CN109385603A - 一种超晶格复合膜表面改性不锈钢材料及其应用 - Google Patents

一种超晶格复合膜表面改性不锈钢材料及其应用 Download PDF

Info

Publication number
CN109385603A
CN109385603A CN201811128906.6A CN201811128906A CN109385603A CN 109385603 A CN109385603 A CN 109385603A CN 201811128906 A CN201811128906 A CN 201811128906A CN 109385603 A CN109385603 A CN 109385603A
Authority
CN
China
Prior art keywords
stainless steel
steel material
crtin
crn
composite membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811128906.6A
Other languages
English (en)
Inventor
金杰
刘豪杰
赵晓华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201811128906.6A priority Critical patent/CN109385603A/zh
Publication of CN109385603A publication Critical patent/CN109385603A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种超晶格复合膜表面改性不锈钢材料及其应用,所述表面改性不锈钢材料以不锈钢材料为基体,采用闭合场非平衡磁控溅射离子镀技术在基体表面依次重复沉积CrN层和CrTiN层,获得(CrN/CrTiN)N超晶格纳米复合膜表面改性不锈钢材料。本发明制备所得的(CrN/CrTiN)N超晶格纳米复合膜表面改性的316不锈钢材料,通过电化学工作站对试样进行包括动极化测试、稳态极化测试以及电化学阻抗谱的电化学测试,测试溶液为0.5MH2SO4+5ppmHF(模拟PEMFCs环境),测试结果表明表面改性材料相对316不锈钢基体腐蚀电位有很大提升,腐蚀电流密度比DOE’s技术目标下降了两个数量级。

Description

一种超晶格复合膜表面改性不锈钢材料及其应用
技术领域
本发明涉及一种双极板,特别涉及一种表面改性不锈钢材料及其作为双极板的应用,即通过闭合场非平衡磁控溅射离子镀技术在316L表面沉积多层(CrN/CrTiN)N超晶格纳米复合膜,该超晶格纳米复合膜不仅具有表面超高硬度,同时具有良好的耐腐蚀性能和导电性能,能够满足质子交换膜燃料电池双极板应用标准。
背景技术
质子交换膜燃料电池是一种将化学能直接转换为电能的新型的清洁能源装置,它具有不受卡诺循环影响,能量转化率高,污染小等特点。双极板是质子交换膜燃料电池中最主要的一个部件,它不仅占了整个燃料电池80%的重量和几乎全部的体积,而且占了整个燃料电池堆45%的成本。因此双极板的好坏与燃料电池的效率及应用密切相关。优异的双极板应具有极好的阻气性和导电性、良好的机械性能、优异的耐腐蚀性能和低成本。石墨具有优异的导电性和化学惰性,因此过去一直用石墨材料作为双极板材料,但是石墨的易碎、透气性以及差的机械加工性能使质子交换膜燃料电池质量很大并且成本高,阻碍了其进一步的商业化应用。而不锈钢具有优异的机械性能和导电性,以及较低的加工成本。但是在质子交换膜燃料电池环境下,不锈钢表面会被腐蚀生成钝化膜,使得气体扩散膜和双极板之间的接触电阻增加,影响整个电池堆的工作效率。通过表面改性技术可以提高不锈钢双极板的导电率和耐蚀性。
超晶格薄膜材料是由两种晶格匹配较好的材料,以几纳米至几十纳米的薄层交替生长并保持周期性的多层结构薄膜材料,金属氮化物超晶格薄膜相比单层氮化物薄膜具有更优异的力学、耐磨性以及耐蚀性能。TiN薄膜具有优良的摩擦磨损性能和抗腐蚀性能,CrN薄膜相比TiN膜性更优异,两者具有相同的NaCl型面心立方晶体结构,两种薄膜材料可以用来制备超晶格薄膜,形成的超晶格薄膜比两者的单层膜具有更加优异的力学和抗腐蚀性能。
利用闭合场非平衡磁控溅射离子镀技术设备来制备(CrN/CrTiN)N超晶格纳米薄膜,该设备结合了磁控溅射技术和离子镀技术的优点,膜层厚度均匀,涂层与基体之间具由较高的结合力,同时具有很高的灵活性,可以用来制备梯度膜涂层和在同一基体上沉积多层涂层。
发明内容
本发明目的是提供一种表面改性不锈钢材料及其应用,以316L不锈钢为基体,对基体进行研磨抛光前处理,在其表面利用闭合场非平衡磁控溅射离子镀技术,沉积(CrN/CrTiN)N超晶格纳米复合膜,该超晶格纳米复合膜不仅具有表面超高硬度、超高弹性模量,同时具有良好的耐腐蚀性能和导电性能,能够满足质子交换膜燃料电池双极板应用标准。超晶格纳米复合膜改性材料耐腐蚀性能优于传统PVD处理的双极板,腐蚀电位、腐蚀电流、表面接触电阻等性能需满足美国DOE 2020标准要求。
本发明提供的技术方案是:
本发明提供一种(CrN/CrTiN)N超晶格纳米复合膜表面改性不锈钢材料,所述表面改性不锈钢材料以不锈钢(优选316L不锈钢)为基体,采用闭合场非平衡磁控溅射离子镀技术(closed field unbalanced magnetron sputtering ion plating technology)在基体表面依次沉积CrN层和CrTiN层,获得(CrN/CrTiN)N超晶格纳米复合膜表面改性不锈钢材料。
进一步,所述基体在表面改性前先进行预处理,所述预处理方法为:将不锈钢材料基体(优选采用线切割对将直径为30mm的316不锈钢棒材切割成厚3.1mm的试样,用400#、800#、1200#、1500#、2000#的SiC砂纸依次)打磨至表面划痕一致,然后(优选用W0.5的金刚石研磨膏)将基体抛光成镜面,再依次在丙酮、无水乙醇和去离子水中分别超声(优选频率为100Hz,室温)清洗15min,以去除表面油污,提高镀膜成功率,超声清洗之后,在无尘环境下干燥(优选40~50℃),获得预处理后的不锈钢材料基体。
进一步,所述CrN层和CrTiN层沉积方法为:将基体放入闭合场非平衡磁控溅射离子镀设备的腔体试样架上固定,所述腔体设有Cr靶(优选2个纯度99.9%的Cr靶)和Ti靶(优选1个纯度99.9%的Ti靶)作为溅射源,关闭真空室门,抽真空至2.5×10-5torr;整个镀膜过程通入氩气(优选纯度99.99%)作为保护气体,开始运行镀膜程序:(1)先将Cr靶和Ti靶均施加0.3A的电流以防止靶污染,对基体清洗30min,去除表面氧化物及油污;(2)提高Cr靶电流到4A,Ti靶电流为0.3A,沉积5-10min,在基体表面沉积一层Cr的过渡层,以增加基体和膜的结合力;(3)通入氮气(优选纯度99.99%)作为反应气体,Cr靶电流增加到4A,Ti靶电流为0.3A下沉积5-10min,在Cr的过渡层表面沉积一层CrN膜层;(4)提升Ti靶电流至2-6A(优选2A、4A或6A),Cr靶电流为0.3A,氮气(优选纯度99.99%)氛围下沉积5-10min,在CrN膜层表面沉积一层CrTiN膜层;(5)交替重复CrN膜层和CrTiN膜层的沉积,沉积时间为320min,获得(CrN/CrTiN)N超晶格纳米复合膜表面改性不锈钢材料。
进一步,优选步骤(4)所述Ti靶电流为4-6A,更优选4A。
进一步,优选步骤(3)和步骤(4)所述CrN膜层和CrTiN膜层沉积时间均为8min。
本发明还提供一种所述(CrN/CrTiN)N超晶格纳米复合膜表面改性不锈钢材料在制备质子交换膜燃料电池双极板中的应用。
与现有技术相比,本发明的有益效果主要体现在于:
本发明通过沉积的(CrN/CrTiN)N超晶格纳米复合膜具有多层结构,用于金属材料的表面改性后,超晶格复合膜结构的有序化会减少了晶体缺陷的数量,提高了涂层的致密性,薄膜组织更致密,具有更好的耐蚀性和电导率。此外可以抑制裂纹的萌生和扩展,提高了薄膜的力学性能和摩擦性能。同时(CrN/CrTiN)N超晶格复合膜兼具CrN和TiN两者的优点,具有比单层膜更优异的耐蚀性、电导率、耐磨性等特点。此外由于超晶格结构特点,表面还具有超高硬度、超高弹性模量等优点。本发明制备所得的(CrN/CrTiN)N超晶格纳米复合膜表面改性的316不锈钢材料,通过电化学工作站对试样进行包括动极化测试、稳态极化测试以及电化学阻抗谱的电化学测试,测试溶液为0.5MH2SO4+5ppmHF(模拟PEMFCs环境),测试结果表明表面改性材料相对316不锈钢基体腐蚀电位有很大提升,腐蚀电流密度比DOE’s技术目标下降了两个数量级。
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
本发明室温是指25-30℃。
实施例1
采用线切割对将直径为30mm的316不锈钢棒材切割成厚3.1mm的试样,用400#、800#、1200#、1500#、2000#的SiC砂纸依次打磨试样至划痕一致,然后用W0.5的金刚石研磨膏将基体抛光成镜面。依次在丙酮,无水乙醇和去离子水中分别超声15min(频率为100Hz,室温),以去除表面油污,提高镀膜成功率。清洗之后,取出试样,并在无尘环境下干燥30min(50℃),获得预处理后的不锈钢基体。
将预处理后的不锈钢基体放入闭合场非平衡磁控溅射离子镀设备(英国梯尔公司,型号Teer-650UDP-4)的腔体试样架上固定,关闭真空室门,腔体中分别有两块99.9%的高纯铬靶和一块99.9%的高纯钛靶,抽真空到基准压力2.5×10-5torr,通入高纯(99.99%)氩气在镀膜过程中作为保护性气体。首先是清洗试样,Cr靶和Ti靶都施加0.3A的电流以防止靶污染,在-500V偏压下,等离子体溅射30min以去除试样表面的钝化膜和油污;然后Ti靶电流保持不变,Cr靶电流增至4A,在试样表面沉积一层Cr的过渡层,增加基体和膜的结合力,沉积时间为5min;然后通入高纯(99.99%)氮气作为反应气体,在Ti靶电流0.3A,Cr靶电4A下沉积10min分钟得到CrN膜。Ti靶电流从0.3A提升到4A,Cr靶电流保持不变(0.3A),在氮气气氛下沉积10min,从而得到CrTiN三元氮化膜,降低Ti靶电流至0.3A,Cr靶电流增加至4A,交替沉积CrN/CrTiN复合膜,沉积16个周期,沉积时间为320min,获得(CrN/CrTiN)N复合膜,即获得(CrN/CrTiN)N超晶格纳米复合膜表面改性不锈钢基体,涂层厚度约为2.8μm。
通过IVIUM电化学工作站测试基体试样在模拟燃料电池环境中的耐蚀性,采用标准三电极体系,以基体试样作为工作电极,铂电极作为对电极,饱和甘汞电极作为参比电极,测试溶液为0.5M H2SO4+5ppmHF(模拟PEMFCs环境),测试温度为70℃。采用Wang的方法来测试涂层与气体扩散层之间的界面接触电阻(Wang H,Sweikart MA,Turner JA.Stainlesssteel as bipolar plate material for polymer electrolyte membrane fuelcells.JPower Sources 2003;115:243e51),用INSTRON 8801型数字伺服试验机控制压力为0.1MPa至2.0MPa,用恒电流仪施加2A的恒定电流,采用精密万用表测量镀金铜板两端电压随压力变化的数值,通过伏安法计算相应的界面接触电阻值。
结果表明本实例制备的(CrN/CrTiN)N超晶格纳米复合膜表面改性不锈钢基体试样的腐蚀电流密度为5.24×10-8A/cm-2,在1.4MPa下涂层的界面接触电阻为4.2mΩ/cm2
实施例2
将实施例1中,CrN膜沉积时间改为8min,CrTiN三元氮化膜沉积时间改为8min,沉积20个周期,其他同实施例1,(CrN/CrTiN)N超晶格纳米复合膜的沉积时间为320min,获得(CrN/CrTiN)N超晶格纳米复合膜表面改性的不锈钢基体,涂层厚度为2.6μm。
结果表明本实例制备的(CrN/CrTiN)N超晶格纳米复合膜的腐蚀电流密度为7.52×10-8A/cm-2,在1.4MPa下涂层的界面接触电阻为6.3mΩ/cm2
实施例3
将实施例1中,CrN膜沉积时间改为5min,CrTiN膜沉积时间改为5min,其它参数保持不变,交替沉积CrN/CrTiN复合膜,其它同实例1,沉积时间为320min,涂层厚度约为2.5μm。
结果表明本实例制备的(CrN/CrTiN)N超晶格纳米薄膜的腐蚀电流密度为7.02×10-8A/cm-2,在1.4MPa下涂层的界面接触电阻为5.8mΩ/cm2

