CN109374529A - 一种半开腔共振式光声池 - Google Patents

一种半开腔共振式光声池 Download PDF

Info

Publication number
CN109374529A
CN109374529A CN201811065200.XA CN201811065200A CN109374529A CN 109374529 A CN109374529 A CN 109374529A CN 201811065200 A CN201811065200 A CN 201811065200A CN 109374529 A CN109374529 A CN 109374529A
Authority
CN
China
Prior art keywords
surge chamber
photoacoustic cell
gas
resonant
resonant cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811065200.XA
Other languages
English (en)
Other versions
CN109374529B (zh
Inventor
宫振峰
陈珂
于清旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201811065200.XA priority Critical patent/CN109374529B/zh
Publication of CN109374529A publication Critical patent/CN109374529A/zh
Application granted granted Critical
Publication of CN109374529B publication Critical patent/CN109374529B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • G01N2021/0314Double pass, autocollimated path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1704Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3125Measuring the absorption by excited molecules

Abstract

本发明属于痕量气体检测技术领域,提供一种半开腔共振式光声池,包括壳体、谐振腔、缓冲室、光学玻璃窗片、声波传感器、进气口和出气口。该结构将传统的一阶纵向共振式光声池谐振腔一侧的缓冲室去除,将声波传感器置于此位置,另一侧的缓冲室保留,形成半开半闭式的光声池结构。声波传感器将产生的光声信号采集,通过分析处理获得待测气体的浓度信息。在缓冲室的端面安装有光学玻璃窗片,让激励光顺利通过,在靠近声波传感器的谐振腔位置设有进气孔,在缓冲室的侧壁设有出气孔。本发明的光声池提高了光声信号强度,气体的检测极限灵敏度更高;同时减小光声池的加工难度、气体的平衡时间和气样体积,为高灵敏度痕量气体的检测提供了新的解决方案。

Description

一种半开腔共振式光声池
技术领域
本发明属于痕量气体检测技术领域,涉及到一种半开腔共振式光声池。
背景技术
痕量气体检测在大气环境检测、工业过程控制以及生命科学领域有着广泛的应用需求。随着激光技术的发展,光谱技术已经成为一种具有高灵敏度、响应时间快和选择性强等优势的气体检测方法。光声光谱是通过直接测量气体因吸收光能而产生热量的光谱量热技术,是一种无背景吸收光谱技术。气体光声光谱技术的基本原理为:待测气体吸收特殊波段的光能量后,气体分子从基态跃迁到激发态,但由于高能级激发态的不稳定性,会通过碰撞弛豫重新回到基态,同时根据能量守恒定律,将吸收的光能量转化为分子的平动能,即造成气室中局部温度升高。当光以一定频率调制后,其始终局部温度就会周期性的升高降低,从而产生与激光调制频率一致的声波信号。利用声波探测器对产生的声波信号进行采集,通过分析处理就可以获得待测气体的浓度信息。
基于光声光谱检测技术的探测系统中,一般采用光声池作为声波产生单元。光声池分为共振式光声池和非共振式光声池两种结构。共振式光声池是以声波在光声池中传播的某个本征频率来调制光源,声波在光声池中形成驻波,光声信号从而实现共振放大,因此共振式光声池对于气体的检测灵敏度更高。光声信号大小和光声池常数成正比关系,因此可以通过提高池常数来提高光声信号。对于传统共振式光声池,要想提高池常数的大小,可以通过减小谐振腔的半径,但是过小的半径会增加激光器准直的难度,一旦光束照射到池壁上,会引起池壁吸收,增加系统的噪声,因此在不改变传统光声池结构的前提下,池常数的提高空间有限。同时传统的共振式光声池的谐振腔两侧各有一个缓冲室的结构,系统内部的气路体积较大,在进行微量气体检测时所需的气样量明显增加。因此设计一种高性能共振式光声池结构对于微量气体检测领域具有重要的应用价值。
发明内容
本发明的目的是提出一种半开腔式共振光声池结构。在谐振腔尺寸不变的前提下,该方法不仅可以提高光声信号的强度,提高气体的检测灵敏度,同时减小了光声池的加工难度,减小了气体的平衡时间和所需气样体积,为光声光谱检测技术在微量气体检测领域的应用中拓展了更大的空间。
本发明的技术方案:
一种半开腔共振式光声池,包括壳体1、谐振腔2、缓冲室3、光学玻璃窗片4、声波传感器5、进气口6和出气口7;将传统的共振式光声池谐振腔2一侧的缓冲室3去除,将声波传感器5置于此位置,另一侧的缓冲室3保留,形成半开半闭式的光声池结构;声波传感器5将产生的光声信号采集,通过分析处理获得待测气体的浓度信息;在缓冲室3的端面安装有光学玻璃窗片4,让激励光顺利通过,在靠近声波传感器5的谐振腔2位置设有进气孔6,在缓冲室3的侧壁设有出气孔7。
将传统的共振式光声池谐振腔一侧的缓冲室去除,将声波传感器置于此位置,另一侧的缓冲室保留,形成半开半闭式的光声池结构。当谐振腔中产生光声信号时,声波敏感膜片发生振动,使得声波传感器的膜片发生周期性的振动,通过解调膜片振动幅度的大小得到光声信号的实际值。半开腔式纵向共振光声池的整体设计结构更加简化,同时减少了一个缓冲室,可以使气体平衡时间缩短,减小了系统的响应时间;同时该半开腔式光声池结构与声波传感器的匹配更加方便,使得谐振腔中间位置不需要开孔配合声波传感器的使用,光声池的结构易于加工;另外,该种结构的设计将驻波的波腹位置从谐振腔的正中央变化到谐振腔的边缘位置,在谐振腔尺寸不变的前提下减小了谐振腔的一阶共振频率,增加了光声信号的大小,提高了气体的检测极限灵敏度。
本发明的设计理论依据如下:光声池中的光声信号幅度正比于入射光功率、光声池常数、气体的体积浓度、声波传感器的灵敏度和气体的吸收系数。当气体的种类和浓度、入射光功率、声波传感器的灵敏度不变的前提下,增大光声池常数有利于光声信号的提高。传统的共振式光声池在谐振腔两端设置有缓冲室的结构,谐振腔中央为声波的波腹位置,谐振腔两个边缘位置为声波的波节位置,声波传感器置于谐振腔的正中央。传统光声池的一阶纵向模式的共振频率f可以近似表示为:f=v/2L,其中v为声速,L为谐振腔的长度。当谐振腔长度和半径一定的前提下,光声池常数与光声池的一阶纵向共振频率的1/2次幂f1/2成反比关系。而对于本发明中所提出的半开腔式一阶纵向共振光声池来说,谐振腔的封闭侧为声波的波腹位置,声波敏感膜片所在的位置声波处于极大值,在谐振腔与缓冲室相接的位置是声波的波节位置,此种结构的光声池的一阶纵向模式的共振频率f1可以表示为:f1=v/4L。在谐振腔尺寸不变的前提下,半开腔式光声池的一阶纵向共振频率是传统共振式光声池一阶纵向共振频率的一半。根据上文可知,共振频率f1越小,光声池常数越大,光声信号幅度越强。因此本发明中设计的光声池结构有效的增加了光声信号的强度,提高了气体的检测极限。
本发明的效果和益处:在传统的共振式光声池的基础上,提高了光声信号强度,气体的检测极限灵敏度更高;同时减小了光声池的加工难度、气体的平衡时间和气样体积,为高灵敏度痕量气体的检测提供了新的解决方案。
附图说明
图1是半开腔式光声池的示意图。
图2是传统一阶纵向共振式光声池谐振腔内部的声场分布示意图。
图3是半开腔式一阶纵向共振光声池谐振腔内部的声场分布示意图。
图中:1壳体;2谐振腔;3缓冲室;4光学玻璃窗片;5声波传感器;6进气口;7出气口;8声波波腹位置;9声波波节位置。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
本发明提供了如图1所示的半开腔式共振光声池,包括壳体1、谐振腔2、缓冲室3、光学玻璃窗片4、声波传感器5、进气口6和出气口7。声波传感器5将产生的光声信号采集,通过分析处理可以获得待测气体的浓度信息。在缓冲室3的端面安装有光学玻璃窗片4,可以让激励光顺利通过,在靠近声波传感器5的谐振腔2位置设有进气孔6,在缓冲室3的侧壁设有出气孔7。
图2表示的传统的共振式光声池谐振腔内部声波的分布情况,可以看出谐振腔中间位置为声波的波腹位置8,谐振腔两端为声波的波节位置9,声波传感器5置于谐振腔的正中央。
图3表示的是本发明提出的半开腔式共振光声池谐振腔内部声波的分布情况,谐振腔的左侧闭合处是声波的波腹位置8,谐振腔右侧的开放处是声波的波节位置9。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种半开腔共振式光声池,其特征在于,所述的半开腔共振式光声池包括壳体(1)、谐振腔(2)、缓冲室(3)、光学玻璃窗片(4)、声波传感器(5)、进气口(6)和出气口(7);将传统的共振式光声池谐振腔(2)一侧的缓冲室(3)去除,将声波传感器(5)置于此位置,另一侧的缓冲室(3)保留,形成半开半闭式的光声池结构;声波传感器(5)将产生的光声信号采集,通过分析处理获得待测气体的浓度信息;在缓冲室(3)的端面安装有光学玻璃窗片(4),让激励光顺利通过,在靠近声波传感器(5)的谐振腔(2)位置设有进气孔(6),在缓冲室(3)的侧壁设有出气孔(7)。
CN201811065200.XA 2018-09-13 2018-09-13 一种半开腔共振式光声池 Active CN109374529B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811065200.XA CN109374529B (zh) 2018-09-13 2018-09-13 一种半开腔共振式光声池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811065200.XA CN109374529B (zh) 2018-09-13 2018-09-13 一种半开腔共振式光声池

Publications (2)

Publication Number Publication Date
CN109374529A true CN109374529A (zh) 2019-02-22
CN109374529B CN109374529B (zh) 2020-04-28

Family

ID=65404578

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811065200.XA Active CN109374529B (zh) 2018-09-13 2018-09-13 一种半开腔共振式光声池

Country Status (1)

Country Link
CN (1) CN109374529B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346296A (zh) * 2019-07-20 2019-10-18 大连理工大学 一种多腔式半开腔共振光声池及多种气体同时测量系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT6894U2 (de) * 2004-01-28 2004-05-25 Avl List Gmbh Messkammer für photoakustische sensoren
US20120118042A1 (en) * 2010-06-10 2012-05-17 Gillis Keith A Photoacoustic Spectrometer with Calculable Cell Constant for Quantitative Absorption Measurements of Pure Gases, Gaseous Mixtures, and Aerosols
CN103063574A (zh) * 2012-12-21 2013-04-24 安徽大学 一种膜片式微型光声池及其应用
WO2014122135A1 (fr) * 2013-02-08 2014-08-14 Blue Industry And Science Cellule photo-acoustique a precision de detection amelioree et analyseur de gaz comprenant une telle cellule
CN105466854A (zh) * 2015-12-30 2016-04-06 武汉精昱光传感系统研究院有限公司 一种有源气室结构与光声光谱气体传感系统
CN108226050A (zh) * 2018-03-02 2018-06-29 苏州感闻环境科技有限公司 一种用于气体光声光谱检测的谐振式光声池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT6894U2 (de) * 2004-01-28 2004-05-25 Avl List Gmbh Messkammer für photoakustische sensoren
US20120118042A1 (en) * 2010-06-10 2012-05-17 Gillis Keith A Photoacoustic Spectrometer with Calculable Cell Constant for Quantitative Absorption Measurements of Pure Gases, Gaseous Mixtures, and Aerosols
CN103063574A (zh) * 2012-12-21 2013-04-24 安徽大学 一种膜片式微型光声池及其应用
WO2014122135A1 (fr) * 2013-02-08 2014-08-14 Blue Industry And Science Cellule photo-acoustique a precision de detection amelioree et analyseur de gaz comprenant une telle cellule
CN105466854A (zh) * 2015-12-30 2016-04-06 武汉精昱光传感系统研究院有限公司 一种有源气室结构与光声光谱气体传感系统
CN108226050A (zh) * 2018-03-02 2018-06-29 苏州感闻环境科技有限公司 一种用于气体光声光谱检测的谐振式光声池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BERND BAUMANN等: "Eigenmodes of Photoacoustic T-Cells", 《RESEARCHGATE》 *
ZHENFENG GONG等: "High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection", 《SENSORS AND ACTUATORS B: CHEMICAL》 *
陈珂等: "基于光纤声波传感的超高灵敏度光声光谱微量气体检测", 《光学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346296A (zh) * 2019-07-20 2019-10-18 大连理工大学 一种多腔式半开腔共振光声池及多种气体同时测量系统
US11300499B2 (en) * 2019-07-20 2022-04-12 Dalian University Of Technology Multi-cavity semi-open resonant photoacoustic cell and multi-gas simultaneous measurement system

Also Published As

Publication number Publication date
CN109374529B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN110346296A (zh) 一种多腔式半开腔共振光声池及多种气体同时测量系统
US20210404949A1 (en) Multi-cavity superimposed non-resonant photoacoustic cell and gas detection system
CN105259116A (zh) 一种光声光谱痕量气体测量装置和方法
WO2016179693A1 (en) Photoacoustic detector
CN105241814A (zh) 一种利用光声光谱技术测量痕量气体的装置和方法
CN209894680U (zh) 一种用于光声光谱检测的增强型光声池
WO2023213067A1 (zh) 一种用于气体光声光谱检测的喇叭形光声池
CN105136702A (zh) 一种声共振式全保偏光纤光热干涉的气溶胶吸收系数测量方法
US10876958B2 (en) Gas-detecting device with very high sensitivity based on a Helmholtz resonator
Miklós Acoustic aspects of photoacoustic signal generation and detection in gases
CN109374529A (zh) 一种半开腔共振式光声池
CN113295620B (zh) 光纤耦合的全固态增强光声光谱气体光声探测模块及方法
CN102519882A (zh) 红外调制光声光谱气体检测装置
CN112098355A (zh) 一种适用于宽带发散光束的光声光谱痕量气体检测装置
Celik et al. Shear layer oscillation along a perforated surface: a self-excited large-scale instability
Ghilardi et al. Finite element simulations of the acoustic black hole effect in duct terminations
Starecki Windowless open photoacoustic Helmholtz cell
CN114858714A (zh) 一种气体光声光谱检测用光声池
CN111007014A (zh) 一种一阶纵向全共振椭球柱形光声池
CN202562842U (zh) 利用光声光谱法检测微量水蒸气浓度的装置
Kauppinen et al. Sensitive and fast gas sensor for wide variety of applications based on novel differential infrared photoacoustic principle
Kitamori et al. Frequency characteristics of photoacoustic signals generated in liquids
Verstuyft et al. An integrated photoacoustic terahertz gas sensor
Wan et al. Experimental study on the motion of a spherical particle in a plane traveling sound wave
张晓钧 et al. RESONATE MODES IN PHOTOACOUSTIC CELL FOR GAS SENSING

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant