上,步进电机的转动轴与减速机输入轴套相连接,减速机的输出轴通过联轴器与丝杠一端的端部固定连接,丝杠一端的端部之后且紧邻端部处及丝杠的另一端均装有丝杠轴套,丝杠轴套之间的丝杠上装有丝杠螺母,丝杠螺母固定在可滑动金属支座的中间,可滑动金属支座下端与直线导轨连接,可滑动金属支座上部装有浮动接头,浮动接头与液压缸中的柱形活塞固定连接,柱形活塞与液压缸之间装有Y型密封圈;该发明中直线导轨的内侧装有光栅尺,光栅尺的光电读数头与可滑动金属支座固定连接;该发明中的液压缸设有缸体排气标定口,缸体排气标定口通过不锈钢管道与手动开关球阀一端固定连接,手动开关球阀另一端与背压管一端固定连接,背压管另一端与喷嘴固定连接,液压缸的进水口通过缸体进水开关球阀与水箱联通;液压缸的出水口与缸体出水开关球阀的一端连接,缸体出水开关球阀的另一端通过三通管、夹表器前开关球阀与前直管段连接,缸体出水开关球阀的另一端还通过三通管、排气水泵后开关球阀与排气水泵连接,排气水泵的出气口上设置有排气水泵前开关球阀;前直管段与后直管段之间设置有待校准的恒流阀,恒流阀的两端并联有差压变送器,后直管段通过指示流量计前开关球阀与指示流量计连接,指示流量计连接至水箱。与专利号为:ZL 20111 0339915.1,专利名称为:一种水表检定装置及水表检定的方法的发明专利类似,该发明的装置用于恒流阀的流量和差压校验时,存在的不足之处如下:(i)无法实现流量输出的宽量程比。该发明装置仅以柱形活塞作为容积标准,并采用柱形活塞与液压缸之间的配合,将液压缸内的水由柱形活塞的移动排出液压缸,在前、后直管段内按照一定的流速流经被恒流阀,实现被检恒流阀的流量和差压校验;由于柱形活塞的水平移动是由步进电机的转动通过丝杠和丝杠螺母的配合转换而成的,在流量较小时,丝杠需要以较低的转动角速度推动柱形活塞缓慢运行,而丝杠的转动是由步进电机驱动的,因此步进电机必须以较低的转动角速度才能提供给丝杠较低的转动角速度,然而步进电机在较低的转动速度下将会出现爬行现象,造成整个活塞系统运行不稳定,故该型活塞无法提供较小的流量;因此,在该型活塞所能提供的最大流量一定的前提下,由于该型活塞只能提供较大的流量,而无法提供较小流量,造成该型活塞所能提供的最大与最小流量之比较小,因而无法实现宽量程比。(ii)小流量条件下无法在被恒流阀下游提供足够的背压。校验被检恒流阀时,必须在被检恒流阀下游提供足够的背压,而在小流量时由于被检恒流阀下游管道中的水流损失较小,下游背压管由于厂房或实验室层高的限制,其高度一般不超过2m(校验台高度一般1m),该高度的背压管在恒流阀下游形成的背压加上水流在被检恒流阀下游管道中流动时克服管道的压损在被检恒流阀下游形成的背压,不足以向被检恒流阀提供足够的背压,因此小流量时,因无法向被检恒流阀提供足够的背压,很容易造成被检恒流阀工作不正常,给被检恒流阀校验带来困难。The patent number is: ZL 2016 1 0120739.1, and the patent name is: A standard device and calibration method for constant flow valve flow and differential pressure calibration, which discloses a standard device and calibration method for constant flow valve flow and differential pressure calibration. The stepper motor of the constant flow valve flow and differential pressure calibration standard device in the invention is fixed on the reducer, the rotating shaft of the stepper motor is connected to the input shaft sleeve of the reducer, the output shaft of the reducer is fixedly connected to the end of one end of the screw through a coupling, and a screw sleeve is installed behind the end of one end of the screw and close to the end and the other end of the screw, and a screw nut is installed on the screw between the screw sleeves, and the screw nut is fixed in the middle of the slidable metal support, the lower end of the slidable metal support is connected to the linear guide rail, and the upper part of the slidable metal support is equipped with a floating joint, which is fixedly connected to the cylindrical piston in the hydraulic cylinder, and a Y-type sealing ring is installed between the cylindrical piston and the hydraulic cylinder; a grating ruler is installed on the inner side of the linear guide rail in the invention, and the photoelectric reading head of the grating ruler is fixedly connected to the slidable metal support; the hydraulic cylinder in the invention is provided with a cylinder exhaust calibration port, and the cylinder The exhaust calibration port of the hydraulic cylinder is fixedly connected to one end of the manual switch ball valve through a stainless steel pipe, the other end of the manual switch ball valve is fixedly connected to one end of the back pressure pipe, the other end of the back pressure pipe is fixedly connected to the nozzle, and the water inlet of the hydraulic cylinder is connected to the water tank through the cylinder water inlet switch ball valve; the water outlet of the hydraulic cylinder is connected to one end of the cylinder water outlet switch ball valve, the other end of the cylinder water outlet switch ball valve is connected to the front straight pipe section through a three-way pipe and the clamp meter front switch ball valve, the other end of the cylinder water outlet switch ball valve is connected to the exhaust water pump through a three-way pipe and the exhaust water pump rear switch ball valve, and the exhaust water pump front switch ball valve is arranged on the air outlet of the exhaust water pump; a constant flow valve to be calibrated is arranged between the front straight pipe section and the rear straight pipe section, and differential pressure transmitters are connected in parallel at both ends of the constant flow valve, the rear straight pipe section is connected to the indicating flowmeter through the indicating flowmeter front switch ball valve, and the indicating flowmeter is connected to the water tank. Similar to the invention patent with patent number: ZL 20111 0339915.1, patent name: A water meter calibration device and a water meter calibration method, the device of the invention has the following shortcomings when used for flow and differential pressure calibration of a constant flow valve: (i) It is impossible to achieve a wide range ratio of flow output. The device of the invention only uses the cylindrical piston as the volume standard, and adopts the cooperation between the cylindrical piston and the hydraulic cylinder. The water in the hydraulic cylinder is discharged from the hydraulic cylinder by the movement of the cylindrical piston, and flows through the constant flow valve at a certain flow rate in the front and rear straight pipe sections, so as to realize the flow and differential pressure calibration of the constant flow valve under inspection; since the horizontal movement of the cylindrical piston is converted by the rotation of the stepper motor through the cooperation of the lead screw and the lead screw nut, when the flow rate is small, the lead screw needs to push the cylindrical piston to move slowly at a low rotation angular velocity, and the rotation of the lead screw is driven by the stepper motor, so the stepper motor must be at a low rotation angular velocity to provide the lead screw with a low rotation angular velocity. However, the stepper motor will have a creeping phenomenon at a low rotation speed, causing the entire piston system to run unstably, so this type of piston cannot provide a small flow rate; therefore, under the premise that the maximum flow rate that this type of piston can provide is certain, since this type of piston can only provide a large flow rate but cannot provide a small flow rate, the ratio between the maximum and minimum flow rates that this type of piston can provide is small, and thus a wide range ratio cannot be achieved. (ii) Under the condition of small flow rate, sufficient back pressure cannot be provided downstream of the constant flow valve. When calibrating the constant flow valve to be tested, sufficient back pressure must be provided downstream of the constant flow valve to be tested. At low flow rates, due to the small water flow loss in the pipeline downstream of the constant flow valve to be tested, the height of the downstream back pressure pipe is generally not more than 2m due to the height limit of the factory building or laboratory (the height of the calibration table is generally 1m). The back pressure formed by the back pressure pipe of this height downstream of the constant flow valve plus the back pressure formed downstream of the constant flow valve to overcome the pressure loss of the pipeline when the water flows in the pipeline downstream of the constant flow valve to be tested is not enough to provide sufficient back pressure to the constant flow valve to be tested. Therefore, at low flow rates, due to the inability to provide sufficient back pressure to the constant flow valve to be tested, it is easy to cause the constant flow valve to be tested to malfunction, which brings difficulties to the calibration of the constant flow valve to be tested.
综上所述,由于静态容积法或静态质量法液体流量标准装置存在的诸多缺陷及专利号分别为:ZL 2011 1 0339915.1、ZL 2016 1 0120739.1,对应的专利名称分别为:一种水表检定装置及水表检定的方法、一种恒流阀流量和差压校验的标准装置及校验的方法的发明专利中存在的不足,因此急需一种新型的宽量程比的液体流量标准(或水表校验)装置替代目前的静态容积法、静态质量法或专利号为:ZL 2011 1 0339915.1、ZL 2016 10120739.1中发明的液体流量标准装置。In summary, due to the many defects of the static volume method or static mass method liquid flow standard device and the patent numbers are: ZL 2011 1 0339915.1, ZL 2016 1 0120739.1, and the corresponding patent names are: a water meter calibration device and a water meter calibration method, a constant flow valve flow and differential pressure calibration standard device and a calibration method, there is an urgent need for a new type of wide range ratio liquid flow standard (or water meter calibration) device to replace the current static volume method, static mass method or patent numbers: ZL 2011 1 0339915.1, ZL 2016 10120739.1 invented liquid flow standard device.
发明内容Summary of the invention
本发明的目的是提供一种用于水表校验的柱盘结合形的宽量程比活塞式水表校验装置及利用该装置对水表进行校验的方法。The purpose of the present invention is to provide a column-disk combined type wide range ratio piston type water meter calibration device for water meter calibration and a method for calibrating a water meter using the device.
为实现上述目的,本发明所采取的技术方案是:所提供的宽量程比水表校验标准装置包括作为主标准器的活塞式装置及外围系统、检定装置、加压系统、高位水箱和排气系统。作为主标准器的活塞式装置及外围系统包括伺服电机、减速机、减速机金属支座、联轴器、丝杠前金属支座、丝杠、直线导轨、活塞金属支架、可滑动金属支座、丝杠螺母、浮动接头、柱形活塞、前缸体进水开关球阀、前缸体进水管道、前缸体排气管道、前缸体手动排气球阀、活塞缸前法兰、活塞缸、前缸体出水管道、前缸体出水开关球阀、丝杠后金属支座、活塞金属支座、盘形活塞、活塞缸后法兰、后缸体手动排气球阀、后缸体排气管道、后缸体进水管道、后缸体进水开关球阀、后缸体出水管道、后缸体出水开关球阀、前后缸体出水管隔离球阀、前后缸体出水管隔离球阀连接管。检定装置包括夹表器前开关球阀、夹表器前连接管道、夹表器、前直管段、被检水表机电转换装置、被检水表、后直管段、检定装置支撑架、汇管、小口径背压开关球阀、同通径背压开关球阀、小口径背压管道、同通径背压管道。加压系统包括加压水泵出水管道、加压水泵后开关球阀、加压水泵、加压水泵前开关球阀、加压水泵进水管道;加压水泵出水管通过三通管与小口径背压管道固定连接。排气系统包括排气进水管道、排气水泵前开关球阀、排气水泵、排气水泵后开关球阀、排气出水管道。To achieve the above purpose, the technical solution adopted by the present invention is: the provided wide range ratio water meter calibration standard device includes a piston device as a main standard and a peripheral system, a calibration device, a pressurizing system, a high-level water tank and an exhaust system. The piston device and peripheral systems serving as the main standard include a servo motor, a reducer, a reducer metal support, a coupling, a front metal support of the screw, a screw, a linear guide, a piston metal bracket, a slidable metal support, a screw nut, a floating joint, a cylindrical piston, a front cylinder water inlet switch ball valve, a front cylinder water inlet pipe, a front cylinder exhaust pipe, a front cylinder manual exhaust ball valve, a piston cylinder front flange, a piston cylinder, a front cylinder water outlet pipe, a front cylinder water outlet switch ball valve, a screw rear metal support, a piston metal support, a disc piston, a piston cylinder rear flange, a rear cylinder manual exhaust ball valve, a rear cylinder exhaust pipe, a rear cylinder water inlet pipe, a rear cylinder water inlet switch ball valve, a rear cylinder water outlet pipe, a rear cylinder water outlet switch ball valve, front and rear cylinder water outlet pipe isolation ball valves, and a front and rear cylinder water outlet pipe isolation ball valve connecting pipe. The calibration device includes a switch ball valve in front of the meter clamp, a connecting pipe in front of the meter clamp, a meter clamp, a front straight pipe section, an electromechanical conversion device for the water meter to be tested, a water meter to be tested, a rear straight pipe section, a calibration device support frame, a manifold, a small-diameter back-pressure switch ball valve, a back-pressure switch ball valve with the same diameter, a small-diameter back-pressure pipe, and a back-pressure pipe with the same diameter. The pressurization system includes a pressure water pump outlet pipe, a switch ball valve after the pressure water pump, a pressure water pump, a switch ball valve in front of the pressure water pump, and a pressure water pump inlet pipe; the pressure water pump outlet pipe is fixedly connected to the small-diameter back-pressure pipe through a tee pipe. The exhaust system includes an exhaust water inlet pipe, a switch ball valve in front of the exhaust water pump, an exhaust water pump, a switch ball valve after the exhaust water pump, and an exhaust water outlet pipe.