Claims (8)

1.一种超晶格纳米复合膜表面改性不锈钢材料,其特征在于所述表面改性不锈钢材料以不锈钢材料为基体,采用闭合场非平衡磁控溅射离子镀技术在基体表面依次重复沉积CrN层和CrTiN层,获得(CrN/CrTiN)N超晶格纳米复合膜表面改性不锈钢材料。
2.如权利要求1所述超晶格纳米复合膜表面改性不锈钢材料,其特征在于所述基体在表面改性前先进行预处理,所述预处理方法为:将不锈钢材料表面研磨抛光,打磨成镜面,然后依次在丙酮、无水乙醇和去离子水中分别超声15min,超声清洗之后,在无尘环境下干燥,获得预处理后的不锈钢材料。
3.如权利要求1所述超晶格纳米复合膜表面改性不锈钢材料,其特征在于所述CrN层和CrTiN层沉积方法为:将基体放入闭合场非平衡磁控溅射离子镀设备的腔体试样架上固定,所述腔体设有Cr靶和Ti靶作为溅射源,关闭真空室门,抽真空至2.5×10-5torr,通入氩气作为保护气体,开始运行镀膜程序:(1)先将Cr靶和Ti靶均施加0.3A的电流对基体清洗30min;(2)提高Cr靶电流到4A,Ti靶电流为0.3A,沉积5-10min,在基体表面沉积一层Cr的过渡层;(3)通入氮气作为反应气体,在Cr靶电流4A、Ti靶电流为0.3A下沉积5-10min,在Cr的过渡层表面沉积一层CrN膜层;(4)提升Ti靶电流至2A~6A,Cr靶电流为0.3A,氮气氛围下沉积5-10min,在CrN膜层表面沉积一层CrTiN膜层;(5)交替重复步骤(3)和步骤(4)的CrN膜层和CrTiN膜层的沉积,获得(CrN/CrTiN)N超晶格纳米复合膜表面改性不锈钢材料。
4.如权利要求3所述超晶格纳米复合膜表面改性不锈钢材料,其特征在于步骤(4)所述Ti靶电流为4-6A。
5.如权利要求3所述超晶格纳米复合膜表面改性不锈钢材料,其特征在于步骤(3)所述CrN膜层和步骤(4)CrTiN膜层沉积时间均为8-10min。
6.如权利要求3所述超晶格纳米复合膜表面改性不锈钢材料,其特征在于步骤(5)沉积总时间为320min。
7.如权利要求1或3所述超晶格纳米复合膜表面改性不锈钢材料,其特征在于所述不锈钢材料为316L不锈钢。
8.一种权利要求1所述超晶格纳米复合膜表面改性不锈钢材料在制备质子交换膜燃料电池双极板中的应用。
CN201811128906.6A 2018-09-27 2018-09-27 一种超晶格复合膜表面改性不锈钢材料及其应用 Pending CN109385603A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811128906.6A CN109385603A (zh) 2018-09-27 2018-09-27 一种超晶格复合膜表面改性不锈钢材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811128906.6A CN109385603A (zh) 2018-09-27 2018-09-27 一种超晶格复合膜表面改性不锈钢材料及其应用

Publications (1)

Publication Number Publication Date
CN109385603A true CN109385603A (zh) 2019-02-26

Family

ID=65418301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811128906.6A Pending CN109385603A (zh) 2018-09-27 2018-09-27 一种超晶格复合膜表面改性不锈钢材料及其应用

Country Status (1)

