CN109373921B - Tunnel monitoring method and device - Google Patents
Tunnel monitoring method and device Download PDFInfo
- Publication number
- CN109373921B CN109373921B CN201811255515.0A CN201811255515A CN109373921B CN 109373921 B CN109373921 B CN 109373921B CN 201811255515 A CN201811255515 A CN 201811255515A CN 109373921 B CN109373921 B CN 109373921B
- Authority
- CN
- China
- Prior art keywords
- tunnel
- point cloud
- image
- block
- segment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本申请涉及计算机数据处理领域,具体而言,涉及一种隧道监测方法及装置。The present application relates to the field of computer data processing, and in particular, to a tunnel monitoring method and device.
背景技术Background technique
随着城市轨道交通里程数的不断增加,轨道交通对于人们的出行越来越重要。在轨道交通系统面临隧道不断形变、老化加剧的情况下,对隧道系统的日常维护就显得非常重要。通过对隧道系统进行维护,不仅可以保证轨道交通系统支持运营,还可以极大降低由于人为疏忽造成的安全事故。With the continuous increase of urban rail transit mileage, rail transit is becoming more and more important for people's travel. When the rail transit system faces the constant deformation and aging of the tunnel, the daily maintenance of the tunnel system is very important. By maintaining the tunnel system, not only can the rail transit system support operation, but also safety accidents caused by human negligence can be greatly reduced.
一般隧道的日常维护项目包括形变检测,错台,掉块,渗漏水等。由于其管片局部及整体错台,管片整体形变等是掉块,渗漏水等病害的直接诱因,因此,通常通过监测几何形变指标来实现对隧道健康状况的监测。The daily maintenance items of general tunnels include deformation detection, misplacement, block drop, water leakage, etc. Due to the partial and overall dislocation of the segment, the overall deformation of the segment is the direct cause of block loss, water leakage and other diseases. Therefore, the monitoring of the health of the tunnel is usually achieved by monitoring the geometric deformation index.
传统的基于隧道影像的病害监测所采用的隧道监测手段大多通过宏观的几何量形变,局部病害特征等来判断隧道的健康状况,仅能在病害发生或者加剧之后才能被检测到,是一种被动的监测方法,监测结果不够精细,因此亟需一种更加精细化及合理化的分析方法。Most of the tunnel monitoring methods used in traditional tunnel image-based disease monitoring use macroscopic geometric deformation, local disease characteristics, etc. to judge the health status of the tunnel, which can only be detected after the occurrence or aggravation of the disease, which is a passive method. The monitoring results are not precise enough, so a more refined and rational analysis method is urgently needed.
发明内容SUMMARY OF THE INVENTION
本申请实施例提供了一种隧道监测方法及装置,可以提高隧道监测结果的精细度。Embodiments of the present application provide a tunnel monitoring method and device, which can improve the fineness of tunnel monitoring results.
在一个实施方式中,一种隧道监测方法,包括:In one embodiment, a tunnel monitoring method includes:
采集隧道的原始断面点云数据;Collect the original section point cloud data of the tunnel;
根据所述采集到的原始断面点云数据,分别进行点云拼接操作及反射率影像生成操作,生成隧道整体点云模型和隧道管壁展开图;According to the collected original section point cloud data, the point cloud splicing operation and the reflectivity image generation operation are respectively performed to generate the overall point cloud model of the tunnel and the expanded view of the tunnel wall;
对所述隧道管壁展开图进行二值化处理得到二值图像,对所述二值图像使用霍夫变换进行参数映射,并提取所述二值图像在预设角度范围内的直线段;Performing binarization processing on the expanded image of the tunnel wall to obtain a binary image, performing parameter mapping on the binary image using Hough transform, and extracting a straight line segment of the binary image within a preset angle range;
根据所述直线段提取所述隧道管壁展开图中的单个管片图像,并从所述单个管片图像中分别提取封顶块子图像及两侧连接块子图像;Extracting a single segment image in the expanded view of the tunnel wall according to the straight line segment, and extracting a capping block sub-image and two side-connecting block sub-images from the single segment image;
利用所述封顶块子图像、两侧连接块子图像和所述单个管片图像的像素位置确定对应隧道点云的位置,将所述隧道整体点云模型分割为点云小块模型;The position of the corresponding tunnel point cloud is determined by using the pixel positions of the capping block sub-image, the two-side connection block sub-image and the single segment image, and the tunnel overall point cloud model is divided into point cloud small block models;
根据所述点云小块模型拟合平面,根据所述拟合平面之间的距离计算错台高度,根据所述错台高度确定所述隧道的管片形变情况。Fitting a plane according to the point cloud small block model, calculating the height of misalignment according to the distance between the fitting planes, and determining the deformation of the segment of the tunnel according to the height of the misalignment.
在一个实施方式中,所述采集隧道的原始断面点云数据采用扫描仪实现,具体包括:根据预先设定监测精度,确定移动平台的移动速度和扫描仪的扫描参数;利用标定位对所述扫描仪进行标定;移动所述移动平台时,所述扫描仪进行扫描以采集所述原始断面点云数据。In one embodiment, the collection of the original cross-section point cloud data of the tunnel is realized by a scanner, which specifically includes: determining the moving speed of the mobile platform and the scanning parameters of the scanner according to the preset monitoring accuracy; The scanner is calibrated; when the mobile platform is moved, the scanner scans to collect the original section point cloud data.