活塞式装置及外围系统采用伺服电机作为驱动装置,伺服电机固定减速机上,伺服电机固定安装在减速机外壳上,减速机固定安装在减速机金属支座上,减速机金属支座固定安装在活塞金属支架上,伺服电机的转动轴与减速机的输入轴套相连接,减速机的输出轴通过联轴器与丝杠一端的端部最前端固定连接,丝杠一端的端部与丝杠螺纹之间及丝杠另一端的端部与丝杠螺纹之间均装有丝杠轴套,丝杠轴套之间的丝杠上装有丝杠螺母,丝杠螺母固定在可滑动金属支座的中间,可滑动金属支座下端与直线导轨连接,可滑动金属支座上部装有浮动接头,浮动接头与活塞缸中的柱形活塞的一端固定连接,柱形活塞与活塞缸之间留有一定的充水空隙,柱形活塞与活塞缸前法兰之间采用Y型密封圈密封,Y型密封圈固定安装在活塞缸前法兰上,活塞缸前法兰固定安装在活塞缸的前端,活塞缸与活塞缸前法兰之间采用O型密封圈密封;柱形活塞的另一端与安装在活塞缸内的盘形活塞固定连接,盘形活塞与活塞缸之间装有Y型密封圈和导向环,活塞缸后法兰固定安装在活塞缸的后端,活塞缸与活塞缸后法兰之间采用O型密封圈密封,丝杠轴套和活塞缸均固定安装在各自对应的金属支座上;活塞缸前法兰上设有前缸体排气标定口、前缸体进水口和前缸体出水口;前缸体排气标定口通过前缸体排气连接管道与前缸体手动排气球阀一端固定连接,前缸体手动排气球阀另一端与前缸体排气管道的一端固定连接,前缸体排气管道为具有一定高度(高出横卧活塞缸一定距离)的刚性管道,前缸体排气管道的另一端为出水口向下的倒U型管道;前缸体进水口通过前缸体进水口连接管道与前缸体进水开关球阀的一端固定连接,前缸体进水开关球阀的另一端与前缸体进水管道的一端固定连接,前缸体进水管道的另一端与高位水箱上的前缸体供水口固定连接;前缸体出水口通过前缸体出水连接管道与前缸体出水开关球阀的一端固定连接,前缸体出水开关球阀的另一端与前缸体出水管道的一端固定连接,前缸体出水管道的另一端与前后缸体出水管隔离球阀的一端固定连接,前后缸体出水管隔离球阀的另一端与前后缸体出水管隔离球阀连接管的一端固定连接,前后缸体出水管隔离球阀连接管的另一端通过T形三通与排气水泵出水管道固定连接;活塞缸后法兰上设有后缸体排气标定口、后缸体进水口和后缸体出水口;后缸体排气标定口通过后缸体排气连接管道与后缸体手动排气球阀一端固定连接,后缸体手动排气球阀另一端与后缸体排气管的一端固定连接,后缸体排气管道为具有一定高度(高出活塞缸(活塞缸为横卧活塞缸)一定距离)的刚性管道,后缸体排气管道的另一端为出水口向下的倒U型管道;后缸体进水口通过后缸体进水口连接管道与后缸体进水开关球阀的一端固定连接,后缸体进水开关球阀的另一端与后缸体进水管道的一端固定连接,后缸体进水管道的另一端与高位水箱上的后缸体供水口固定连接;后缸体出水口通过后缸体出水连接管道与后缸体出水开关球阀的一端固定连接,后缸体出水开关球阀的另一端与后缸体出水管道的一端固定连接,后缸体出水管道的另一端与夹表器前开关球阀的一端固定连接。检定装置的夹表器固定安装在检定装置支撑架前端,夹表器的进水端通过夹表器前连接管道与夹表器前开关球阀的另一端固定连接,夹表器的出水端与前直管段的一端连接,前直管段与被检水表的进水端连接,被检水表的出水端与后直管段的一端固定连接,后直管段的另一端与同通径的汇管的一端固定连接,同通径汇管的另一端与弯头的一端固定连接,弯头的另一端与垂直向上的同通径的背压连接管一端固定连接,同通径背压连接管的另一端与同通径背压开关球阀的一端固定连接,同通径背压开关球阀的另一端与同通径背压管的一端固定连接,同通径背压管的另一端与高位水箱上的同通径背压管出水口固定连接;汇管固定安装在检定装置支撑架的末端,汇管中间位置垂直向上的外壁上开有出水孔(出水孔内径不大于DN15),与出水孔内径相同的小口径背压连接管的一端与该出水孔相连通,并固定在出水孔周围的汇管外壁上,小口径背压连接管的另一端与小口径背压开关球阀一端固定连接,小口径背压开关球阀另一端与小口径背压管一端固定连接,小口径背压管的另一端与高位水箱上的小口径背压管出水口固定连接;小口径背压管中间位置处装有T型三通,T型三通相对的两个管口与小口径背压管串联固定,T型三通的另一管口与水泵出水管的另一端固定连接。加压系统的加压水泵进水口与加压水泵进水连接管的一端固定连接,加压水泵进水连接管另一端与加压水泵前开关球阀的一端固定连接,加压水泵前开关球阀的另一端与加压水泵进水管的一端固定连接,加压水泵进水管的另一端与高位水箱的加压水泵供水口固定连接;加压水泵出水口与加压水泵出水连接管的一端固定连接,加压水泵出水连接管的另一端与加压水泵后开关球阀的一端固定连接,加压水泵后开关球阀的另一端与加压水泵出水管的一端固定连接,加压水泵出水管的另一端与T型三通的另一管口固定连接。高位水箱置于高于横卧活塞的位置处,设有前缸体供水口、后缸体供水口、水泵供水口、小口径背压管出水口和同通径背压管出水口。高位水箱为方形水箱,水箱内净高不低于0.7m,水箱内水位高度不低于0.5m,高位水箱底部高于活塞缸。排气系统的排气进水管道一端与高位水箱固定连接,排气进水管道一端的进水口位于高位水箱内,排气进水管道的另一端与排气水泵前开关球阀的一端固定连接,排气水泵前开关球阀的另一端与排气水泵前连接管道的一端固定连接,排气水泵前连接管道的另一端与排气水泵的进水口固定连接,排气水泵的出水口与排气水泵后连接管道的一端固定连接,排气水泵后连接管道的另一端与排气水泵后开关球阀的一端固定连接,排气水泵后开关球阀的另一端与排气水泵出水管道的一端固定连接,排气水泵出水管的另一端与高位水箱固定连接,排气水泵出水管另一端的出水口位于高位水箱内。The piston type device and peripheral system use a servo motor as a driving device, the servo motor is fixed on the reducer, the servo motor is fixedly installed on the reducer housing, the reducer is fixedly installed on the reducer metal support, the reducer metal support is fixedly installed on the piston metal bracket, the rotating shaft of the servo motor is connected to the input shaft sleeve of the reducer, the output shaft of the reducer is fixedly connected to the front end of one end of the screw through a coupling, a screw sleeve is installed between the end of one end of the screw and the screw thread and between the end of the other end of the screw and the screw thread, a screw nut is installed on the screw between the screw sleeves, the screw nut is fixed in the middle of the slidable metal support, the lower end of the slidable metal support is connected to the linear guide, the upper part of the slidable metal support is equipped with a floating joint, the floating joint is fixedly connected to one end of the cylindrical piston in the piston cylinder, a certain water-filled gap is left between the cylindrical piston and the piston cylinder, a Y-type sealing ring is used to seal between the cylindrical piston and the front flange of the piston cylinder, and the Y-type sealing ring is used to seal The sealing ring is fixedly installed on the front flange of the piston cylinder, and the front flange of the piston cylinder is fixedly installed on the front end of the piston cylinder. An O-ring is used to seal the piston cylinder and the front flange of the piston cylinder; the other end of the cylindrical piston is fixedly connected to the disc piston installed in the piston cylinder, and a Y-ring and a guide ring are installed between the disc piston and the piston cylinder. The rear flange of the piston cylinder is fixedly installed on the rear end of the piston cylinder, and an O-ring is used to seal the piston cylinder and the rear flange of the piston cylinder. The screw sleeve and the piston cylinder are fixedly installed on their respective corresponding metal supports; the front flange of the piston cylinder is provided with a front cylinder exhaust calibration port, a front cylinder water inlet and a front cylinder water outlet; the front cylinder exhaust calibration port is fixedly connected to one end of the front cylinder manual exhaust ball valve through the front cylinder exhaust connecting pipe, and the other end of the front cylinder manual exhaust ball valve is fixedly connected to one end of the front cylinder exhaust pipe. The front cylinder exhaust pipe is a rigid pipe with a certain height (a certain distance higher than the horizontal piston cylinder), and the other end of the front cylinder exhaust pipe is a water outlet The water inlet of the front cylinder body is fixedly connected to one end of the front cylinder body water inlet switch ball valve through the front cylinder body water inlet connecting pipe, and the other end of the front cylinder body water inlet switch ball valve is fixedly connected to one end of the front cylinder body water inlet pipe, and the other end of the front cylinder body water inlet pipe is fixedly connected to the front cylinder body water supply port on the high-level water tank; the front cylinder body water outlet is fixedly connected to one end of the front cylinder body water outlet switch ball valve through the front cylinder body water outlet connecting pipe, and the other end of the front cylinder body water outlet switch ball valve is fixedly connected to one end of the front cylinder body water outlet pipe, and the other end of the front cylinder body water outlet pipe is fixedly connected to one end of the front and rear cylinder body water outlet pipe isolation ball valve, and the other end of the front and rear cylinder body water outlet pipe isolation ball valve connecting pipe is fixedly connected to one end of the front and rear cylinder body water outlet pipe isolation ball valve connecting pipe, and the other end of the front and rear cylinder body water outlet pipe isolation ball valve connecting pipe is fixedly connected to the exhaust water pump outlet pipe through a T-shaped tee; the rear cylinder body exhaust calibration port, the rear cylinder body water inlet and the rear cylinder body water outlet are provided on the rear flange of the piston cylinder; the rear cylinder body exhaust The gas calibration port is fixedly connected to one end of the manual exhaust ball valve of the rear cylinder through the rear cylinder exhaust connecting pipe, and the other end of the manual exhaust ball valve of the rear cylinder is fixedly connected to one end of the exhaust pipe of the rear cylinder; the exhaust pipe of the rear cylinder is a rigid pipe with a certain height (a certain distance higher than the piston cylinder (the piston cylinder is a horizontal piston cylinder)), and the other end of the exhaust pipe of the rear cylinder is an inverted U-shaped pipe with a water outlet downward; the water inlet of the rear cylinder is fixedly connected to one end of the water inlet switch ball valve of the rear cylinder through the water inlet connecting pipe of the rear cylinder, the other end of the water inlet switch ball valve of the rear cylinder is fixedly connected to one end of the water inlet pipe of the rear cylinder, and the other end of the water inlet pipe of the rear cylinder is fixedly connected to the water supply port of the rear cylinder on the high-level water tank; the water outlet of the rear cylinder is fixedly connected to one end of the water outlet switch ball valve of the rear cylinder through the water outlet connecting pipe of the rear cylinder, the other end of the water outlet switch ball valve of the rear cylinder is fixedly connected to one end of the water outlet pipe of the rear cylinder, and the other end of the water outlet pipe of the rear cylinder is fixedly connected to one end of the switch ball valve in front of the meter clamp. The meter clamp of the calibration device is fixedly installed at the front end of the calibration device support frame, the water inlet end of the meter clamp is fixedly connected to the other end of the switch ball valve in front of the meter clamp through the front connecting pipe of the meter clamp, the water outlet end of the meter clamp is connected to one end of the front straight pipe section, the front straight pipe section is connected to the water inlet end of the water meter to be inspected, the water outlet end of the water meter to be inspected is fixedly connected to one end of the rear straight pipe section, the other end of the rear straight pipe section is fixedly connected to one end of a manifold with the same diameter, the other end of the manifold with the same diameter is fixedly connected to one end of an elbow, the other end of the elbow is fixedly connected to one end of a back-pressure connecting pipe with the same diameter extending vertically upward, the other end of the back-pressure connecting pipe with the same diameter is fixedly connected to one end of a back-pressure switch ball valve with the same diameter, the other end of the back-pressure switch ball valve with the same diameter is fixedly connected to one end of a back-pressure pipe with the same diameter, and the other end of the back-pressure pipe with the same diameter is fixedly connected to the same The water outlet of the full-diameter back-pressure pipe is fixedly connected; the manifold is fixedly installed at the end of the support frame of the calibration device, and a water outlet hole is opened on the outer wall vertically upward in the middle position of the manifold (the inner diameter of the water outlet hole is not greater than DN15), one end of a small-diameter back-pressure connecting pipe with the same inner diameter as the water outlet hole is connected to the water outlet hole and fixed on the outer wall of the manifold around the water outlet hole, the other end of the small-diameter back-pressure connecting pipe is fixedly connected to one end of the small-diameter back-pressure switching ball valve, the other end of the small-diameter back-pressure switching ball valve is fixedly connected to one end of the small-diameter back-pressure pipe, and the other end of the small-diameter back-pressure pipe is fixedly connected to the water outlet of the small-diameter back-pressure pipe on the high-level water tank; a T-type tee is installed in the middle position of the small-diameter back-pressure pipe, and the two opposite pipe openings of the T-type tee are fixed in series with the small-diameter back-pressure pipe, and the other pipe opening of the T-type tee is fixedly connected to the other end of the water pump outlet pipe. The water inlet of the pressurized water pump of the pressurized system is fixedly connected to one end of the water inlet connecting pipe of the pressurized water pump, the other end of the water inlet connecting pipe of the pressurized water pump is fixedly connected to one end of the switch ball valve in front of the pressurized water pump, the other end of the switch ball valve in front of the pressurized water pump is fixedly connected to one end of the water inlet pipe of the pressurized water pump, and the other end of the water inlet pipe of the pressurized water pump is fixedly connected to the water supply port of the pressurized water pump of the high-level water tank; the water outlet of the pressurized water pump is fixedly connected to one end of the water outlet connecting pipe of the pressurized water pump, the other end of the water outlet connecting pipe of the pressurized water pump is fixedly connected to one end of the switch ball valve behind the pressurized water pump, the other end of the switch ball valve behind the pressurized water pump is fixedly connected to one end of the water outlet pipe of the pressurized water pump, and the other end of the water outlet pipe of the pressurized water pump is fixedly connected to the other pipe opening of the T-type three-way. The high-level water tank is placed at a position higher than the horizontal piston, and is provided with a front cylinder water supply port, a rear cylinder water supply port, a water pump water supply port, a small-diameter back pressure pipe water outlet, and a back pressure pipe water outlet of the same diameter. The high-level water tank is a square water tank, the net height inside the water tank is not less than 0.7m, the water level inside the water tank is not less than 0.5m, and the bottom of the high-level water tank is higher than the piston cylinder. One end of the exhaust water inlet pipe of the exhaust system is fixedly connected to the high-level water tank, the water inlet at one end of the exhaust water inlet pipe is located in the high-level water tank, the other end of the exhaust water inlet pipe is fixedly connected to one end of the exhaust water pump front switch ball valve, the other end of the exhaust water pump front switch ball valve is fixedly connected to one end of the exhaust water pump front connecting pipe, the other end of the exhaust water pump front connecting pipe is fixedly connected to the water inlet of the exhaust water pump, the water outlet of the exhaust water pump is fixedly connected to one end of the exhaust water pump rear connecting pipe, the other end of the exhaust water pump rear connecting pipe is fixedly connected to one end of the exhaust water pump rear switch ball valve, the other end of the exhaust water pump rear switch ball valve is fixedly connected to one end of the exhaust water pump outlet pipe, the other end of the exhaust water pump outlet pipe is fixedly connected to the high-level water tank, and the water outlet at the other end of the exhaust water pump outlet pipe is located in the high-level water tank.
进一步地,本发明所述伺服电机用步进电机替换。Furthermore, the servo motor described in the present invention is replaced by a stepper motor.
本发明使用以上水表校验装置校验水表的小流量时,在被检水表下游的后直管段产生背压的方法包括如下步骤和原理:When the water meter calibration device is used to calibrate the small flow of the water meter, the method for generating back pressure in the rear straight pipe section downstream of the water meter to be tested comprises the following steps and principles:
i)控制旋转至与所需校验的被检水表的小流量点相对应的转速的同时,开启加压水泵前开关球阀、启动加压水泵。i) While controlling the rotation speed to correspond to the small flow point of the water meter to be calibrated, open the ball valve before turning on the booster pump and start the booster pump.
ii)高位水箱中的水在加压水泵作用下,经由加压水泵进水管、加压水泵前开关球阀、加压水泵、加压水泵后开关球阀、加压水泵出水管道后进入小口径背压管道,并最终由小口径背压管道流入高位水箱。ii) Under the action of the booster water pump, the water in the high-level water tank passes through the booster water pump inlet pipe, the booster water pump front switch ball valve, the booster water pump, the booster water pump rear switch ball valve, the booster water pump outlet pipe, and then enters the small-diameter back-pressure pipe, and finally flows into the high-level water tank from the small-diameter back-pressure pipe.
iii)加压水泵供给的水流经由小口径背压管道流入高位水箱时,该水流在管道压损的作用,在小口径背压管道中将快速产生超过被检水表校验时所需的最小背压,该背压通过后直管段传送至被检水表。iii) When the water supplied by the booster pump flows into the high-level water tank through the small-diameter back-pressure pipe, the water flow will quickly generate a back pressure in the small-diameter back-pressure pipe that exceeds the minimum back pressure required for calibrating the water meter being tested due to the pressure loss in the pipe. The back pressure is transmitted to the water meter being tested through the rear straight pipe section.
iv)加压水泵的启动与校验被检水表小流量点时伺服电机反向加速控制同步,且加压水泵供给水流的流量稳定时间和伺服电机反向加速至校验被检水表流量点所对应的恒定转速时间均较短,二者可在短时间内达到流量平衡点,也即在短时间内就可实现小流量校验背压系统对被检水表建立恒定、足够的背压。iv) The start-up of the booster pump is synchronized with the reverse acceleration control of the servo motor when verifying the small flow point of the water meter under test, and the flow stabilization time of the water flow supplied by the booster pump and the time for the servo motor to reversely accelerate to a constant speed corresponding to the flow point of the water meter under test are both short. The two can reach the flow balance point in a short time, that is, the small flow verification back pressure system can establish a constant and sufficient back pressure for the water meter under test in a short time.
本发明使用以上水表校验装置对水表进行校验的方法包括如下步骤:The method for calibrating a water meter using the above water meter calibration device of the present invention comprises the following steps:
A.大流量点的校验A. Calibration of large flow points
a)将被检水表安装在所述的前直管段和所述的后直管段之间。a) Install the water meter to be tested between the front straight pipe section and the rear straight pipe section.
b)执行步骤9),控制伺服电机反向转动带动减速机作同向转动,伺服电机的转动经减速机减速后驱动丝杠作反向转动,丝杠的反向转动通过丝杠与丝杠螺母的配合转换为丝杠螺母的反向水平移动,丝杠螺母的反向水平移动带动可滑动金属支座作反向同步水平移动,可滑动金属支座的反向同步水平移动带动浮动接头作反向同步水平移动,浮动接头的反向同步水平移动拉动柱形活塞和盘形活塞作反向同步水平移动,直至柱形活塞的另一端和盘形活塞到达活塞缸顶部。b) Execute step 9), control the servo motor to rotate in the opposite direction to drive the reducer to rotate in the same direction, the rotation of the servo motor is reduced by the reducer to drive the lead screw to rotate in the opposite direction, the reverse rotation of the lead screw is converted into the reverse horizontal movement of the lead screw nut through the cooperation of the lead screw and the lead screw nut, the reverse horizontal movement of the lead screw nut drives the slidable metal support to move in the opposite synchronous horizontal direction, the reverse synchronous horizontal movement of the slidable metal support drives the floating joint to move in the opposite synchronous horizontal direction, the reverse synchronous horizontal movement of the floating joint pulls the cylindrical piston and the disc piston to move in the opposite synchronous horizontal direction until the other end of the cylindrical piston and the disc piston reach the top of the piston cylinder.
c)关闭所述的前后缸体出水管隔离球阀和后缸体出水开关球阀;打开所述的夹表器前开关球阀、小口径背压开关球阀、同通径背压开关球阀、排气水泵前开关球阀和排气水泵后开关球阀,启动排气水泵将后缸体出水管道、夹表器前开关球阀、夹表器前连接管道、夹表器、前直管段、被检水表、后直管段、汇管、小口径背压开关球阀、同通径背压开关球阀、小口径背压管道、同通径背压管道、排气进水管道、排气水泵前开关球阀、排气水泵、排气出水管道中的空气排除干净。c) Close the isolation ball valves of the front and rear cylinder water outlet pipes and the switch ball valve of the rear cylinder water outlet; open the switch ball valve in front of the meter clamp, the small-diameter back pressure switch ball valve, the same-diameter back pressure switch ball valve, the switch ball valve in front of the exhaust water pump and the switch ball valve in the back of the exhaust water pump, start the exhaust water pump to remove the air from the rear cylinder water outlet pipe, the switch ball valve in front of the meter clamp, the connecting pipe in front of the meter clamp, the meter clamp, the front straight pipe section, the water meter to be inspected, the rear straight pipe section, the manifold, the small-diameter back pressure switch ball valve, the same-diameter back pressure switch ball valve, the small-diameter back pressure pipe, the same-diameter back pressure pipe, the exhaust water inlet pipe, the switch ball valve in front of the exhaust water pump, the exhaust water pump, and the exhaust water outlet pipe.
d)关闭所述的前缸体手动排气球阀、前缸体出水开关球阀、前后缸体出水管隔离球阀、后缸体手动排气球阀、后缸体进水开关球阀、排气水泵后开关球阀、小口径背压开关球阀;打开所述的前缸体进水开关球阀、后缸体出水开关球阀、夹表器前开关球阀、同通径背压开关球阀。d) Close the front cylinder manual exhaust ball valve, the front cylinder water outlet switch ball valve, the front and rear cylinder water outlet pipe isolation ball valves, the rear cylinder manual exhaust ball valve, the rear cylinder water inlet switch ball valve, the exhaust water pump rear switch ball valve, and the small-diameter back pressure switch ball valve; open the front cylinder water inlet switch ball valve, the rear cylinder water outlet switch ball valve, the meter clamp front switch ball valve, and the same-diameter back pressure switch ball valve.
e)控制伺服电机正向加速旋转至与所需的校验流量相对应的转速后保持匀速转动,同时伺服电机的正向转动经减速机一定减速比减速后驱动丝杠作正向转动,并通过丝杠与丝杠螺母、可滑动金属支座、浮动接头、柱形活塞和盘形活塞之间的配合将丝杠的转动转换为柱形活塞和盘形活塞的水平移动,柱形活塞和盘形活塞的水平移动一方面将高位水箱中的水通过前缸体进水管道和前缸体进水开关球阀吸入位于活塞缸内活塞缸前法兰、柱形活塞及盘形活塞之间的空间为充水空间,另一方面将位于活塞缸后法兰、盘形活塞之间的充水空间中的水在盘形活塞的推动下以按所需的校验流量通过后缸体出水开关球阀、后缸体出水管道向外排出,经过夹表器前开关球阀、夹表器前连接管道、夹表器、前直管段、被检水表、后直管段、汇管、同通径背压开关球阀、同通径背压管道后进入高位水箱;在柱形活塞和盘形活塞相应地由加速水平移动转为匀速水平移动后,时间频率记录仪开始对驱动伺服电机转动的频率进行累积,同时记录频率累积开始时间t1;在柱形活塞和盘形活塞相应地由加速水平移动转为匀速水平移动后,时间频率记录仪开始对被检水表的输出的频率信号进行累积,同时记录频率累积开始时间t'1;当时间频率记录仪对被检水表的输出的频率信号的累积达到最低频率信号个数时,时间频率记录仪停止对被检水表的输出的频率信号的累积,同时记录累积停止时间t'2和频率信号的累积个数N';时间频率记录仪停止对被检水表的输出的频率信号的累积后,时间频率记录仪接着停止对被检水表的输出的频率信号的累积,同时记录累积停止时间t2和频率信号的累积个数N。e) Control the servo motor to accelerate forward to a speed corresponding to the required calibration flow rate and then maintain a uniform rotation. At the same time, the forward rotation of the servo motor is decelerated by a certain reduction ratio of the reducer to drive the lead screw to rotate forward, and the rotation of the lead screw is converted into horizontal movement of the columnar piston and the disc piston through the cooperation between the lead screw and the lead screw nut, the slidable metal support, the floating joint, the columnar piston and the disc piston. The horizontal movement of the columnar piston and the disc piston draws water from the high-level water tank through the front cylinder water inlet pipe and the front cylinder water inlet switch ball valve into the space between the front flange of the piston cylinder, the columnar piston and the disc piston in the piston cylinder to fill the water. On the other hand, the water in the water-filled space between the rear flange of the piston cylinder and the disc-shaped piston is discharged outward through the rear cylinder water outlet switch ball valve and the rear cylinder water outlet pipe at the required calibration flow rate under the push of the disc-shaped piston, and enters the high-level water tank after passing through the switch ball valve in front of the meter clamp, the connecting pipe in front of the meter clamp, the meter clamp, the front straight pipe section, the water meter to be inspected, the rear straight pipe section, the manifold, the back pressure switch ball valve with the same diameter, and the back pressure pipe with the same diameter; after the cylindrical piston and the disc-shaped piston are converted from accelerated horizontal movement to uniform horizontal movement accordingly, the time frequency recorder begins to accumulate the frequency of the servo motor, and records the frequency accumulation start time t 1 ; after the cylindrical piston and the disc piston change from accelerated horizontal movement to uniform horizontal movement respectively, the time-frequency recorder starts to accumulate the frequency signal of the output of the water meter under test, and records the frequency accumulation start time t'1 ; when the accumulation of the frequency signal of the output of the water meter under test by the time-frequency recorder reaches the minimum number of frequency signals, the time-frequency recorder stops accumulating the frequency signal of the output of the water meter under test, and records the accumulation stop time t'2 and the accumulated number of frequency signals N'; after the time-frequency recorder stops accumulating the frequency signal of the output of the water meter under test, the time-frequency recorder then stops accumulating the frequency signal of the output of the water meter under test, and records the accumulation stop time t2 and the accumulated number of frequency signals N.
f)根据时间频率记录仪记录的被检水表的频率信号的累积个数N'及对应的累积开始时间t'1和结束时间t'2,按式(1)计算频率信号累积时间段内被检水表的平均流量:f) According to the cumulative number N' of the frequency signals of the water meter under test recorded by the time frequency recorder and the corresponding cumulative start time t'1 and end time t'2 , the average flow rate of the water meter under test during the frequency signal accumulation period is calculated according to formula (1):
Q=(P×N')/(t'2-t'1) (1)Q=(P×N')/( t'2 - t'1 ) (1)
式中,Q为对被检水表输出的频率信号进行累积的时间段内的平均流量;P为水流过被检水表时的每个频率信号代表的水的累积量。Wherein, Q is the average flow rate during the time period of accumulating the frequency signals output by the inspected water meter; P is the cumulative amount of water represented by each frequency signal when water flows through the inspected water meter.
g)根据时间频率记录仪记录的伺服电机的频率信号的累积个数N及对应的累积开始时间t1和结束时间t2,按式(2)计算频率信号累积时间段内的水表校验标准装置的平均流量:g) According to the cumulative number N of the servo motor frequency signals recorded by the time frequency recorder and the corresponding cumulative start time t1 and end time t2 , the average flow rate of the water meter calibration standard device within the frequency signal accumulation time period is calculated according to formula (2):
q=πD2ipωN/[4(t2-t1)] (2)q=πD 2 ipωN/[4(t 2 -t 1 )] (2)
式中,q为频率信号累积时间段内的水表校验标准装置的平均流量;π为圆周率;D为活塞缸内直径;i为减速机的变速比;p为丝杠导程;ω为伺服电机(1)接收到每个频率信号时伺服电机(1)转动轴转过的角度。Wherein, q is the average flow rate of the water meter calibration standard device within the frequency signal accumulation time period; π is the pi; D is the inner diameter of the piston cylinder; i is the speed ratio of the reducer; p is the lead of the screw; ω is the angle of rotation of the rotating shaft of the servo motor (1) when the servo motor (1) receives each frequency signal.
h)根据式(3)计算得到被检水表(37)被检验流量点的示值误差:h) According to formula (3), the indication error of the inspected flow point of the inspected water meter (37) is calculated as follows:
E=(Q-q)/q×100% (3)E=(Q-q)/q×100% (3)
式中,E为被检水表被检验流量点的示值误差。Where E is the indication error of the inspected flow point of the inspected water meter.
i)根据被检水表的下一个校验流量点及其校验时间和盘形活塞已经水平运行的距离,判断伺服电机是否能够继续作同向转动:如果能够继续作同向转动,则重复步骤e)至步骤h)完成下一个流量点的校验;如果不能再继续同向转动,则首先执行步骤b),然后执行步骤d)至步骤h)完成下一个流量点的校验;i) judging whether the servo motor can continue to rotate in the same direction according to the next calibration flow point of the water meter under inspection, its calibration time and the distance that the disc-shaped piston has moved horizontally: if it can continue to rotate in the same direction, repeating steps e) to h) to complete the calibration of the next flow point; if it can no longer continue to rotate in the same direction, first executing step b), and then executing steps d) to h) to complete the calibration of the next flow point;
j)重复执行步骤i)完成对被检水表其他大流量点的校验。j) Repeat step i) to complete the calibration of other large flow points of the water meter being tested.
B.小流量点的校验B. Calibration of small flow points
a')根据被检水表的小流量校验流量点及其校验时间和盘形活塞已经水平运行的距离,判断伺服电机是否能够作反向转动:如果能够作反向转动,则执行步骤c')~g');如果不能作反向转动,则执行步骤b),然后再执行步骤c')~g');a') judging whether the servo motor can make reverse rotation according to the small flow verification flow point of the water meter under inspection, its verification time and the distance that the disc-shaped piston has moved horizontally: if it can make reverse rotation, executing steps c') to g'); if it cannot make reverse rotation, executing step b), and then executing steps c') to g');
b')重复执行步骤a')完成对被检水表其他小流量点的校验。b') Repeat step a') to complete the calibration of other small flow points of the water meter being tested.
c')关闭所述的前缸体手动排气球阀、前缸体进水开关球阀、后缸体手动排气球阀、后缸体出水开关球阀、同通径背压开关球阀、排气水泵后开关球阀;打开所述的前缸体出水开关球阀、后缸体进水开关球阀、前后缸体出水管隔离球阀、小口径背压开关球阀、加压水泵后开关球阀、加压水泵前开关球阀;c') Close the manual exhaust ball valve of the front cylinder, the water inlet switch ball valve of the front cylinder, the manual exhaust ball valve of the rear cylinder, the water outlet switch ball valve of the rear cylinder, the back pressure switch ball valve of the same diameter, and the exhaust water pump rear switch ball valve; open the water outlet switch ball valve of the front cylinder, the water inlet switch ball valve of the rear cylinder, the isolation ball valve of the front and rear cylinder outlet pipes, the small-diameter back pressure switch ball valve, the pressure water pump rear switch ball valve, and the pressure water pump front switch ball valve;
d')控制伺服电机反向加速旋转至与所需的校验流量相对应的转速后保持匀速转动,同时伺服电机的反向转动经减速机一定减速比减速后驱动丝杠作反向转动,并通过丝杠与丝杠螺母、可滑动金属支座、浮动接头、柱形活塞和盘形活塞之间的配合将丝杠的转动转换为柱形活塞和盘形活塞的水平移动,柱形活塞和盘形活塞的水平移动一方面将高位水箱中的水通过后缸体进水管道和后缸体进水开关球阀吸入位于活塞缸后法兰、盘形活塞之间的充水空间,另一方面将位于活塞缸内活塞缸前法兰、柱形活塞及盘形活塞之间的充水空间中的水在盘形活塞的推动下以按所需的校验流量通过前缸体出水开关球阀、前缸体出水管道、前后缸体出水管隔离球阀向外排出,经过夹表器前开关球阀、夹表器前连接管道、夹表器、前直管段、被检水表、后直管段、汇管、小口径背压开关球阀、小口径背压管道后进入高位水箱;控制伺服电机反向加速旋转的同时,启动加压水泵,在加压水泵作用下,高位水箱中的水经由加压水泵进水管、加压水泵前开关球阀、加压水泵、加压水泵后开关球阀、加压水泵出水管道后进入小口径背压管道,并最终由小口径背压管道流入高位水箱,加压水泵供给的水流经由小口径背压管道流入高位水箱时,水流在小口径背压管道中将快速产生超过被检水表校验时所需的最小背压,该背压通过后直管段传送至被检水表,并最终快速在后直管段中产生恒定的超过被检水表所需的最小背压;在后直管段中产生恒定的超过被检水表所需的最小背压后,时间频率记录仪开始对驱动伺服电机转动的频率进行累积,同时记录频率累积开始时间t1;时间频率记录仪开始对驱动伺服电机转动的频率进行累积开始后,时间频率记录仪开始对被检水表的输出的频率信号进行累积,同时记录频率累积开始时间t'1;当时间频率记录仪对被检水表的输出的频率信号的累积达到最低频率信号个数时,时间频率记录仪停止对被检水表的输出的频率信号的累积,同时记录累积停止时间t'2和频率信号的累积个数N';时间频率记录仪停止对被检水表的输出的频率信号的累积后,时间频率记录仪接着停止对被检水表的输出的频率信号的累积,同时记录累积停止时间t2和频率信号的累积个数N;d') Control the servo motor to accelerate in the reverse direction to a speed corresponding to the required calibration flow rate and then maintain a uniform speed rotation. At the same time, the reverse rotation of the servo motor is decelerated by a certain reduction ratio of the reducer to drive the lead screw to rotate in the reverse direction, and the rotation of the lead screw is converted into horizontal movement of the column piston and the disc piston through the cooperation between the lead screw and the lead screw nut, the slidable metal support, the floating joint, the column piston and the disc piston. The horizontal movement of the column piston and the disc piston, on the one hand, sucks the water in the high-level water tank through the rear cylinder water inlet pipe and the rear cylinder water inlet switch ball valve into the water-filled space between the rear flange of the piston cylinder and the disc piston. On the other hand, the water in the water-filled space between the front flange of the piston cylinder, the column piston and the disc piston in the piston cylinder is pushed by the disc piston to be discharged outward at the required calibration flow rate through the front cylinder water outlet switch ball valve, the front cylinder water outlet pipe, and the front and rear cylinder water outlet pipe isolation ball valves, and passes through the switch ball valve in front of the meter clamp, the connecting pipe in front of the meter clamp, the meter clamp, the front straight pipe section, The water meter under test, the rear straight pipe section, the manifold, the small-diameter back-pressure switch ball valve, and the small-diameter back-pressure pipe enter the high-level water tank; while controlling the servo motor to accelerate in the reverse direction, start the booster pump. Under the action of the booster pump, the water in the high-level water tank enters the small-diameter back-pressure pipe through the booster pump inlet pipe, the switch ball valve in front of the booster pump, the booster pump, the switch ball valve after the booster pump, and the outlet pipe of the booster pump, and finally flows into the high-level water tank through the small-diameter back-pressure pipe. When the water flow supplied by the booster pump flows into the high-level water tank through the small-diameter back-pressure pipe, the water flow in the small-diameter back-pressure pipe will quickly generate a back pressure exceeding the minimum back pressure required for the calibration of the water meter under test. The back pressure is transmitted to the water meter under test through the rear straight pipe section, and finally quickly generates a constant back pressure exceeding the minimum back pressure required for the water meter under test in the rear straight pipe section; after a constant back pressure exceeding the minimum back pressure required for the water meter under test is generated in the rear straight pipe section, the time frequency recorder starts to accumulate the frequency of the servo motor, and records the frequency accumulation start time t 1 ; After the time-frequency recorder starts to accumulate the frequency of the drive servo motor, the time-frequency recorder starts to accumulate the frequency signal of the output of the water meter under test, and records the frequency accumulation start time t'1 ; When the time-frequency recorder accumulates the frequency signal of the output of the water meter under test to the minimum number of frequency signals, the time-frequency recorder stops accumulating the frequency signal of the output of the water meter under test, and records the accumulation stop time t'2 and the accumulated number of frequency signals N'; After the time-frequency recorder stops accumulating the frequency signal of the output of the water meter under test, the time-frequency recorder then stops accumulating the frequency signal of the output of the water meter under test, and records the accumulation stop time t2 and the accumulated number of frequency signals N;
e')执行步骤f);e') executing step f);
f')根据时间频率记录仪记录的伺服电机(1)的频率信号的累积个数N及对应的累积开始时间t1和结束时间t2,按式(4)计算频率信号累积时间段内的水表校验标准装置的平均流量:f') According to the cumulative number N of the frequency signals of the servo motor (1) recorded by the time frequency recorder and the corresponding cumulative start time t1 and end time t2 , the average flow rate of the water meter calibration standard device within the frequency signal accumulation time period is calculated according to formula (4):
q=πipωN(D2-D1 2)/[4(t2-t1)] (4)q=πipωN(D 2 -D 1 2 )/[4(t 2 -t 1 )] (4)
式中,q为频率信号累积时间段内的水表校验标准装置的平均流量;π为圆周率;i为减速机的变速比;p为丝杠导程;ω为伺服电机接收到每个频率信号时伺服电机转动轴转过的角度;D为活塞缸内直径;D1为柱形活塞外直径。Wherein, q is the average flow rate of the water meter calibration standard device within the frequency signal accumulation period; π is the pi; i is the speed ratio of the reducer; p is the lead of the screw; ω is the angle of the servo motor shaft when the servo motor receives each frequency signal; D is the inner diameter of the piston cylinder; D1 is the outer diameter of the cylindrical piston.
g')执行步骤h)。g') execute step h).
本发明的有益效果:i)采用柱盘结合的双标准器型的活塞式装置作为水表校验装置的主标准器:柱形活塞、盘形活塞及活塞缸共同组成一个柱盘结合形标准器,用来提供水表校验时的小流量;盘形活塞及活塞缸共同组成一个盘形标准器,用来提供水表校验时的大流量。由于柱盘结合形标准器内部充水空间比盘形标准器内部充水空间小,柱形活塞、盘形活塞向活塞缸前法兰方向运动(称为活塞缸顶部)一定距离时,充水空间受到压缩排出活塞缸的水的体积比盘形活塞向活塞缸后法兰方向运动(称为活塞缸(18)底部)相同距离时,充水空间受到压缩排出活塞缸的水的体积大幅减小,因此柱盘结合形标准器可提供水表校验时需要的小流量。ii)采用小流量校验背压系统,用于小流量校验时在被检水表下游产生足够的背压,有效解决了水表小流量校验时因背压不足造成工作不正常难题。The beneficial effects of the present invention are as follows: i) a piston-type device of a double standard combined with a column and a disk is used as the main standard of the water meter calibration device: the column piston, the disk piston and the piston cylinder together form a column-disk combined standard, which is used to provide a small flow rate during water meter calibration; the disk piston and the piston cylinder together form a disk-shaped standard, which is used to provide a large flow rate during water meter calibration. Since the water-filled space inside the column-disk combined standard is smaller than the water-filled space inside the disk-shaped standard, when the column piston and the disk piston move toward the front flange direction of the piston cylinder (called the top of the piston cylinder) for a certain distance, the volume of water discharged from the piston cylinder by the water-filled space being compressed is much smaller than when the disk piston moves toward the rear flange direction of the piston cylinder (called the bottom of the piston cylinder (18)) for the same distance, the volume of water discharged from the piston cylinder by the water-filled space being compressed is greatly reduced, so the column-disk combined standard can provide the small flow rate required for water meter calibration. ii) a small flow rate calibration back pressure system is used to generate sufficient back pressure downstream of the water meter being tested during small flow rate calibration, which effectively solves the problem of abnormal operation caused by insufficient back pressure during small flow rate calibration of the water meter.
本发明用于水表校验的装置和方法,不仅实现了水表的校验,更重要的是通过采用柱盘结合形标准器,大大提高了校验装置下限测量的能力,克服了装置难以提供水表小流量校验的难题;另外,小流量背压系统有效克服了水表小流量校验时因背压不足带来的工作不正常难题。The device and method for water meter calibration of the present invention not only realize the calibration of the water meter, but more importantly, by adopting a column-disc combined standard device, the lower limit measurement capability of the calibration device is greatly improved, and the difficult problem that the device is difficult to provide small flow calibration of the water meter is overcome; in addition, the small flow back pressure system effectively overcomes the problem of abnormal operation caused by insufficient back pressure during small flow calibration of the water meter.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是用于水表校验的标准装置。Figure 1 is a standard device for water meter calibration.
具体实施方式Detailed ways
本发明通过对传统的基于静态容积法、静态质量法和现有活塞式液体流量标准装置用于水表校验时凸显出的诸多局限性的分析,并结合液体流量标准装置新技术发展的趋势,提出了一种新型的柱盘活塞式水表校验装置用于水表的校验,实现了水表的快速校验。The present invention analyzes the many limitations of traditional static volume method, static mass method and existing piston-type liquid flow standard devices when used for water meter calibration, and combines the development trend of new technologies of liquid flow standard devices to propose a novel column-disc piston-type water meter calibration device for water meter calibration, thereby realizing rapid calibration of water meters.
本发明的设计思路:通过总结专利号分别为:ZL 2011 1 0339915.1、ZL 2016 10120739.1,对应的专利名称分别为:一种水表检定装置及水表检定的方法、一种恒流阀流量和差压校验的标准装置及校验的方法发明专利的不足,提出了一种柱盘结合形标准器,克服装置难以提供水表小流量校验的难题,提升校验装置下限流量测量的能力。同时,采用小流量背压系统,用于小流量校验时在被检水表下游产生足够的背压,水表小流量校验时因背压不足带来的工作不正常难题。The design idea of the present invention: by summarizing the shortcomings of the invention patents of: ZL 2011 1 0339915.1, ZL 2016 10120739.1, and the corresponding patent names are: a water meter calibration device and a water meter calibration method, a standard device for constant flow valve flow and differential pressure calibration and a calibration method, a column-disc combined standard device is proposed to overcome the difficulty of the device in providing small flow calibration of the water meter and improve the ability of the calibration device to measure the lower limit flow. At the same time, a small flow back pressure system is used to generate sufficient back pressure downstream of the water meter being tested during small flow calibration, and the problem of abnormal operation caused by insufficient back pressure during small flow calibration of the water meter is solved.
如图1所示,本发明的水表校验装置包括作为主标准器的活塞式装置及外围系统、检定装置、加压系统、高位水箱50)和排气系统。作为主标准器的活塞式装置及外围系统包括伺服电机1)、减速机2)、减速机金属支座3)、联轴器4)、丝杠前金属支座5)、丝杠6)、直线导轨7)、活塞金属支架8)、可滑动金属支座9)、丝杠螺母10)、浮动接头11)、柱形活塞12)、前缸体进水开关球阀13)、前缸体进水管道14)、前缸体排气管道15)、前缸体手动排气球阀16)、活塞缸前法兰17)、活塞缸18)、前缸体出水管道19)、前缸体出水开关球阀20)、丝杠后金属支座21)、活塞金属支座22)、盘形活塞23)、活塞缸后法兰24)、后缸体手动排气球阀25)、后缸体排气管道26)、后缸体进水管道27)、后缸体进水开关球阀28)、后缸体出水管道29)、后缸体出水开关球阀30)、前后缸体出水管隔离球阀31)、前后缸体出水管隔离球阀连接管32)。检定装置包括夹表器前开关球阀33)、夹表器前连接管道56)、夹表器34)、前直管段35)、被检水表机电转换装置36)、被检水表37)、后直管段38)、检定装置支撑架39)、汇管40)、小口径背压开关球阀41)、同通径背压开关球阀42)、小口径背压管道43)、同通径背压管道44)。加压系统包括加压水泵出水管道45)、加压水泵后开关球阀46)、加压水泵47)、加压水泵前开关球阀48)、加压水泵进水管道49);加压水泵出水管45)通过三通管与小口径背压管道43)固定连接。排气系统包括排气进水管道51)、排气水泵前开关球阀52)、排气水泵53)、排气水泵后开关球阀54)、排气出水管道55)。As shown in FIG1 , the water meter calibration device of the present invention includes a piston device as a main standard and a peripheral system, a calibration device, a pressurizing system, a high-level water tank 50) and an exhaust system. The piston device as a main standard and the peripheral system include a servo motor 1), a reducer 2), a reducer metal support 3), a coupling 4), a front metal support of the screw 5), a screw 6), a linear guide 7), a piston metal bracket 8), a slidable metal support 9), a screw nut 10), a floating joint 11), a cylindrical piston 12), a front cylinder water inlet switch ball valve 13), a front cylinder water inlet pipe 14), a front cylinder exhaust pipe 15), a front cylinder manual exhaust ball valve 16), a piston cylinder front flange 17), a piston Cylinder 18), front cylinder water outlet pipe 19), front cylinder water outlet switch ball valve 20), screw rear metal support 21), piston metal support 22), disc piston 23), piston cylinder rear flange 24), rear cylinder manual exhaust ball valve 25), rear cylinder exhaust pipe 26), rear cylinder water inlet pipe 27), rear cylinder water inlet switch ball valve 28), rear cylinder water outlet pipe 29), rear cylinder water outlet switch ball valve 30), front and rear cylinder water outlet pipe isolation ball valve 31), front and rear cylinder water outlet pipe isolation ball valve connecting pipe 32). The calibration device includes a switch ball valve 33 in front of the meter clamp), a connecting pipe 56 in front of the meter clamp), a meter clamp 34), a front straight pipe section 35), an electromechanical conversion device 36 of the water meter to be inspected), a water meter to be inspected 37), a rear straight pipe section 38), a calibration device support frame 39), a manifold 40), a small-diameter back pressure switch ball valve 41), a back pressure switch ball valve 42 of the same diameter), a small-diameter back pressure pipeline 43), and a back pressure pipeline 44 of the same diameter. The pressurization system includes a pressurized water pump outlet pipeline 45), a switch ball valve 46 after the pressurized water pump), a pressurized water pump 47), a switch ball valve 48 in front of the pressurized water pump), and a pressurized water pump inlet pipeline 49); the pressurized water pump outlet pipe 45) is fixedly connected to the small-diameter back pressure pipeline 43) through a tee pipe. The exhaust system includes an exhaust water inlet pipeline 51), a switch ball valve 52 in front of the exhaust water pump), an exhaust water pump 53), a switch ball valve 54 after the exhaust water pump), and an exhaust water outlet pipeline 55).
作为主标准器的活塞式装置及外围系统中的柱形活塞12)、活塞缸前法兰17)、活塞缸18)、盘形活塞23)、活塞缸后法兰24)共同组成双标准器型的活塞式装置。柱形活塞12)、活塞缸前法兰17)、活塞缸18)、盘形活塞23)共同组成一个柱盘结合形标准器;柱盘结合形标准器中的活塞缸前法兰17)固定安装在活塞缸18)的前端,活塞缸18)与活塞缸前法兰17)之间采用O型密封圈密封;柱形活塞12)的一端与浮动接头11)固定连接,柱形活塞12)的另一端与盘形活塞23)固定连接,盘形活塞23)位于活塞缸18)内,盘形活塞23)与活塞缸18)之间装有Y型密封圈和导向环;柱形活塞12)穿过活塞缸前法兰17)的中间,一部分位于活塞缸18)外部,另一部分位于活塞缸18)内部,柱形活塞12)位于活塞缸18)内部的部分与活塞缸18)之间预留一定的充水空间,柱形活塞12)与活塞缸前法兰17)之间采用Y型密封圈密封,Y型密封圈固定安装在活塞缸前法兰17)上;柱形活塞12)的前端、中间部分及后端分别由浮动接头11)、活塞缸前法兰17)、盘形活塞23)支撑;活塞缸18)内位于活塞缸前法兰17)、柱形活塞12)及盘形活塞23)之间的空间为充水空间,工作时,柱形活塞12)、盘形活塞23)向活塞缸前法兰17)方向运动(称为活塞缸18)顶部),活塞缸18)内位于活塞缸前法兰17)、柱形活塞12)及盘形活塞23)之间的空间减小,由于柱形活塞12)与活塞缸前法兰17)之间、盘形活塞23)与活塞缸18)之间均采用Y型密封圈密封,则所述充水空间中的水受到压缩后通过前缸体出水管道19)排出活塞缸18),排出活塞缸18)的水的体积可根据柱形活塞12)的外径、活塞缸18)内径尺寸及柱形活塞12)、盘形活塞23)的移动的距离计算得到。活塞缸18)、盘形活塞23)、活塞缸后法兰24)共同组成一个盘形标准器。盘形标准器中的活塞缸后法兰24)固定安装在活塞缸18)的后端,活塞缸18)与活塞缸后法兰24)之间采用O型密封圈密封;盘形标准器与柱盘结合形标准器共用盘形活塞23);活塞缸18)内位于活塞缸后法兰24)、盘形活塞23)之间的空间为充水空间,工作时,盘形活塞23)向活塞缸后法兰24)方向运动(称为活塞缸18)底部),活塞缸18)内位于活塞缸后法兰24)、盘形活塞23)之间的空间减小,由于盘形活塞23)与活塞缸18)之间均采用Y型密封圈密封,则所述充水空间中的水受到压缩后通过后缸体出水管道29)排出活塞缸18),排出活塞缸18)的水的体积可根据活塞缸18)内径尺寸及盘形活塞23)的移动的距离计算得到。The piston device as the main standard and the cylindrical piston 12), the piston cylinder front flange 17), the piston cylinder 18), the disc piston 23), and the piston cylinder rear flange 24 in the peripheral system together constitute a double standard type piston device. The cylindrical piston 12), the piston cylinder front flange 17), the piston cylinder 18), and the disc piston 23) together form a column-disc combination standard; the piston cylinder front flange 17) in the column-disc combination standard is fixedly installed at the front end of the piston cylinder 18), and the piston cylinder 18) and the piston cylinder front flange 17) are sealed by an O-ring; one end of the cylindrical piston 12) is fixedly connected to the floating joint 11), and the other end of the cylindrical piston 12) is fixedly connected to the disc piston 23), the disc piston 23) is located in the piston cylinder 18), and a Y-shaped sealing ring and a guide ring are installed between the disc piston 23) and the piston cylinder 18); the cylindrical piston 12) passes through the middle of the piston cylinder front flange 17), a part of which is located outside the piston cylinder 18), and the other part is located inside the piston cylinder 18), and a certain water-filled space is reserved between the part of the cylindrical piston 12) located inside the piston cylinder 18) and the piston cylinder 18), and a Y-shaped sealing ring is used to seal between the cylindrical piston 12) and the piston cylinder front flange 17), and the Y-shaped sealing ring is fixedly installed on the piston cylinder front flange 17); the front end, middle part and rear end of the cylindrical piston 12) are supported by the floating joint 11), the piston cylinder front flange 17), and the disc piston 23) respectively; the space between the piston cylinder front flange 17), the cylindrical piston 12) and the disc piston 23) in the piston cylinder 18) is a water-filled space. When working, the cylindrical piston 12) and the disc piston 23) move toward the piston cylinder front flange 17) (called the top of the piston cylinder 18)). The space between the piston cylinder front flange 17) and the cylindrical piston 23) in the piston cylinder 18) is a water-filled space. The space between the cylindrical piston 12) and the disc piston 23) is reduced. Since the Y-shaped sealing ring is used to seal between the cylindrical piston 12) and the front flange 17) of the piston cylinder, and between the disc piston 23) and the piston cylinder 18), the water in the water-filled space is compressed and discharged from the piston cylinder 18) through the front cylinder body water outlet pipe 19). The volume of water discharged from the piston cylinder 18) can be calculated based on the outer diameter of the cylindrical piston 12), the inner diameter of the piston cylinder 18) and the moving distance of the cylindrical piston 12) and the disc piston 23). The piston cylinder 18), the disc piston 23) and the rear flange 24) of the piston cylinder together form a disc standard. The piston cylinder rear flange 24) in the disc-shaped standard is fixedly installed at the rear end of the piston cylinder 18), and an O-ring is used to seal the piston cylinder 18) and the piston cylinder rear flange 24); the disc-shaped standard and the column-disc combined standard share a disc-shaped piston 23); the space between the piston cylinder rear flange 24) and the disc-shaped piston 23) in the piston cylinder 18) is a water-filled space. During operation, the disc-shaped piston 23) moves toward the piston cylinder rear flange 24) (called the bottom of the piston cylinder 18)), and the space between the piston cylinder rear flange 24) and the disc-shaped piston 23) in the piston cylinder 18) is reduced. Since the disc-shaped piston 23) and the piston cylinder 18) are sealed with a Y-ring, the water in the water-filled space is compressed and discharged from the piston cylinder 18) through the rear cylinder water outlet pipe 29), and the volume of water discharged from the piston cylinder 18) can be calculated based on the inner diameter of the piston cylinder 18) and the moving distance of the disc-shaped piston 23).
此外,加压水泵后开关球阀46)、加压水泵47)、加压水泵前开关球阀48)、加压水泵进水管49)组成的加压系统与小口径背压管道43)和后直管段38)共同组成水表校验标准装置的小流量校验背压系统。In addition, the pressurization system composed of the pressure water pump rear switch ball valve 46), the pressure water pump 47), the pressure water pump front switch ball valve 48), and the pressure water pump inlet pipe 49) and the small-diameter back pressure pipeline 43) and the rear straight pipe section 38) together constitute the small flow calibration back pressure system of the water meter calibration standard device.
小流量校验背压系统在被检水表37)下游的后直管段38)中产生背压的方法,包括如下步骤和原理:The method of generating back pressure in the downstream straight pipe section 38) of the small flow calibration back pressure system of the water meter 37) under test includes the following steps and principles:
i)控制旋转至与所需校验的被检水表37)的小流量点相对应的转速的同时,开启加压水泵前开关球阀48)、启动加压水泵47)。i) Control the rotation to a speed corresponding to the small flow point of the water meter 37) to be calibrated, and open the ball valve 48 in front of the pressure water pump) and start the pressure water pump 47).
ii)高位水箱50)中的水在加压水泵47)作用下,经由加压水泵进水管49)、加压水泵前开关球阀48)、加压水泵47)、加压水泵后开关球阀46)、加压水泵出水管道45)后进入小口径背压管道43),并最终由小口径背压管道43)流入高位水箱50)。ii) Under the action of the booster water pump 47), the water in the high-level water tank 50) passes through the booster water pump inlet pipe 49), the booster water pump front switch ball valve 48), the booster water pump 47), the booster water pump rear switch ball valve 46), and the booster water pump outlet pipe 45), and then enters the small-diameter back-pressure pipe 43), and finally flows into the high-level water tank 50) from the small-diameter back-pressure pipe 43).
iii)加压水泵47)供给的水流经由小口径背压管道43)流入高位水箱50)时,该水流在管道压损的作用,在小口径背压管道43)中将快速产生超过被检水表37)校验时所需的最小背压,该背压通过后直管段38)传送至被检水表37)。iii) When the water supplied by the booster pump 47) flows into the high-level water tank 50) via the small-diameter back-pressure pipe 43), the water flow will quickly generate a back pressure in the small-diameter back-pressure pipe 43) that exceeds the minimum back pressure required for calibration of the water meter 37) under test due to the pressure loss in the pipe. The back pressure is transmitted to the water meter 37) under test through the rear straight pipe section 38).
iv)加压水泵47)的启动与校验被检水表37)小流量点时伺服电机1)的反向加速控制同步,且加压水泵47)供给水流的流量稳定时间和伺服电机1)反向加速至校验被检水表37)流量点所对应的恒定转速时间均较短,二者可在短时间内达到流量平衡点,也即在短时间内就可实现小流量校验背压系统对被检水表37)建立恒定、足够的背压。iv) The start-up of the booster pump 47) is synchronized with the reverse acceleration control of the servo motor 1) when verifying the small flow point of the water meter 37) under inspection, and the flow stabilization time of the water flow supplied by the booster pump 47) and the constant speed time corresponding to the reverse acceleration of the servo motor 1) to the flow point of the water meter 37) under inspection are both short. The two can reach the flow balance point in a short time, that is, the small flow verification back pressure system can establish a constant and sufficient back pressure for the water meter 37) under inspection in a short time.
宽量程比水表校验标准装置的活塞缸进行排气的方法,包括如下步骤:A method for exhausting the piston cylinder of a wide range ratio water meter calibration standard device comprises the following steps:
1)关闭所述的前缸体进水开关球阀13)、前缸体出水开关球阀20)、后缸体进水开关球阀28)和后缸体出水开关球阀30),打开前缸体手动排气球阀16)、后缸体手动排气球阀25)。1) Close the front cylinder water inlet switch ball valve 13), the front cylinder water outlet switch ball valve 20), the rear cylinder water inlet switch ball valve 28) and the rear cylinder water outlet switch ball valve 30), and open the front cylinder manual exhaust ball valve 16) and the rear cylinder manual exhaust ball valve 25).
2)控制伺服电机1)反向转动带动减速机2)作同向转动,伺服电机1)的转动经减速机2)减速后驱动丝杠6)作反向转动,丝杠的反向转动通过丝杠6)与丝杠螺母10)的配合转换为丝杠螺母10)的反向水平移动,丝杠螺母10)的反向水平移动带动可滑动金属支座9)作反向同步水平移动,可滑动金属支座9)的反向同步水平移动带动浮动接头11)作反向同步水平移动,浮动接头11)的反向同步水平移动拉动柱形活塞12)和盘形活塞23)作反向同步水平移动,直至柱形活塞12)的另一端和盘形活塞23)到达活塞缸18)顶部。2) controls the servo motor 1) to rotate in the reverse direction to drive the reducer 2) to rotate in the same direction. The rotation of the servo motor 1) is reduced by the reducer 2) and drives the lead screw 6) to rotate in the reverse direction. The reverse rotation of the lead screw is converted into the reverse horizontal movement of the lead screw nut 10) through the cooperation of the lead screw 6) and the lead screw nut 10). The reverse horizontal movement of the lead screw nut 10) drives the slidable metal support 9) to move in the reverse synchronous horizontal direction. The reverse synchronous horizontal movement of the slidable metal support 9) drives the floating joint 11) to move in the reverse synchronous horizontal direction. The reverse synchronous horizontal movement of the floating joint 11) pulls the cylindrical piston 12) and the disc piston 23) to move in the reverse synchronous horizontal direction until the other end of the cylindrical piston 12) and the disc piston 23) reach the top of the piston cylinder 18).
3)关闭所述的前缸体手动排气球阀16)、前缸体出水开关球阀20)、后缸体进水开关球阀28)和后缸体出水开关球阀30),打开所述的前缸体进水开关球阀13)和后缸体手动排气球阀25)。3) Close the front cylinder manual exhaust ball valve 16), the front cylinder water outlet switch ball valve 20), the rear cylinder water inlet switch ball valve 28) and the rear cylinder water outlet switch ball valve 30), and open the front cylinder water inlet switch ball valve 13) and the rear cylinder manual exhaust ball valve 25).
4)控制伺服电机1)正向转动带动减速机2)作同向转动,伺服电机1)的转动经减速机2)减速后驱动丝杠6)作正向转动,丝杠的正向转动通过丝杠6)与丝杠螺母10)的配合转换为丝杠螺母10)的正向水平移动,丝杠螺母10)的正向水平移动带动可滑动金属支座9)作正向同步水平移动,可滑动金属支座9)的正向同步水平移动带动浮动接头11)作正向同步水平移动,浮动接头11)的正向同步水平移动推动柱形活塞12)和盘形活塞23)作正向同步水平移动,直至柱形活塞12)的另一端和盘形活塞23)到达活塞缸18)底部;在柱形活塞12)和盘形活塞23)作正向水平移动过程中,高位水箱50)中的水通过前缸体进水管道14)和前缸体进水开关球阀13)进入位于活塞缸18)内活塞缸前法兰17)、柱形活塞12)及盘形活塞23)之间的空间为充水空间;在柱形活塞12)和盘形活塞23)作正向水平移动过程中,位于活塞缸18)后法兰24)、盘形活塞23)之间的空间中的空气通过后缸体手动排气球阀25)、后缸体排气管道26)排出缸体之外。4) Control the servo motor 1) to rotate forward and drive the reducer 2) to rotate in the same direction. The rotation of the servo motor 1) is decelerated by the reducer 2) and drives the lead screw 6) to rotate forward. The forward rotation of the lead screw is converted into the forward horizontal movement of the lead screw nut 10) through the cooperation of the lead screw 6) and the lead screw nut 10). The forward horizontal movement of the lead screw nut 10) drives the slidable metal support 9) to move forward synchronously horizontally. The forward synchronous horizontal movement of the slidable metal support 9) drives the floating joint 11) to move forward synchronously horizontally. The forward synchronous horizontal movement of the floating joint 11) pushes the cylindrical piston 12) and the disc piston 23) to move forward synchronously horizontally until the cylindrical piston 12 ) and the disc-shaped piston 23) reach the bottom of the piston cylinder 18); during the positive horizontal movement of the cylindrical piston 12) and the disc-shaped piston 23), the water in the high-level water tank 50) enters the space between the front flange 17 of the piston cylinder in the piston cylinder 18), the cylindrical piston 12) and the disc-shaped piston 23) through the front cylinder water inlet pipe 14) and the front cylinder water inlet switch ball valve 13) to form a water-filled space; during the positive horizontal movement of the cylindrical piston 12) and the disc-shaped piston 23), the air in the space between the rear flange 24 of the piston cylinder 18) and the disc-shaped piston 23) is discharged from the cylinder through the rear cylinder manual exhaust ball valve 25) and the rear cylinder exhaust pipe 26).
5)关闭所述的后缸体手动排气球阀25)、后缸体出水开关球阀30)、前缸体进水开关球阀(13)和前缸体出水开关球阀20),打开所述的后缸体进水开关球阀28)、前缸体手动排气球阀16)。5) Close the rear cylinder manual exhaust ball valve 25), the rear cylinder water outlet switch ball valve 30), the front cylinder water inlet switch ball valve (13) and the front cylinder water outlet switch ball valve 20), and open the rear cylinder water inlet switch ball valve 28) and the front cylinder manual exhaust ball valve 16).
6)控制伺服电机1)反向转动带动减速机2)作同向转动,伺服电机1)的转动经减速机2)减速后驱动丝杠6)作反向转动,丝杠的反向转动通过丝杠6)与丝杠螺母10)的配合转换为丝杠螺母10)的反向水平移动,丝杠螺母10)的反向水平移动带动可滑动金属支座9)作反向同步水平移动,可滑动金属支座9)的反向同步水平移动带动浮动接头11)作反向同步水平移动,浮动接头11)的反向同步水平移动拉动柱形活塞12)和盘形活塞23)作反向同步水平移动,直至柱形活塞12)的另一端和盘形活塞23)到达活塞缸18)顶部;在柱形活塞12)和盘形活塞23)作反向水平移动过程中,高位水箱50)中的水通过后缸体进水管道27)、后缸体进水开关球阀28)进入位于活塞缸18)后法兰24)、盘形活塞23)之间的充水空间;在柱形活塞12)和盘形活塞23)作反向同步水平移动过程中,位于活塞缸18)内活塞缸前法兰17)、柱形活塞12)及盘形活塞23)之间的空间中的空气通过前缸体手动排气球阀16)和前缸体排气管道15)排出缸体之外。6) controls the servo motor 1) to rotate in the reverse direction to drive the reducer 2) to rotate in the same direction. The rotation of the servo motor 1) is decelerated by the reducer 2) to drive the lead screw 6) to rotate in the reverse direction. The reverse rotation of the lead screw is converted into the reverse horizontal movement of the lead screw nut 10) through the cooperation of the lead screw 6) and the lead screw nut 10). The reverse horizontal movement of the lead screw nut 10) drives the slidable metal support 9) to move in the reverse synchronous horizontal direction. The reverse synchronous horizontal movement of the slidable metal support 9) drives the floating joint 11) to move in the reverse synchronous horizontal direction. The reverse synchronous horizontal movement of the floating joint 11) pulls the cylindrical piston 12) and the disc piston 23) to move in the reverse synchronous horizontal direction until the cylindrical piston 12 ) and the disc-shaped piston 23) reach the top of the piston cylinder 18); during the reverse horizontal movement of the columnar piston 12) and the disc-shaped piston 23), the water in the high-level water tank 50) enters the water-filled space between the rear flange 24 of the piston cylinder 18) and the disc-shaped piston 23) through the rear cylinder water inlet pipe 27) and the rear cylinder water inlet switch ball valve 28); during the reverse synchronous horizontal movement of the columnar piston 12) and the disc-shaped piston 23), the air in the space between the front flange 17 of the piston cylinder 18), the columnar piston 12) and the disc-shaped piston 23) is discharged out of the cylinder through the front cylinder manual exhaust ball valve 16) and the front cylinder exhaust pipe 15).
7)关闭所述的前缸体手动排气球阀16)、前缸体出水开关球阀20)、后缸体手动排气球阀25)和后缸体进水开关球阀28),打开所述的前缸体进水开关球阀13)和后缸体出水开关球阀30)。7) Close the front cylinder manual exhaust ball valve 16), the front cylinder water outlet switch ball valve 20), the rear cylinder manual exhaust ball valve 25) and the rear cylinder water inlet switch ball valve 28), and open the front cylinder water inlet switch ball valve 13) and the rear cylinder water outlet switch ball valve 30).
8)控制伺服电机1)正向转动带动减速机2)作同向转动,伺服电机1)的转动经减速机2)减速后驱动丝杠6)作正向转动,丝杠的正向转动通过丝杠6)与丝杠螺母10)的配合转换为丝杠螺母10)的正向水平移动,丝杠螺母10)的正向水平移动带动可滑动金属支座9)作正向同步水平移动,可滑动金属支座9)的正向同步水平移动带动浮动接头11)作正向同步水平移动,浮动接头11)的正向同步水平移动推动柱形活塞12)和盘形活塞23)作正向同步水平移动,直至柱形活塞12)的另一端和盘形活塞23)到达活塞缸18)底部;在柱形活塞12)和盘形活塞23)作正向水平移动过程中,高位水(50)中的水通过前缸体进水管道14)和前缸体进水开关球阀13)进入位于活塞缸18)内活塞缸前法兰17)、柱形活塞12)及盘形活塞23)之间的空间为充水空间;在柱形活塞12)和盘形活塞23)作正向水平移动过程中,位于活塞缸18)后法兰24)、盘形活塞23)之间的充水空间中的水通过后缸体出水开关球阀30)和后缸体出水管道29)向外排出,同时后缸体出水开关球阀30)和后缸体出水管道29)中的空气随排出的水一起流出,最终将后缸体出水开关球阀30)和后缸体出水管道29)中的空气排除干净。8) controls the servo motor 1) to rotate forward and drives the reducer 2) to rotate in the same direction. The rotation of the servo motor 1) is decelerated by the reducer 2) and drives the lead screw 6) to rotate forward. The forward rotation of the lead screw is converted into the forward horizontal movement of the lead screw nut 10) through the cooperation of the lead screw 6) and the lead screw nut 10). The forward horizontal movement of the lead screw nut 10) drives the slidable metal support 9) to move forward synchronously horizontally. The forward synchronous horizontal movement of the slidable metal support 9) drives the floating joint 11) to move forward synchronously horizontally. The forward synchronous horizontal movement of the floating joint 11) pushes the cylindrical piston 12) and the disc piston 23) to move forward synchronously horizontally until the other end of the cylindrical piston 12) and the disc piston 23) reach the bottom of the piston cylinder 18); after the cylindrical piston 12) and the disc piston During the positive horizontal movement of the piston cylinder 18), the water in the high-level water (50) enters the space between the piston cylinder front flange 17), the cylindrical piston 12) and the disc piston 23) through the front cylinder water inlet pipe 14) and the front cylinder water inlet switch ball valve 13) to form a water-filled space; during the positive horizontal movement of the cylindrical piston 12) and the disc piston 23), the water in the water-filled space between the piston cylinder rear flange 24) and the disc piston 23) is discharged outward through the rear cylinder water outlet switch ball valve 30) and the rear cylinder water outlet pipe 29), and at the same time, the air in the rear cylinder water outlet switch ball valve 30) and the rear cylinder water outlet pipe 29) flows out together with the discharged water, and finally the air in the rear cylinder water outlet switch ball valve 30) and the rear cylinder water outlet pipe 29) is completely discharged.
9)关闭所述的前缸体手动排气球阀16)、前缸体进水开关球阀13)、后缸体出水开关球阀30)和后缸体手动排气球阀25),打开所述的前缸体出水开关球阀20)、前后缸体出水管隔离球阀31)和后缸体进水开关球阀28)。9) Close the front cylinder manual exhaust ball valve 16), the front cylinder water inlet switch ball valve 13), the rear cylinder water outlet switch ball valve 30) and the rear cylinder manual exhaust ball valve 25), and open the front cylinder water outlet switch ball valve 20), the front and rear cylinder water outlet pipe isolation ball valves 31) and the rear cylinder water inlet switch ball valve 28).
10)控制伺服电机1)反向转动带动减速机2)作同向转动,伺服电机1)的转动经减速机2)减速后驱动丝杠6)作反向转动,丝杠的反向转动通过丝杠6)与丝杠螺母10)的配合转换为丝杠螺母10)的反向水平移动,丝杠螺母10)的反向水平移动带动可滑动金属支座9)作反向同步水平移动,可滑动金属支座9)的反向同步水平移动带动浮动接头11)作反向同步水平移动,浮动接头11)的反向同步水平移动拉动柱形活塞12)和盘形活塞23)作反向同步水平移动,直至柱形活塞12)的另一端和盘形活塞23)到达活塞缸18)顶部;在柱形活塞12)和盘形活塞23)作反向水平移动过程中,高位水箱50)中的水通过后缸体进水管道27)、后缸体进水开关球阀28)进入位于活塞缸18)后法兰24)、盘形活塞23)之间的充水空间;在柱形活塞12)和盘形活塞23)作反向同步水平移动过程中,位于活塞缸18)内活塞缸前法兰17)、柱形活塞12)及盘形活塞23)之间的空间中的水通过前缸体出水开关球阀20)和前缸体出水管道19)向外排出,同时前缸体出水开关球阀20)和前缸体出水管道19)中的空气随排出的水一起流出,最终将前缸体出水开关球阀20)、前缸体出水管道19)和前后缸体出水管隔离球阀(31)中的空气排除干净。10) controls the servo motor 1) to rotate in the reverse direction and drives the reducer 2) to rotate in the same direction. The rotation of the servo motor 1) is reduced by the reducer 2) and drives the lead screw 6) to rotate in the reverse direction. The reverse rotation of the lead screw is converted into the reverse horizontal movement of the lead screw nut 10) through the cooperation of the lead screw 6) and the lead screw nut 10). The reverse horizontal movement of the lead screw nut 10) drives the slidable metal support 9) to move in the reverse synchronous horizontal direction. The reverse synchronous horizontal movement of the slidable metal support 9) drives the floating joint 11) to move in the reverse synchronous horizontal direction. The reverse synchronous horizontal movement of the floating joint 11) pulls the cylindrical piston 12) and the disc piston 23) to move in the reverse synchronous horizontal direction until the other end of the cylindrical piston 12) and the disc piston 23) reach the top of the piston cylinder 18); when the cylindrical piston 12) and the disc piston 23) move in the reverse direction, During the horizontal movement, the water in the high-level water tank 50) enters the water-filled space between the rear flange 24 of the piston cylinder 18) and the disc piston 23) through the rear cylinder water inlet pipe 27) and the rear cylinder water inlet switch ball valve 28); during the reverse synchronous horizontal movement of the cylindrical piston 12) and the disc piston 23) , the water in the space between the piston cylinder front flange 17) , the cylindrical piston 12) and the disc piston 23) in the piston cylinder 18) is discharged outward through the front cylinder water outlet switch ball valve 20) and the front cylinder water outlet pipe 19) , and at the same time, the air in the front cylinder water outlet switch ball valve 20) and the front cylinder water outlet pipe 19) flows out together with the discharged water, and finally the air in the front cylinder water outlet switch ball valve 20) , the front cylinder water outlet pipe 19) and the front and rear cylinder water outlet pipe isolation ball valve (31) is completely discharged.
11)重复执行步骤3)、4)、5)、6),将活塞缸18)中位于活塞缸18)后法兰24)、盘形活塞23)之间的空间中的空气和位于活塞缸18)内活塞缸前法兰17)、柱形活塞12)及盘形活塞23)之间的空间中的空气排除干净。11) Repeat steps 3), 4), 5) and 6) to remove the air in the space between the rear flange 24 of the piston cylinder 18) and the disc piston 23) and the air in the space between the front flange 17 of the piston cylinder 18), the columnar piston 12) and the disc piston 23) in the piston cylinder 18).
宽量程比水表校验标准装置对水表进行流量校验的方法,包括如下步骤:The method for calibrating the flow rate of a water meter using a wide range ratio water meter calibration standard device comprises the following steps:
A.大流量点的校验A. Calibration of large flow points
a)将被检水表37)安装在所述的前直管段35)和所述的后直管段38)之间。a) Install the water meter 37) to be tested between the front straight pipe section 35) and the rear straight pipe section 38).
b)执行步骤9),控制伺服电机1)反向转动带动减速机2)作同向转动,伺服电机(1)的转动经减速机2)减速后驱动丝杠6)作反向转动,丝杠的反向转动通过丝杠6)与丝杠螺母10)的配合转换为丝杠螺母10)的反向水平移动,丝杠螺母10)的反向水平移动带动可滑动金属支座9)作反向同步水平移动,可滑动金属支座9)的反向同步水平移动带动浮动接头11)作反向同步水平移动,浮动接头11)的反向同步水平移动拉动柱形活塞12)和盘形活塞23)作反向同步水平移动,直至柱形活塞12)的另一端和盘形活塞23)到达活塞缸18)顶部。b) Execute step 9), control the servo motor 1) to rotate in the reverse direction to drive the reducer 2) to rotate in the same direction, the rotation of the servo motor (1) is reduced by the reducer 2) to drive the lead screw 6) to rotate in the reverse direction, the reverse rotation of the lead screw is converted into the reverse horizontal movement of the lead screw nut 10) through the cooperation between the lead screw 6) and the lead screw nut 10), the reverse horizontal movement of the lead screw nut 10) drives the slidable metal support 9) to move in the reverse synchronous horizontal direction, the reverse synchronous horizontal movement of the slidable metal support 9) drives the floating joint 11) to move in the reverse synchronous horizontal direction, the reverse synchronous horizontal movement of the floating joint 11) pulls the columnar piston 12) and the disc piston 23) to move in the reverse synchronous horizontal direction, until the other end of the columnar piston 12) and the disc piston 23) reach the top of the piston cylinder 18).
c)关闭所述的前后缸体出水管隔离球阀31)和后缸体出水开关球阀30);打开所述的夹表器前开关球阀33)、小口径背压开关球阀41)、同通径背压开关球阀42)、排气水泵前开关球阀52)和排气水泵后开关球阀54),启动排气水泵53)将后缸体出水管道29)、夹表器前开关球阀33)、夹表器前连接管道56)、夹表器34)、前直管段35)、被检水表37)、后直管段38)、汇管40)、小口径背压开关球阀41)、同通径背压开关球阀42)、小口径背压管道43)、同通径背压管道44)、排气进水管道51)、排气水泵前开关球阀52)、排气水泵53)、排气出水管道55)中的空气排除干净。c) Close the isolation ball valves 31) of the front and rear cylinder water outlet pipes and the switch ball valve 30) of the rear cylinder water outlet; open the switch ball valve 33 in front of the meter clamp), the small-diameter back pressure switch ball valve 41), the same-diameter back pressure switch ball valve 42), the switch ball valve 52) in front of the exhaust water pump and the switch ball valve 54) in the rear of the exhaust water pump, start the exhaust water pump 53) to remove the air in the rear cylinder water outlet pipe 29), the switch ball valve 33 in front of the meter clamp), the connecting pipe 56 in front of the meter clamp), the meter clamp 34), the front straight pipe section 35), the water meter to be inspected 37), the rear straight pipe section 38), the manifold 40), the small-diameter back pressure switch ball valve 41), the same-diameter back pressure switch ball valve 42), the small-diameter back pressure pipe 43), the same-diameter back pressure pipe 44), the exhaust water inlet pipe 51), the switch ball valve 52 in front of the exhaust water pump), the exhaust water pump 53), and the exhaust water outlet pipe 55).
d)关闭所述的前缸体手动排气球阀16)、前缸体出水开关球阀20)、前后缸体出水管隔离球阀31)、后缸体手动排气球阀25)、后缸体进水开关球阀28)、排气水泵后开关球阀54)、小口径背压开关球阀41);打开所述的前缸体进水开关球阀13)、后缸体出水开关球阀30)、夹表器前开关球阀33)、同通径背压开关球阀42)。d) Close the front cylinder manual exhaust ball valve 16), the front cylinder water outlet switch ball valve 20), the front and rear cylinder water outlet pipe isolation ball valve 31), the rear cylinder manual exhaust ball valve 25), the rear cylinder water inlet switch ball valve 28), the exhaust water pump rear switch ball valve 54), and the small-diameter back pressure switch ball valve 41); open the front cylinder water inlet switch ball valve 13), the rear cylinder water outlet switch ball valve 30), the meter clamp front switch ball valve 33), and the same-diameter back pressure switch ball valve 42).
e)控制伺服电机1)正向加速旋转至与所需的校验流量相对应的转速后保持匀速转动,同时伺服电机1)的正向转动经减速机2)一定减速比减速后驱动丝杠6)作正向转动,并通过丝杠3)与丝杠螺母10)、可滑动金属支座9)、浮动接头11)、柱形活塞12)和盘形活塞23)之间的配合将丝杠3)的转动转换为柱形活塞12)和盘形活塞23)的水平移动,柱形活塞12)和盘形活塞23)的水平移动一方面将高位水箱50)中的水通过前缸体进水管道14)和前缸体进水开关球阀13)吸入位于活塞缸18)内活塞缸前法兰17)、柱形活塞12)及盘形活塞23)之间的空间为充水空间,另一方面将位于活塞缸后法兰24)、盘形活塞23)之间的充水空间中的水在盘形活塞23)的推动下以按所需的校验流量通过后缸体出水开关球阀30)、后缸体出水管道29)向外排出,经过夹表器前开关球阀33)、夹表器前连接管道(56)、夹表器34)、前直管段35)、被检水表37)、后直管段38)、汇管40)、同通径背压开关球阀42)、同通径背压管道44)后进入高位水箱50);在柱形活塞12)和盘形活塞23)相应地由加速水平移动转为匀速水平移动后,时间频率记录仪开始对驱动伺服电机1)转动的频率进行累积,同时记录频率累积开始时间t1;在柱形活塞12)和盘形活塞23)相应地由加速水平移动转为匀速水平移动后,时间频率记录仪开始对被检水表37)的输出的频率信号进行累积,同时记录频率累积开始时间t'1;当时间频率记录仪对被检水表37)的输出的频率信号的累积达到最低频率信号个数时,时间频率记录仪停止对被检水表37)的输出的频率信号的累积,同时记录累积停止时间t'2和频率信号的累积个数N';时间频率记录仪停止对被检水表37)的输出的频率信号的累积后,时间频率记录仪接着停止对被检水表37)的输出的频率信号的累积,同时记录累积停止时间t2和频率信号的累积个数N。e) Control the servo motor 1) to accelerate forward to a speed corresponding to the required calibration flow and then keep rotating at a constant speed. At the same time, the forward rotation of the servo motor 1) is decelerated by a certain reduction ratio of the reducer 2) to drive the lead screw 6) to rotate forward, and the rotation of the lead screw 3) is converted into horizontal movement of the column piston 12) and the disc piston 23) through the cooperation between the lead screw 3) and the lead screw nut 10), the slidable metal support 9), the floating joint 11), the column piston 12) and the disc piston 23). The horizontal movement of the column piston 12) and the disc piston 23) on the one hand sucks the water in the high-level water tank 50) through the front cylinder water inlet pipe 14) and the front cylinder water inlet switch ball valve 13) into the space between the piston cylinder front flange 17), the column piston 12) and the disc piston 23) in the piston cylinder 18). On the other hand, the water in the water-filled space between the rear flange 24 of the piston cylinder and the disc piston 23) is discharged outward through the rear cylinder water outlet switch ball valve 30) and the rear cylinder water outlet pipe 29) at the required calibration flow rate under the push of the disc piston 23), and enters the high-level water tank 50) after passing through the front switch ball valve 33 of the meter clamp), the front connecting pipe (56) of the meter clamp, the meter clamp 34), the front straight pipe section 35), the water meter to be inspected 37), the rear straight pipe section 38), the manifold 40), the same-diameter back-pressure switch ball valve 42), and the same-diameter back-pressure pipe 44); after the cylindrical piston 12) and the disc piston 23) are correspondingly changed from accelerated horizontal movement to uniform horizontal movement, the time frequency recorder starts to accumulate the frequency of the driving servo motor 1) and records the frequency accumulation start time t 1 ; after the cylindrical piston 12) and the disc piston 23) correspondingly change from accelerated horizontal movement to uniform horizontal movement, the time-frequency recorder starts to accumulate the frequency signal of the output of the inspected water meter 37), and records the frequency accumulation start time t'1 ; when the accumulation of the frequency signal of the output of the inspected water meter 37) by the time-frequency recorder reaches the minimum number of frequency signals, the time-frequency recorder stops accumulating the frequency signal of the output of the inspected water meter 37), and records the accumulation stop time t'2 and the accumulated number N' of frequency signals; after the time-frequency recorder stops accumulating the frequency signal of the output of the inspected water meter 37), the time-frequency recorder then stops accumulating the frequency signal of the output of the inspected water meter 37), and records the accumulation stop time t2 and the accumulated number N of frequency signals.
f)根据时间频率记录仪记录的被检水表37)的频率信号的累积个数N'及对应的累积开始时间t'1和结束时间t'2,按式(1)计算频率信号累积时间段内被检水表37)的平均流量:f) According to the cumulative number N' of the frequency signals of the inspected water meter 37) recorded by the time frequency recorder and the corresponding cumulative start time t'1 and end time t'2 , the average flow of the inspected water meter 37) during the frequency signal accumulation time period is calculated according to formula (1):
Q=(P×N')/(t'2-t'1) (1)Q=(P×N')/( t'2 - t'1 ) (1)
式中,Q为对被检水表37)输出的频率信号进行累积的时间段内的平均流量;P为水流过被检水表37)时的每个频率信号代表的水的累积量。Wherein, Q is the average flow rate in the time period during which the frequency signals output by the inspected water meter 37) are accumulated; and P is the cumulative amount of water represented by each frequency signal when water flows through the inspected water meter 37).
g)根据时间频率记录仪记录的伺服电机(1)的频率信号的累积个数N及对应的累积开始时间t1和结束时间t2,按式(2)计算频率信号累积时间段内的水表校验标准装置的平均流量:g) According to the cumulative number N of the frequency signals of the servo motor (1) recorded by the time frequency recorder and the corresponding cumulative start time t1 and end time t2 , the average flow rate of the water meter calibration standard device within the frequency signal accumulation time period is calculated according to formula (2):
q=πD2ipωN/[4(t2-t1)] (2)q=πD 2 ipωN/[4(t 2 -t 1 )] (2)
式中,q为频率信号累积时间段内的水表校验标准装置的平均流量;π为圆周率;D为活塞缸18)内直径;i为减速机2)的变速比;p为丝杠6)导程;ω为伺服电机1)接收到每个频率信号时伺服电机1)转动轴转过的角度。Wherein, q is the average flow rate of the water meter calibration standard device within the frequency signal accumulation time period; π is the pi; D is the inner diameter of the piston cylinder 18); i is the speed ratio of the reducer 2); p is the lead of the screw 6); ω is the angle of rotation of the servo motor 1) when the servo motor 1) receives each frequency signal.
h)根据式(3)计算得到被检水表37)被检验流量点的示值误差:h) According to formula (3), the indication error of the inspected water meter 37) at the inspected flow point is calculated as follows:
E=(Q-q)/q×100% (3)E=(Q-q)/q×100% (3)
式中,E为被检水表37)被检验流量点的示值误差。Where, E is the indication error of the inspected flow point of the inspected water meter 37).
i)根据被检水表37)的下一个校验流量点及其校验时间和盘形活塞23)已经水平运行的距离,判断伺服电机1)是否能够继续作同向转动:如果能够继续作同向转动,则重复步骤e)至步骤h)完成下一个流量点的校验;如果不能再继续同向转动,则首先执行步骤b),然后执行步骤d)至步骤h)完成下一个流量点的校验;i) judging whether the servo motor 1) can continue to rotate in the same direction according to the next calibration flow point of the water meter 37) to be inspected, its calibration time and the distance that the disc-shaped piston 23) has moved horizontally: if it can continue to rotate in the same direction, repeating steps e) to h) to complete the calibration of the next flow point; if it can no longer continue to rotate in the same direction, first executing step b), and then executing steps d) to h) to complete the calibration of the next flow point;
j)重复执行步骤i)完成对被检水表37)其他大流量点的校验。j) Repeat step i) to complete the calibration of other large flow points of the water meter 37).
B.小流量点的校验B. Calibration of small flow points
a')根据被检水表37)的小流量校验流量点及其校验时间和盘形活塞23)已经水平运行的距离,判断伺服电机1)是否能够作反向转动:如果能够作反向转动,则执行步骤c')~g');如果不能作反向转动,则执行步骤b),然后再执行步骤c')~g');a') judging whether the servo motor 1) can make reverse rotation according to the small flow verification flow point of the water meter 37) under inspection, its verification time and the distance that the disc-shaped piston 23) has moved horizontally: if it can make reverse rotation, executing steps c') to g'); if it cannot make reverse rotation, executing step b), and then executing steps c') to g');
b')重复执行步骤a')完成对被检水表37)其他小流量点的校验。b') Repeat step a') to complete the calibration of other small flow points of the water meter 37) under inspection.
c')关闭所述的前缸体手动排气球阀16)、前缸体进水开关球阀13)、后缸体手动排气球阀25)、后缸体出水开关球阀30)、同通径背压开关球阀42)、排气水泵后开关球阀54);打开所述的前缸体出水开关球阀20)、后缸体进水开关球阀28)、前后缸体出水管隔离球阀31)、小口径背压开关球阀41)、加压水泵后开关球阀46)、加压水泵前开关球阀48);c') close the front cylinder manual exhaust ball valve 16), the front cylinder water inlet switch ball valve 13), the rear cylinder manual exhaust ball valve 25), the rear cylinder water outlet switch ball valve 30), the same diameter back pressure switch ball valve 42), and the exhaust water pump rear switch ball valve 54); open the front cylinder water outlet switch ball valve 20), the rear cylinder water inlet switch ball valve 28), the front and rear cylinder water outlet pipe isolation ball valve 31), the small-diameter back pressure switch ball valve 41), the pressure water pump rear switch ball valve 46), and the pressure water pump front switch ball valve 48);
d')控制伺服电机1)反向加速旋转至与所需的校验流量相对应的转速后保持匀速转动,同时伺服电机1)的反向转动经减速机2)一定减速比减速后驱动丝杠6)作反向转动,并通过丝杠3)与丝杠螺母10)、可滑动金属支座9)、浮动接头11)、柱形活塞12)和盘形活塞23)之间的配合将丝杠3)的转动转换为柱形活塞12)和盘形活塞23)的水平移动,柱形活塞12)和盘形活塞23)的水平移动一方面将高位水箱50)中的水通过后缸体进水管道27)和后缸体进水开关球阀28)吸入位于活塞缸18)后法兰24)、盘形活塞23)之间的充水空间,另一方面将位于活塞缸18)内活塞缸前法兰17)、柱形活塞12)及盘形活塞23)之间的充水空间中的水在盘形活塞23)的推动下以按所需的校验流量通过前缸体出水开关球阀20)、前缸体出水管道19)、前后缸体出水管隔离球阀31)向外排出,经过夹表器前开关球阀33)、夹表器前连接管道56)、夹表器34)、前直管段35)、被检水表37)、后直管段38)、汇管40)、小口径背压开关球阀41)、小口径背压管道43)后进入高位水箱50);控制伺服电机1)反向加速旋转的同时,启动加压水泵47),在加压水泵47)作用下,高位水箱50)中的水经由加压水泵进水管49)、加压水泵前开关球阀48)、加压水泵47)、加压水泵后开关球阀46)、加压水泵出水管道45)后进入小口径背压管道43),并最终由小口径背压管道43)流入高位水箱50),加压水泵47)供给的水流经由小口径背压管道43)流入高位水箱50)时,水流在小口径背压管道43)中将快速产生超过被检水表37)校验时所需的最小背压,该背压通过后直管段38)传送至被检水表37),并最终快速在后直管段38)中产生恒定的超过被检水表37)所需的最小背压;在后直管段38)中产生恒定的超过被检水表37)所需的最小背压后,时间频率记录仪开始对驱动伺服电机1)转动的频率进行累积,同时记录频率累积开始时间t1;时间频率记录仪开始对驱动伺服电机1)转动的频率进行累积开始后,时间频率记录仪开始对被检水表37)的输出的频率信号进行累积,同时记录频率累积开始时间t'1;当时间频率记录仪对被检水表37)的输出的频率信号的累积达到最低频率信号个数时,时间频率记录仪停止对被检水表37)的输出的频率信号的累积,同时记录累积停止时间t'2和频率信号的累积个数N';时间频率记录仪停止对被检水表37)的输出的频率信号的累积后,时间频率记录仪接着停止对被检水表37)的输出的频率信号的累积,同时记录累积停止时间t2和频率信号的累积个数N;d') controls the servo motor 1) to accelerate in the reverse direction to a speed corresponding to the required calibration flow rate and then keeps rotating at a constant speed. Meanwhile, the reverse rotation of the servo motor 1) is decelerated by a certain reduction ratio of the reducer 2) and drives the lead screw 6) to rotate in the reverse direction. The rotation of the lead screw 3) is converted into horizontal movement of the column piston 12) and the disc piston 23) through the cooperation between the lead screw 3) and the lead screw nut 10), the slidable metal support 9), the floating joint 11), the column piston 12) and the disc piston 23). The horizontal movement of the column piston 12) and the disc piston 23) on the one hand pushes the water in the high-level water tank 50) into the rear cylinder body. The water pipe 27) and the rear cylinder water inlet switch ball valve 28) are sucked into the water-filled space between the rear flange 24 of the piston cylinder 18) and the disc piston 23). On the other hand, the water in the water-filled space between the front flange 17 of the piston cylinder 18), the column piston 12) and the disc piston 23) is pushed by the disc piston 23) to be discharged outward at the required calibration flow rate through the front cylinder water outlet switch ball valve 20), the front cylinder water outlet pipe 19), and the front and rear cylinder water outlet pipe isolation ball valve 31), and passes through the meter clamp front switch ball valve 33), the meter clamp front connecting pipe 56), the meter clamp 34), and the front straight pipe section 35 ), the inspected water meter 37), the rear straight pipe section 38), the manifold 40), the small-diameter back-pressure switch ball valve 41), the small-diameter back-pressure pipe 43), and then enter the high-level water tank 50); while controlling the servo motor 1) to accelerate the rotation in the reverse direction, start the pressure water pump 47), under the action of the pressure water pump 47), the water in the high-level water tank 50) passes through the pressure water pump inlet pipe 49), the pressure water pump front switch ball valve 48), the pressure water pump 47), the pressure water pump rear switch ball valve 46), the pressure water pump outlet pipe 45), and then enters the small-diameter back-pressure pipe 43), and finally flows into the high-level water tank 50) from the small-diameter back-pressure pipe 43), the pressure When the water flow supplied by the water pressure pump 47) flows into the high-level water tank 50) via the small-diameter back pressure pipe 43), the water flow in the small-diameter back pressure pipe 43) will quickly generate a back pressure exceeding the minimum back pressure required for the calibration of the water meter 37) under test, and the back pressure is transmitted to the water meter 37) under test through the rear straight pipe section 38), and finally quickly generates a constant back pressure exceeding the minimum back pressure required for the water meter 37) under test in the rear straight pipe section 38); after a constant back pressure exceeding the minimum back pressure required for the water meter 37) under test is generated in the rear straight pipe section 38), the time frequency recorder starts to accumulate the frequency of the drive servo motor 1) to rotate, and records the frequency accumulation start time t 1 ; after the time-frequency recorder starts to accumulate the frequency of the driving servo motor 1), the time-frequency recorder starts to accumulate the frequency signal of the output of the inspected water meter 37), and records the frequency accumulation start time t'1 ; when the accumulation of the frequency signal of the output of the inspected water meter 37) by the time-frequency recorder reaches the minimum number of frequency signals, the time-frequency recorder stops accumulating the frequency signal of the output of the inspected water meter 37), and records the accumulation stop time t'2 and the accumulated number N' of frequency signals; after the time-frequency recorder stops accumulating the frequency signal of the output of the inspected water meter 37), the time-frequency recorder then stops accumulating the frequency signal of the output of the inspected water meter 37), and records the accumulation stop time t2 and the accumulated number N of frequency signals;
e')执行步骤f);e') executing step f);
f')根据时间频率记录仪记录的伺服电机1)的频率信号的累积个数N及对应的累积开始时间t1和结束时间t2,按式(4)计算频率信号累积时间段内的水表校验标准装置的平均流量:f') According to the cumulative number N of the frequency signals of the servo motor 1) recorded by the time frequency recorder and the corresponding cumulative start time t1 and end time t2 , the average flow rate of the water meter calibration standard device within the frequency signal accumulation time period is calculated according to formula (4):
q=πipωN(D2-D1 2)/[4(t2-t1)] (4)q=πipωN(D 2 -D 1 2 )/[4(t 2 -t 1 )] (4)
式中,q为频率信号累积时间段内的水表校验标准装置的平均流量;π为圆周率;i为减速机2)的变速比;p为丝杠6)导程;ω为伺服电机1)接收到每个频率信号时伺服电机1)转动轴转过的角度;D为活塞缸18)内直径;D1为柱形活塞12)外直径。Wherein, q is the average flow rate of the water meter calibration standard device within the frequency signal accumulation time period; π is the pi; i is the speed ratio of the reducer 2); p is the lead of the screw 6); ω is the angle of rotation of the servo motor 1) when the servo motor 1) receives each frequency signal; D is the inner diameter of the piston cylinder 18); D1 is the outer diameter of the cylindrical piston 12).
g')执行步骤h)。g') execute step h).
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811600405.3A CN109405937B (en) | 2018-12-26 | 2018-12-26 | A wide range ratio water meter calibration standard device and water meter calibration method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811600405.3A CN109405937B (en) | 2018-12-26 | 2018-12-26 | A wide range ratio water meter calibration standard device and water meter calibration method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109405937A CN109405937A (en) | 2019-03-01 |
CN109405937B true CN109405937B (en) | 2024-04-30 |
Family
ID=65461319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811600405.3A Active CN109405937B (en) | 2018-12-26 | 2018-12-26 | A wide range ratio water meter calibration standard device and water meter calibration method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109405937B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114199350B (en) * | 2021-10-29 | 2025-05-02 | 浙江水利水电学院 | A method for draining the test section pipeline in a large-caliber liquid flow standard device |
CN116164881B (en) * | 2022-12-17 | 2024-05-10 | 廊坊西波尔钻石技术有限公司 | Calibration system and calibration method of barometric instrument |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3638438A1 (en) * | 1986-11-11 | 1988-05-26 | Rainer Dr Ing Koehnlechner | Arrangement and method of calibrating flow measuring devices |
JPH09145454A (en) * | 1995-11-29 | 1997-06-06 | Oval Corp | Flowmeter testing device |
CN101762307A (en) * | 2010-01-25 | 2010-06-30 | 浙江省计量科学研究院 | Gas flow calibrating device based on bell shape-column shape dual piston structure |
CN102175292A (en) * | 2011-01-28 | 2011-09-07 | 海盐美捷测试仪器有限公司 | Piston-type gas flow standard device |
CN102914349A (en) * | 2012-11-08 | 2013-02-06 | 宁波东海仪表水道有限公司 | Water meter verification device and method |
CN103017976A (en) * | 2012-12-03 | 2013-04-03 | 中国航空工业集团公司北京长城计量测试技术研究所 | Backpressure balanced type liquid high pressure regulation device |
CN204301821U (en) * | 2014-11-25 | 2015-04-29 | 丹东科泰仪器仪表有限公司 | A kind of mass method/method of standard table tiny flow quantity water flow standard apparatus |
CN104913872A (en) * | 2015-04-14 | 2015-09-16 | 西安中测计量技术有限公司 | Piston system preventing piston rod from fracture |
CN105157792A (en) * | 2015-04-30 | 2015-12-16 | 浙江省计量科学研究院 | Horizontal plunger flow calibrating device |
CN105784341A (en) * | 2016-03-04 | 2016-07-20 | 浙江省计量科学研究院 | Standard device for checking flow and differential pressure of constant flow valve and checking method |
CN106289461A (en) * | 2016-08-31 | 2017-01-04 | 金卡高科技股份有限公司 | A kind of two-chamber piston type gas flow standard |
CN209230744U (en) * | 2018-12-26 | 2019-08-09 | 浙江省计量科学研究院 | A wide range ratio water meter calibration standard device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7571750B2 (en) * | 2005-08-23 | 2009-08-11 | General Electric Co. | Tool for transferring controlled amounts of fluid into and from a fluid flow circuit |
-
2018
- 2018-12-26 CN CN201811600405.3A patent/CN109405937B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3638438A1 (en) * | 1986-11-11 | 1988-05-26 | Rainer Dr Ing Koehnlechner | Arrangement and method of calibrating flow measuring devices |
JPH09145454A (en) * | 1995-11-29 | 1997-06-06 | Oval Corp | Flowmeter testing device |
CN101762307A (en) * | 2010-01-25 | 2010-06-30 | 浙江省计量科学研究院 | Gas flow calibrating device based on bell shape-column shape dual piston structure |
CN102175292A (en) * | 2011-01-28 | 2011-09-07 | 海盐美捷测试仪器有限公司 | Piston-type gas flow standard device |
CN102914349A (en) * | 2012-11-08 | 2013-02-06 | 宁波东海仪表水道有限公司 | Water meter verification device and method |
CN103017976A (en) * | 2012-12-03 | 2013-04-03 | 中国航空工业集团公司北京长城计量测试技术研究所 | Backpressure balanced type liquid high pressure regulation device |
CN204301821U (en) * | 2014-11-25 | 2015-04-29 | 丹东科泰仪器仪表有限公司 | A kind of mass method/method of standard table tiny flow quantity water flow standard apparatus |
CN104913872A (en) * | 2015-04-14 | 2015-09-16 | 西安中测计量技术有限公司 | Piston system preventing piston rod from fracture |
CN105157792A (en) * | 2015-04-30 | 2015-12-16 | 浙江省计量科学研究院 | Horizontal plunger flow calibrating device |
CN105784341A (en) * | 2016-03-04 | 2016-07-20 | 浙江省计量科学研究院 | Standard device for checking flow and differential pressure of constant flow valve and checking method |
CN106289461A (en) * | 2016-08-31 | 2017-01-04 | 金卡高科技股份有限公司 | A kind of two-chamber piston type gas flow standard |
CN209230744U (en) * | 2018-12-26 | 2019-08-09 | 浙江省计量科学研究院 | A wide range ratio water meter calibration standard device |
Non-Patent Citations (1)
Title |
---|
"电驱动双活塞式气体流量标准装置的仿真研究";陈慧云;《中国计量学院学报》;第24卷(第1期);25-29 * |
Also Published As
Publication number | Publication date |
---|---|
CN109405937A (en) | 2019-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102680057B (en) | Piston-type gas-liquid dual-purpose micro-flow standard device | |
CN102393237B (en) | Water meter calibrating device and method for water meter calibration | |
CN107976223B (en) | High-precision leakage amount detection device | |
CN109405937B (en) | A wide range ratio water meter calibration standard device and water meter calibration method thereof | |
CN103527173B (en) | A kind of metering device of output of fluid produced by oil production well | |
CN108132081A (en) | An embedded mobile tiny liquid flow calibration device | |
CN102914349A (en) | Water meter verification device and method | |
CN100587466C (en) | Seawater reverse osmosis membrane performance low-pressure test system and test method | |
CN103852125B (en) | A kind of positive displacement small-flow gas metering device | |
CN113607227A (en) | Non-uniform flow field gas flow measurement method and system | |
CN104165661A (en) | Low-pressure loss differential pressure flow meter and calibrating method and flow metering method of low-pressure loss differential pressure flow meter | |
CN105784341B (en) | A kind of method of the standard set-up and verification of permanent flow valve flow and differential pressure verification | |
CN105115696B (en) | A kind of Multifunctional fluid mechanics experimental installation | |
CN104197998A (en) | Low-pressure-loss leakage detecting differential pressure type flow detection device, calibration method and measurement method | |
CN203688180U (en) | Automatic blowby and leakage measuring apparatus for valve | |
CN209230744U (en) | A wide range ratio water meter calibration standard device | |
CN111982251B (en) | An ultrasonic water meter detection system | |
CN203376230U (en) | A device for measuring slurry pH and density | |
CN201507434U (en) | Laboratory water purifier water purification pump testing device | |
CN219496362U (en) | Mobile detection equipment for SDI value | |
CN203550874U (en) | Oil pump axial clearance detection device | |
CN116929471A (en) | A flow measurement system and method | |
CN102879062A (en) | Multi-plunger parallel type liquid micro flow rate standard device | |
CN110631648A (en) | A Sensor Combined Bitobah Flowmeter | |
CN115307845A (en) | Check leakage rate test system and test method for check valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 310018 No. 300, Xiasha Road, Qiantang District, Hangzhou, Zhejiang Patentee after: Zhejiang Institute of Quality Science Country or region after: China Address before: No. 300 Xiasha Road, Qiantang District, Hangzhou City, Zhejiang Province Patentee before: ZHEJIANG MEASUREMENT SCIENCE Research Institute Country or region before: China |