Country Link
CN (1) CN109385603A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097520A (zh) * 2021-03-29 2021-07-09 深圳扑浪创新科技有限公司 一种不锈钢双极板及其制备方法
CN114068946A (zh) * 2022-01-14 2022-02-18 长沙理工大学 钠硫电池硫极集流体max相多层复合防护涂层及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058943A (zh) * 2017-05-10 2017-08-18 山东大学 TiCN/CrCN纳米多层膜及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058943A (zh) * 2017-05-10 2017-08-18 山东大学 TiCN/CrCN纳米多层膜及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JIE JIN ET AL.: "Influence of Ti content on the corrosion properties and contact resistance of CrTiN coating in simulated proton exchange membrane fuel cells", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
MOHAMMAD SHAREAR KABIR ET AL.: "Structure and mechanical properties of graded Cr/CrN/CrTiN coatings synthesized by close field unbalanced magnetron sputtering", 《SURFACE & COATINGS TECHNOLOGY》 *
戴遐明主编: "《纳米陶瓷材料及其应用》", 30 June 2005, 国防工业出版社 *
杜军等: "纳米多层结构实现硬质薄膜韧化的方法、机理与应用", 《材料工程》 *
王剑莉等: "表面改性不锈钢双极板的性能研究", 《电源技术》 *
蔡志海等: "《CrN基微纳米复合膜的制备与应用》", 30 April 2017, 知识产权出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097520A (zh) * 2021-03-29 2021-07-09 深圳扑浪创新科技有限公司 一种不锈钢双极板及其制备方法
CN114068946A (zh) * 2022-01-14 2022-02-18 长沙理工大学 钠硫电池硫极集流体max相多层复合防护涂层及其制备方法

Similar Documents

Publication Publication Date Title
Jannat et al. Preparation and performance of nanometric Ti/TiN multi-layer physical vapor deposited coating on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells
Zhao et al. Influence of Cr-C film composition on electrical and corrosion properties of 316L stainless steel as bipolar plates for PEMFCs
Barranco et al. Cr and Zr/Cr nitride CAE-PVD coated aluminum bipolar plates for polymer electrolyte membrane fuel cells
JP5420530B2 (ja) 燃料電池用セパレータおよびその製造方法
Lu et al. The effect of formic acid concentration on the conductivity and corrosion resistance of chromium carbide coatings electroplated with trivalent chromium
Subramanian et al. Structural and tribological properties of DC reactive magnetron sputtered titanium/titanium nitride (Ti/TiN) multilayered coatings
CN102723499B (zh) 表面镀层的燃料电池金属双极板及其制备方法
Zhang et al. Honeycomb-like nanocomposite Ti-Ag-N films prepared by pulsed bias arc ion plating on titanium as bipolar plates for unitized regenerative fuel cells
Zhang et al. Arc ion plated Cr/CrN/Cr multilayers on 316L stainless steel as bipolar plates for polymer electrolyte membrane fuel cells
US11855308B2 (en) Carbon coated hydrogen fuel cell bipolar plates
Xu et al. A ZrN nanocrystalline coating for polymer electrolyte membrane fuel cell metallic bipolar plates prepared by reactive sputter deposition
Yoo et al. Effect of Si addition to CrN coatings on the corrosion resistance of CrN/stainless steel coating/substrate system in a deaerated 3.5 wt.% NaCl solution
Fonseca et al. Corrosion behavior of magnetron sputtered NbN and Nb1-xAlxN coatings on AISI 316L stainless steel
CN112144027A (zh) 不锈钢表面沉积TiNxOy涂层双极板材料及其制备方法与应用
US20230183851A1 (en) High-entropy carbide ceramic material, carbide ceramic coating and preparation methods and use thereof
CN109385603A (zh) 一种超晶格复合膜表面改性不锈钢材料及其应用
KR20140094736A (ko) 스테인레스스틸을 모재로 한 내식성 및 전도성 나노 카본 코팅 방법 및 그에 따른 연료전지분리판
CN108977775A (zh) 一种TiAlSiN涂层刀具制备工艺
Jin et al. Investigation of corrosion protection with conductive chromium-aluminum carbonitride coating on metallic bipolar plates
Park et al. Electrochemical characteristics of fluorine-doped tin oxide film coated on stainless steel bipolar plates
CN108914060B (zh) 一种燃料电池双极板表面防护涂层的制备方法
Qin et al. Corrosion behavior of TiC/amorphous carbon coated stainless steel as bipolar plate for proton exchange membrane fuel cell
CN109037708A (zh) 一种表面改性的20Cr钢双极板材料及其制备方法
Jin et al. A comprehensive performance study of NiCrCN coated 316L stainless steel as bipolar plates for proton exchange membrane fuel cell
Cui et al. Electrochemical properties of tungsten-alloying-modified AISI 430 stainless steel as bipolar plates for PEMFCs used in marine environment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190226