在一个实施方式中,根据所述采集到的原始断面点云数据,分别进行点云拼接操作及反射率影像生成操作,生成隧道整体点云模型和隧道管壁展开图,包括:拼接完整的隧道点云,利用反射率数据生成隧道管壁的展开图像。In one embodiment, according to the collected original section point cloud data, point cloud splicing operation and reflectivity image generation operation are respectively performed to generate the overall point cloud model of the tunnel and the expanded view of the tunnel wall, including: splicing a complete tunnel A point cloud that uses reflectivity data to generate an unwrapped image of the tunnel wall.
在一个实施方式中,根据所述直线段提取所述隧道管壁展开图中的单个管片图像,包括:利用先验信息去除多余直线段,提取所述隧道管壁展开图中的单个管片图像。In one embodiment, extracting a single segment image in the expanded view of the tunnel wall according to the straight segment includes: removing redundant straight segments using prior information, and extracting a single segment in the expanded view of the tunnel wall image.
在一个实施方式中,所述先验信息包括:管片的设计宽度及管缝平均宽度。In one embodiment, the prior information includes: the design width of the segment and the average width of the pipe seam.
在一个实施方式中,所述方法还包括:从所述单个管片图像中提取标准块子图像。In one embodiment, the method further comprises: extracting standard block sub-images from the single segment image.
在一个实施方式中,所述从单个管片图像中分别提取封顶块子图像及两侧连接块子图像,包括:In one embodiment, the extraction of the capping block sub-image and the two-side connection block sub-images from a single segment image, respectively, includes:
采用一个函数来将单个管片图像中的封顶块边缘与封顶块设计模板进行匹配,以确定所述隧道展开图像中封顶块的位置,提取该位置处的封顶块子图像;adopting a function to match the capping block edge in the single segment image with the capping block design template to determine the position of the capping block in the tunnel unfolded image, and extract the capping block sub-image at the position;
根据封顶块的位置及管片对称性,确定两侧连接块的位置及标准块的位置,根据所述两侧连接块的位置提取该位置处的两侧连接块子图像,根据所述标准块的位置提取该位置处的标准块子图像。According to the position of the capping block and the symmetry of the segment, determine the position of the connecting block on both sides and the position of the standard block, extract the sub-images of the two-side connecting block at the position according to the position of the connecting block on both sides, The standard block sub-image at this position is extracted.
在一个实施方式中,所述点云小块模型包括:单个管片的点云模型及单个连接块小块的点云模型。In one embodiment, the small point cloud model includes: a point cloud model of a single segment and a point cloud model of a single connection block.
在一个实施方式中,所述利用所述封顶块子图像、两侧连接块子图像和所述单个管片图像的像素位置确定对应隧道点云的位置,将所述隧道整体点云模型分割为点云小块模型,包括:利用所述封顶块子图像、两侧连接块子图像将所述隧道整体点云模型分割为单个连接小块的点云模型,根据所述单个管片图像的像素位置将所述隧道整体点云模型分割为单个管片的点云模型。In one embodiment, the position of the corresponding tunnel point cloud is determined by using the pixel positions of the capping block sub-image, the two-side connection block sub-image and the single segment image, and the overall point cloud model of the tunnel is divided into The point cloud small block model includes: using the capping block sub-image and the connecting block sub-images on both sides to divide the overall point cloud model of the tunnel into a point cloud model of a single connected small block, according to the pixels of the single segment image The location divides the overall point cloud model of the tunnel into point cloud models of individual segments.
在一个实施方式中,一种隧道监测装置,包括:采集模块、数据拼接模块、直线及边缘检测模块、管片和连接块确定模块、点云分割模块和监测分析模块;In one embodiment, a tunnel monitoring device includes: a collection module, a data splicing module, a line and edge detection module, a segment and connection block determination module, a point cloud segmentation module, and a monitoring and analysis module;
所述采集模块,用于采集隧道的原始断面点云数据;The acquisition module is used to acquire the original section point cloud data of the tunnel;
所述数据拼接模块,用于根据所述采集到的原始断面点云数据,分别进行点云拼接操作及反射率影像生成操作,生成隧道整体点云模型和隧道管壁展开图;The data splicing module is configured to perform point cloud splicing operation and reflectivity image generation operation respectively according to the collected original section point cloud data, and generate an overall point cloud model of the tunnel and an expanded view of the tunnel pipe wall;
所述直线及边缘检测模块,用于对所述隧道管壁展开图进行二值化处理得到二值图像,对所述二值图像使用霍夫变换进行参数映射,并提取所述二值图像在预设角度范围内的直线段;The straight line and edge detection module is used to perform binarization processing on the expanded image of the tunnel wall to obtain a binary image, use Hough transform to perform parameter mapping on the binary image, and extract the binary image in the A straight line segment within a preset angle range;
所述管片和连接块确定模块,用于根据所述直线段提取所述隧道管壁展开图中的单个管片图像,并从所述单个管片图像中分别提取封顶块子图像及两侧连接块子图像;The segment and connection block determination module is used for extracting a single segment image in the expanded view of the tunnel wall according to the straight segment, and extracting a capping block sub-image and two sides from the single segment image respectively concatenate block subimages;
所述点云分割模块,用于利用所述封顶块子图像、两侧连接子图像和所述单个管片图像的像素位置确定对应隧道点云的位置,将所述隧道整体点云模型分割为点云小块模型;The point cloud segmentation module is used to determine the position of the corresponding tunnel point cloud by using the pixel positions of the capping block sub-image, the two-side connection sub-image and the single segment image, and divides the overall point cloud model of the tunnel into point cloud patch model;
所述监测分析模块,用于根据所述点云小块模型拟合平面,根据所述拟合平面之间的距离计算错台高度,根据所述错台高度确定隧道的管片形变情况。The monitoring and analysis module is used for fitting a plane according to the point cloud small block model, calculating the height of the misalignment according to the distance between the fitting planes, and determining the deformation of the segment of the tunnel according to the height of the misalignment.
在上述实施例中,利用本申请实施例提供的隧道监测方法及装置,可以利用激光反射率影像数据来实现隧道管片内各连接块的点云分割,计算隧道管片局部和整体存在的错台高度,并根据错台高度精细化分析管片的整体形变情况,提高了隧道监测结果的精细度。In the above embodiments, by using the tunnel monitoring method and device provided by the embodiments of the present application, the laser reflectivity image data can be used to realize the point cloud segmentation of each connection block in the tunnel segment, and to calculate the local and overall errors of the tunnel segment. According to the height of the staggered platform, the overall deformation of the segment is analyzed in a refined manner, which improves the precision of the tunnel monitoring results.
附图说明Description of drawings
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The accompanying drawings constituting a part of the present application are used to provide further understanding of the present application, and the schematic embodiments and descriptions of the present application are used to explain the present application and do not constitute an improper limitation of the present application. In the attached image:
图1是根据本说明书一个实施例的隧道监测方法的流程图;1 is a flowchart of a tunnel monitoring method according to an embodiment of the present specification;
图2是本发明实施例中一个采集设备的结构示意图;2 is a schematic structural diagram of a collection device in an embodiment of the present invention;
图3为本说明书一个实施例中由断面点云数据拼接生成的隧道整体点云模型示意图;3 is a schematic diagram of a tunnel overall point cloud model generated by splicing section point cloud data in an embodiment of the present specification;
图4为本说明书一个实施例中由各点云反射率强度值生成的隧道管壁展开图像;FIG. 4 is an expanded image of the tunnel wall generated by the reflectance intensity values of each point cloud in an embodiment of the present specification;
图5为本说明书一个实施例中隧道单个管片及各连接块的构成示意图;5 is a schematic diagram of the constitution of a single segment of the tunnel and each connection block in an embodiment of the specification;
图6为本说明书一个实施例中提取到的管片及各连接块示意图;6 is a schematic diagram of a segment and each connection block extracted in an embodiment of this specification;
图7为本说明书一个实施例中分割后的点云小块模型示意图;FIG. 7 is a schematic diagram of a segmented point cloud block model according to an embodiment of this specification;
图8示出了本说明书中一个实施例根据所述点云小块模型拟合平面计算得到的错台高度;FIG. 8 shows the staggered height calculated according to the fitting plane of the point cloud patch model according to an embodiment of the present specification;
图9是本说明书中一个实施例的隧道监测装置的模块图。FIG. 9 is a block diagram of a tunnel monitoring device according to an embodiment of the present specification.
具体实施方式Detailed ways
为使本申请的目的、技术方案和优点更加清楚明白,下面结合实施方式和附图,对本申请做进一步详细说明。在此,本说明书中的示意性实施方式及其说明用于解释本申请,但并不作为对本申请的限定。In order to make the objectives, technical solutions and advantages of the present application more clear, the present application will be further described in detail below with reference to the embodiments and the accompanying drawings. Here, the exemplary embodiments and descriptions in this specification are used to explain the present application, but are not intended to limit the present application.
图1是根据本说明书一个实施例的隧道监测方法的流程图。如图1所示,所述隧道监测方法可以包括以下步骤。FIG. 1 is a flowchart of a tunnel monitoring method according to an embodiment of the present specification. As shown in FIG. 1 , the tunnel monitoring method may include the following steps.
S101:采集隧道的原始断面点云数据。S101: Collect original section point cloud data of the tunnel.
可以采集隧道的原始断面点云数据。The raw section point cloud data of the tunnel can be collected.
在一个实施方式中,可以采用扫描仪采集所述原始断面点云数据。图2是本发明实施例中一个采集设备的结构示意图。参照图2,所述扫描仪可以被安装在一采集设备上,该采集设备还包括一移动平台。In one embodiment, a scanner may be used to collect the raw section point cloud data. FIG. 2 is a schematic structural diagram of a collection device in an embodiment of the present invention. Referring to Figure 2, the scanner may be mounted on a capture device that also includes a mobile platform.
具体地,可以根据预先设定监测精度,确定移动平台的移动速度和扫描仪的扫描参数;利用标定位对所述扫描仪进行标定;移动所述移动平台时,所述扫描仪进行扫描以采集所述原始断面点云数据。Specifically, the moving speed of the mobile platform and the scanning parameters of the scanner can be determined according to the preset monitoring accuracy; the scanner is calibrated by using the calibration position; when the mobile platform is moved, the scanner scans to collect The original section point cloud data.
其中,所述监测精度可以是影像图片的精度。例如,可以是2毫米,那么,移动平台的移动速度可以为0.25米/秒,扫描仪的扫描分辨率可以设置为1/4,扫描质量可以设置为:3。Wherein, the monitoring precision may be the precision of an image picture. For example, it can be 2 mm, then, the moving speed of the moving platform can be 0.25 m/s, the scanning resolution of the scanner can be set to 1/4, and the scanning quality can be set to: 3.
利用标定位对所述扫描仪进行标定,可以包括:预先将标定物放置在扫描起点位置。通过对所述扫描仪进行标定,可以将点云数据和影像数据相匹配,同时可用于矫正数据在Y轴方向的压缩比例。Using the calibration position to calibrate the scanner may include: pre-positioning a calibration object at the scanning starting point position. By calibrating the scanner, the point cloud data and the image data can be matched, and at the same time, it can be used to correct the compression ratio of the data in the Y-axis direction.
在一个实施方式中,所述采集到的原始断面点云数据可以存储为预设大小的点云文件。例如,每个点云文件可以按照每100个断面,即,426800个点存储为一个fls类型文件。In one embodiment, the collected raw section point cloud data may be stored as a point cloud file of a preset size. For example, each point cloud file can be stored as one fls type file per 100 sections, that is, 426,800 points.
在一个实施方式中,所述点云数据包括:3个相对圆心的坐标数据及1个反射率强度值。所述断面数据可以表示为{Xt,Yt,Zt,It},其中,Xt可以表示X轴坐标数值,Yt可以表示Y轴坐标数值,Zt可以表示Z轴坐标数值。It可以表示反射率强度值。In one embodiment, the point cloud data includes: 3 coordinate data relative to the center of the circle and 1 reflectance intensity value. The section data can be represented as {X t , Y t , Z t , I t }, wherein X t can represent the X-axis coordinate value, Y t can represent the Y-axis coordinate value, and Z t can represent the Z-axis coordinate value. It can represent the reflectance intensity value.
S102:根据所述采集到的原始断面点云数据,分别进行点云拼接操作及反射率影像生成操作,生成隧道整体点云模型和隧道管壁展开图。S102: According to the collected point cloud data of the original section, perform point cloud splicing operation and reflectivity image generation operation respectively to generate an overall point cloud model of the tunnel and an expanded view of the tunnel wall.
根据所述移动平台的移动速度Vc,扫描仪每秒生成的点云数量Np及单个断面所包含的点云数量Csingle,可以计算出Y轴的点云坐标。所述计算Y轴的点云坐标可以采用下述公式:According to the moving speed V c of the mobile platform, the number of point clouds N p generated by the scanner per second and the number of point clouds C single included in a single section, the point cloud coordinates of the Y axis can be calculated. The calculation of the point cloud coordinates of the Y-axis can use the following formula:
进一步地,可以根据断面对应的时间戳顺序将其拼接为隧道整体点云模型和基于反射率生成的隧道管壁展开图。Further, the sections can be spliced into the overall point cloud model of the tunnel and the expanded view of the tunnel wall generated based on the reflectivity according to the time stamp order corresponding to the sections.
具体地,可以利用所述断面数据中的点云坐标数据拼接完整的隧道点云,利用所述断面数据中的反射率数据生成隧道管壁的展开图像。Specifically, the point cloud coordinate data in the section data can be used to stitch the complete tunnel point cloud, and the reflectivity data in the section data can be used to generate an expanded image of the tunnel wall.
在一个实施方式中,可以将断面数据{Xt,Zt}按照时间顺序{t1,t2,t3,…,tn}进行排列,根据计算出来的Yt将断面数据拼接为完整的隧道点云{X1,Y1,Z1,X2,Y2,Z2,…,Xn,Yn,Zn}。其中,Y轴数值是不断累积的,即:Y1=Yt;Y2=Y1+Yt;Yn=Y1+Y2+…+Yn-1。In one embodiment, the cross-sectional data {X t , Z t } can be arranged in time sequence {t 1 , t 2 , t 3 , ..., t n }, and the cross-sectional data can be spliced into a complete piece according to the calculated Y t The tunnel point cloud of {X 1 , Y 1 , Z 1 , X 2 , Y 2 , Z 2 , …, X n , Y n , Z n }. The Y-axis values are continuously accumulated, namely: Y 1 =Y t ; Y 2 =Y 1 +Y t ; Y n =Y 1 +Y 2 +...+Y n-1 .
在一个实施方式中,可以将单个断面所包含的点云数量Csc作为图像在Y轴方向的像素数量,那么,可以将单个断面的单个点云视为Y轴上一个像素,即,单个断面{Xt,Zt}组成了图像的一列像素。单个像素的强度值即为It,从而生成一幅Csc×W像素的图像,即隧道管壁展开图。其中,X轴方向的像素数量W可根据实际需求进行选取。In one embodiment, the number of point clouds C sc contained in a single section can be taken as the number of pixels in the Y-axis direction of the image, then, a single point cloud of a single section can be regarded as a pixel on the Y-axis, that is, a single section {X t , Z t } constitutes a column of pixels in the image. The intensity value of a single pixel is I t , resulting in an image of C sc ×W pixels, that is, an expanded view of the tunnel wall. Wherein, the number of pixels W in the X-axis direction can be selected according to actual needs.
图3为本说明书一个实施例中由断面点云数据拼接生成的隧道整体点云模型示意图。图4为本说明书一个实施例中由各点云反射率强度值生成的隧道管壁展开图像。FIG. 3 is a schematic diagram of an overall point cloud model of a tunnel generated by splicing section point cloud data according to an embodiment of the present specification. FIG. 4 is an unfolded image of the tunnel wall generated from the reflectance intensity values of each point cloud in an embodiment of the present specification.
在另一个实施方式中,所述隧道监测方法还可以包括:对所述点云数据进行矫正,以使一个点云与一个像素相对应。In another embodiment, the tunnel monitoring method may further include: correcting the point cloud data so that one point cloud corresponds to one pixel.
例如,假设在原始数据中断面总数量为Ws,在拼接好的点云数据中,隧道总长为Ms。那么,在对生成的原始图片进行插值前,图像的尺寸应为Csc×Ws,即有Ws个像素分布在长度为Ms的区间内,即,X轴方向的单个像素需要拉伸为Ms/W个像素的长度,如此可使得三维点云与二维图像能够相互配准。For example, suppose that the total number of broken surfaces in the original data is W s , and in the spliced point cloud data, the total length of the tunnel is M s . Then, before the generated original image is interpolated, the size of the image should be C sc ×W s , that is, there are W s pixels distributed in the interval of length M s , that is, a single pixel in the X-axis direction needs to be stretched is the length of M s /W pixels, so that the 3D point cloud and the 2D image can be registered with each other.
在另一个实施方式中,所述隧道监测方法还可以包括:对所述矫正后的隧道管壁展开图进行插值处理。In another embodiment, the tunnel monitoring method may further include: performing interpolation processing on the corrected expanded view of the tunnel wall.
S103:对所述隧道管壁展开图进行二值化处理得到二值图像,对所述二值图像使用霍夫变换进行参数映射,并提取所述二值图像在预设角度范围内的直线段。S103: Binarize the expanded image of the tunnel wall to obtain a binary image, use Hough transform to perform parameter mapping on the binary image, and extract a straight line segment of the binary image within a preset angle range .
在一个实施方式中,可以采用Canny边缘检测算子对所述隧道管壁展开图进行二值化处理。例如,所述Canny边缘检测算子的高斯半径可以设置为2,低阈值可以设置为40,高阈值可以设置为80。In one embodiment, the Canny edge detection operator may be used to perform binarization processing on the expanded image of the tunnel wall. For example, the Gaussian radius of the Canny edge detection operator can be set to 2, the low threshold can be set to 40, and the high threshold can be set to 80.
可以将所述二值化处理后的二值图像可以保存为:The binary image after the binarization process can be saved as:
Ed=((x1,y1),(x2,y2),…,(xn,yn)) E d=((x 1 ,y 1 ),(x 2 ,y 2 ),…,(x n ,y n ))
由于二值图像中存在垂直或者接近垂直的直线段,所以此处我们需要用极坐标参数方程来代替传统的直线方程,所述技术中参数方程可以采用下述公式:Since there are vertical or nearly vertical straight line segments in the binary image, here we need to replace the traditional straight line equation with the polar coordinate parametric equation. The parametric equation in the technique can use the following formula:
ρ=x cosθ+y sinθ;ρ=x cosθ+y sinθ;
上式中,ρ代表原点到直线的垂直距离,θ代表x轴与直线的角度。θ可以作为预设角度,θ的取值范围可以为[+10°,-10°]及[+80°,-80°]。通过上述公式可以分别检测二值图像中的水平直线(或者趋近水平直线),垂直直线以及梯形封顶块(简称为SF)的边缘部分。In the above formula, ρ represents the vertical distance from the origin to the line, and θ represents the angle between the x-axis and the line. θ can be used as a preset angle, and the value range of θ can be [+10°, -10°] and [+80°, -80°]. Through the above formula, horizontal straight lines (or approaching horizontal straight lines), vertical straight lines and edge parts of trapezoidal capping blocks (abbreviated as SF) in the binary image can be detected respectively.
通过将极坐标的范围限定在上述预设角度范围内,可以极大减少噪声数据的影响,并且可以提高监测效率。By limiting the range of polar coordinates within the above-mentioned preset angle range, the influence of noise data can be greatly reduced, and the monitoring efficiency can be improved.
S104:根据所述直线段提取所述隧道管壁展开图中的单个管片图像,并从所述单个管片图像中分别提取封顶块子图像及两侧连接块子图像。S104: Extract a single segment image in the expanded view of the tunnel wall according to the straight line segment, and extract a capping block sub-image and a two-side connection block sub-image respectively from the single segment image.
可以利用先验信息去除多余的直线段,确定所述隧道管壁展开图中的单个管片图像。A priori information can be used to remove redundant straight line segments to determine a single segment image in the expanded view of the tunnel wall.
在一个实施方式中,可以将管片的设计宽度(简称为dcs)及管缝平均宽度(简称为g)作为先验信息。In one embodiment, the design width of the segment (abbreviated as d cs ) and the average width of the pipe seam (abbreviated as g) may be used as prior information.
所述通过先验信息去除多余的直线段,确定所述隧道管壁展开图中的单个管片图像,具体可以包括:筛选出所述隧道管壁展开图上[dcs-g,dcs+g]范围内的垂直线段为单个管片位置,所述隧道管壁展开图上所述单个管片位置处的图像即为单个管片图像。Determining a single segment image in the expanded view of the tunnel wall by removing redundant straight line segments through prior information may specifically include: filtering out [d cs -g,d cs + on the expanded view of the tunnel wall The vertical line segment within the range of g] is the position of a single segment, and the image at the position of the single segment on the expanded view of the tunnel wall is the image of the single segment.
在另一个实施方式中,还可以将所述单个管片图像进行存储。例如,可以将所述单个管片图像存储为Is。In another embodiment, the single segment image may also be stored. For example, the single segment image may be stored as Is .
可以从所述单个管片图像中分别提取所述封顶块子图像及两侧连接块子图像。The capping block sub-image and the two-side connecting block sub-images may be extracted from the single segment image, respectively.
在一个实施方式中,还可以根据所述单个管片图像提取标准块在所述单个管片图像中的子图像。In one embodiment, sub-images of standard blocks in the single segment image may also be extracted according to the single segment image.
可以采用一个优化函数来将单个管片图像中的封顶块与封顶块(SF)设计模板进行匹配,以确定所述隧道展开图像中封顶块的位置,提取该位置处的封顶块子图像。An optimization function can be used to match the capping block in a single segment image to a capping block (SF) design template to determine the location of the capping block in the tunnel deployment image, and extract the capping block sub-image at that location.
具体地,可以将封顶块设计模板作为一个n×n的模板算子Kdesign,在图片中取一个n×n的像素块Kh,与所述模板算子做卷积运算,遍历整幅隧道管壁展开图,利用下述公式确定所述封顶块的位置:Specifically, the capping block design template can be used as an n×n template operator K design , an n×n pixel block K h is taken in the picture, and a convolution operation is performed with the template operator to traverse the entire tunnel The expanded view of the pipe wall, the position of the capping block is determined by the following formula:
其中,所述封顶块模板算子Kdesign可以为一个n×n大小的矩阵,包含[0,1]元素,其中边缘部分可以用1表示,其余部分可以用0填充。The capping block template operator K design may be a matrix of size n×n, including [0,1] elements, where the edge part may be represented by 1, and the rest part may be filled with 0.
进一步地,可以根据封顶块(SF)的位置及管片对称性,确定两侧的连接块(SL1,SL2)及标准块(SB1,SB2)的位置,根据所述两侧连接块的位置提取该位置处的两侧连接块子图像,根据所述标准块的位置提取该位置处的标准块子图像。图5为本说明书一个实施例中隧道单个管片及各连接块的构成示意图。图5中包括:封顶块(SF),连接块(SL1,SL2),标准块(SB1,SB2,GD)。图6为本说明书一个实施例中提取到的管片及各连接块示意图。图6中包括:封顶块(SF),连接块(SL1,SL2),及标准块(SB1,SB2)。Further, the positions of the connecting blocks (SL1, SL2) and the standard blocks (SB1, SB2) on both sides can be determined according to the position of the capping block (SF) and the symmetry of the segment, and extracted according to the positions of the connecting blocks on both sides. The two sides of the position are connected to the block sub-image, and the standard block sub-image at the position is extracted according to the position of the standard block. FIG. 5 is a schematic diagram of the constitution of a single segment of a tunnel and each connection block in an embodiment of the specification. Figure 5 includes: capping block (SF), connecting block (SL1, SL2), standard block (SB1, SB2, GD). FIG. 6 is a schematic diagram of a segment and each connection block extracted in an embodiment of the present specification. Figure 6 includes: capping block (SF), connection blocks (SL1, SL2), and standard blocks (SB1, SB2).
S105:利用所述封顶块子图像、两侧连接块子图像和所述单个管片图像的像素位置确定对应隧道点云的位置,将所述隧道整体点云模型分割为点云小块模型。S105: Determine the position of the corresponding tunnel point cloud by using the pixel positions of the capping block sub-image, the two-side connection block sub-image and the single segment image, and divide the overall point cloud model of the tunnel into small point cloud models.
所述点云小块模型可以包括:单个管片的点云模型及单个连接小块的点云模型。The point cloud small block model may include: a point cloud model of a single segment and a point cloud model of a single connected small block.
具体地,可以利用所述封顶块子图像、两侧连接块子图像将所述隧道整体点云模型分割为单个连接小块的点云模型,根据所述单个管片图像的像素位置将所述隧道整体点云模型分割为单个管片的点云模型。Specifically, the overall point cloud model of the tunnel can be divided into a single connected small block point cloud model by using the capping block sub-image and the connecting block sub-images on both sides, and the The overall point cloud model of the tunnel is divided into point cloud models of individual segments.
图7为本说明书一个实施例中分割后的点云小块模型示意图。FIG. 7 is a schematic diagram of a segmented point cloud small block model according to an embodiment of the present specification.
S106:根据所述点云小块模型拟合平面,根据所述拟合平面之间的距离计算错台高度,根据所述错台高度确定所述隧道的管片形变情况。S106 : Fitting a plane according to the point cloud small block model, calculating a height of a misalignment according to the distance between the fitting planes, and determining the deformation of the segment of the tunnel according to the height of the misalignment.
具体地,可以根据所述点云小块模型拟合平面,计算所述点云小块模型与所述点云小块模型周围点云平面之间的距离,根据错台高度判断所述隧道管片形变情况。从而实现隧道管片形变监测。Specifically, according to the fitting plane of the point cloud small block model, the distance between the point cloud small block model and the point cloud plane around the point cloud small block model can be calculated, and the tunnel pipe can be judged according to the height of the staggered platform. sheet deformation. So as to realize the deformation monitoring of the tunnel segment.
图8示出了本说明书中一个实施例根据所述点云小块模型拟合平面计算得到的错台高度。FIG. 8 shows the height of the staggered stage calculated according to the fitting plane of the point cloud patch model according to an embodiment of the present specification.
从以上的描述中,可以看出,本申请实施例实现了如下技术效果:可以利用激光反射率影像数据来实现隧道管片内各连接块的点云分割,计算隧道管片局部和整体存在的错台高度,并根据错台高度精细化分析管片的整体形变情况,提高了隧道监测结果的精细度。From the above description, it can be seen that the embodiments of the present application achieve the following technical effects: the laser reflectivity image data can be used to realize the point cloud segmentation of each connection block in the tunnel segment, and the local and overall existence of the tunnel segment can be calculated. The height of the staggered platform, and the overall deformation of the segment is analyzed according to the height of the staggered platform, which improves the precision of the tunnel monitoring results.
基于同一发明构思,本申请实施例中还提供了一种隧道监测装置,如下面的实施例所述。由于隧道监测装置解决问题的原理与隧道监测方法相似,因此隧道监测装置的实施可以参见隧道监测方法的实施,重复之处不再赘述。以下所使用的,术语“单元”或者“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。图9是本说明书中一个实施例的隧道监测装置的模块图,如图9所示,所述隧道监测装置可以包括:采集模块901、数据拼接模块902、直线及边缘检测模块903、管片和连接块确定模块904、点云分割模块905和监测分析模块906。Based on the same inventive concept, the embodiments of the present application also provide a tunnel monitoring device, as described in the following embodiments. Since the principle of solving the problem of the tunnel monitoring device is similar to that of the tunnel monitoring method, the implementation of the tunnel monitoring device may refer to the implementation of the tunnel monitoring method, and the repetition will not be repeated. As used below, the term "unit" or "module" may be a combination of software and/or hardware that implements a predetermined function. Although the apparatus described in the following embodiments is preferably implemented in software, implementations in hardware, or a combination of software and hardware, are also possible and contemplated. FIG. 9 is a block diagram of a tunnel monitoring device according to an embodiment of the present specification. As shown in FIG. 9 , the tunnel monitoring device may include: a
所述采集模块901,可以用于采集隧道的原始断面点云数据。The
所述数据拼接模块902,可以用于根据所述采集到的原始断面点云数据,分别进行点云拼接操作及反射率影像生成操作,生成隧道整体点云模型和隧道管壁展开图。The
所述直线及边缘检测模块903,可以用于对所述隧道管壁展开图进行二值化处理得到二值图像,对所述二值图像使用霍夫变换进行参数映射,并提取所述二值图像在预设角度范围内的直线段。The straight line and
所述管片和连接块确定模块904,可以用于根据所述直线段提取所述隧道管壁展开图中的单个管片图像,并从所述单个管片图像中分别提取封顶块子图像及两侧连接块子图像。The segment and connection
所述点云分割模块905,可以用于利用所述封顶块子图像、两侧连接子图像和所述单个管片图像的像素位置确定对应隧道点云的位置,将所述隧道整体点云模型分割为点云小块模型。The point
所述监测分析模块906,可以用于根据所述点云小块模型拟合平面,根据所述拟合平面之间的距离计算错台高度,根据所述错台高度确定所述隧道的管片形变情况。从而实现隧道管片形变监测。The monitoring and
显然,本领域的技术人员应该明白,上述的本说明书中实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本说明书实施例不限制于任何特定的硬件和软件结合。Obviously, those skilled in the art should understand that each module or each step of the above-mentioned embodiments in this specification can be implemented by a general-purpose computing device, and they can be centralized on a single computing device, or distributed in multiple computing devices. Alternatively, they can be implemented with program code executable by a computing device on a network composed of The steps shown or described may be performed in the order shown or described, either by fabricating them separately into individual integrated circuit modules, or by fabricating multiple modules or steps of them into a single integrated circuit module. As such, embodiments of this specification are not limited to any particular combination of hardware and software.
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请实施例可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, various modifications and changes may be made to the embodiments of the present application. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811255515.0A CN109373921B (en) | 2018-10-26 | 2018-10-26 | Tunnel monitoring method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811255515.0A CN109373921B (en) | 2018-10-26 | 2018-10-26 | Tunnel monitoring method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109373921A CN109373921A (en) | 2019-02-22 |
CN109373921B true CN109373921B (en) | 2020-07-14 |
Family
ID=65389814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811255515.0A Active CN109373921B (en) | 2018-10-26 | 2018-10-26 | Tunnel monitoring method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109373921B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109373921B (en) * | 2018-10-26 | 2020-07-14 | 南京航空航天大学 | Tunnel monitoring method and device |
CN110246223B (en) * | 2019-06-03 | 2022-12-13 | 南京航空航天大学 | Tunnel modeling method and device |
CN111524154B (en) * | 2020-04-21 | 2021-12-28 | 南京航空航天大学 | Image-based tunnel segment automatic segmentation method |
CN111538353B (en) * | 2020-05-12 | 2021-10-19 | 南京航空航天大学 | Tunnel detects car stabilising arrangement |
CN111710027B (en) * | 2020-05-25 | 2021-05-04 | 南京林业大学 | A 3D geometric reconstruction method of tunnel |
CN111610193A (en) * | 2020-05-29 | 2020-09-01 | 武汉至科检测技术有限公司 | System and method for inspecting structural defects of subway tunnel segment by adopting multi-lens shooting |
CN112857252B (en) * | 2021-01-12 | 2023-04-07 | 深圳市地铁集团有限公司 | Tunnel image boundary line detection method based on reflectivity intensity |
CN113686251B (en) * | 2021-08-19 | 2022-12-13 | 山东科技大学 | A method and system for measuring the upward and downward displacement of equipment in a fully mechanized mining face |
CN114119355B (en) * | 2021-11-29 | 2023-04-28 | 北京工业大学 | Method and system for early warning of blocking dropping risk of shield tunnel |
CN114581371A (en) * | 2022-01-24 | 2022-06-03 | 中山大学 | Tunnel deformation detection method, system, equipment and storage medium |
EP4481320A4 (en) * | 2022-03-21 | 2025-04-16 | Univ Shenzhen | DEFORMATION MEASURING METHOD AND DEVICE, ELECTRONIC DEVICE AND STORAGE MEDIUM |
CN115494517B (en) * | 2022-09-29 | 2024-12-24 | 广州微易轨道交通科技有限公司 | A method for detecting train appearance by laser three-dimensional scanning |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018163063A (en) * | 2017-03-27 | 2018-10-18 | 西松建設株式会社 | Tunnel inner space displacement measurement method |
CN109373921A (en) * | 2018-10-26 | 2019-02-22 | 南京航空航天大学 | A kind of tunnel monitoring method and device |
CN106441136B (en) * | 2016-09-27 | 2019-03-12 | 上海建工集团股份有限公司 | Rectangular shield phase of boring tunneling boring deformation monitoring method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104457572B (en) * | 2014-12-04 | 2017-11-24 | 上海岩土工程勘察设计研究院有限公司 | Method based on 3-D scanning technology extraction shield tunnel fissure of displacement faulting of slab ends amount |
CN106401643B (en) * | 2016-08-31 | 2018-08-21 | 中国铁路设计集团有限公司 | Tunnel Overbreak & Underbreak detection method based on laser point cloud |
FR3057534B1 (en) * | 2016-10-17 | 2018-11-30 | Metalliance | AUTONOMOUS TRANSPORT SYSTEM FOR TUNNEL |
-
2018
- 2018-10-26 CN CN201811255515.0A patent/CN109373921B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106441136B (en) * | 2016-09-27 | 2019-03-12 | 上海建工集团股份有限公司 | Rectangular shield phase of boring tunneling boring deformation monitoring method |
JP2018163063A (en) * | 2017-03-27 | 2018-10-18 | 西松建設株式会社 | Tunnel inner space displacement measurement method |
CN109373921A (en) * | 2018-10-26 | 2019-02-22 | 南京航空航天大学 | A kind of tunnel monitoring method and device |
Also Published As
Publication number | Publication date |
---|---|
CN109373921A (en) | 2019-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109373921B (en) | Tunnel monitoring method and device | |
US20210303751A1 (en) | Method and device for rapid analysis of tunnel section convergence | |
US11551341B2 (en) | Method and device for automatically drawing structural cracks and precisely measuring widths thereof | |
CN107463918B (en) | Lane line extraction method based on fusion of laser point cloud and image data | |
AU2016385541B2 (en) | Object surface deformation feature extraction method based on line scanning three-dimensional point Cloud | |
CN108319920B (en) | Road marking detection and parameter calculation method based on line scanning three-dimensional point cloud | |
JP6904614B2 (en) | Object detection device, prediction model creation device, object detection method and program | |
CN111696059B (en) | Lane line smooth connection processing method and device | |
CN106709484B (en) | Digital Recognition Method of Digital Instrument | |
CN104930985A (en) | Binocular vision three-dimensional morphology measurement method based on time and space constraints | |
CN105387801B (en) | A kind of subway tunnel section of jurisdiction faulting of slab ends quantity measuring method | |
JP4058293B2 (en) | Generation method of high-precision city model using laser scanner data and aerial photograph image, generation system of high-precision city model, and program for generation of high-precision city model | |
CN104408772A (en) | Grid projection-based three-dimensional reconstructing method for free-form surface | |
CN110322428B (en) | Method, device and electronic device for detecting tunnel disease | |
CN110763306A (en) | Monocular vision-based liquid level measurement system and method | |
CN111354047A (en) | Camera module positioning method and system based on computer vision | |
CN115690040A (en) | Fish way crack intelligent detection method based on depth and gray information | |
CN112857252A (en) | Tunnel image boundary line detection method based on reflectivity intensity | |
Ekhtari et al. | Automatic building extraction from LIDAR digital elevation models and WorldView imagery | |
CN115761468A (en) | Water level detection system and method based on image segmentation and target detection technology | |
KR20230032150A (en) | Crack detection system for road | |
CN114549389A (en) | Wheel set tread detection method, device, system, terminal and storage medium | |
JP2011033428A (en) | Pantograph height measuring device | |
CN102013087A (en) | Method for digitalizing cutting template | |
CN111524061A (en) | Tunnel nearby point cloud removing method based on cylinder fitting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |