CN109372613A - 一种纯氢发动机起动控制方法 - Google Patents

一种纯氢发动机起动控制方法 Download PDF

Info

Publication number
CN109372613A
CN109372613A CN201811653349.XA CN201811653349A CN109372613A CN 109372613 A CN109372613 A CN 109372613A CN 201811653349 A CN201811653349 A CN 201811653349A CN 109372613 A CN109372613 A CN 109372613A
Authority
CN
China
Prior art keywords
ignition
engine
angle
twc
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811653349.XA
Other languages
English (en)
Other versions
CN109372613B (zh
Inventor
纪常伟
徐溥言
汪硕峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201811653349.XA priority Critical patent/CN109372613B/zh
Publication of CN109372613A publication Critical patent/CN109372613A/zh
Application granted granted Critical
Publication of CN109372613B publication Critical patent/CN109372613B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

本发明旨在提出一种纯氢发动机起动控制方法,所述控制方法其特征在于:采用浓燃起动配合点火角推迟策略来实现氢发动机起动阶段低氮氧化物(NOx)排放前提下,碳氢化合物(HC)和一氧化碳(CO)排放的降低;通过划分发动机起动前催化器载体的温度区间,结合氢‑空气混合气浓度及点火提前角对氢发动机排放的影响机理及温度对三元催化器影响机理,对不同温度区间执行相应的控制方法来有效降低NOx、HC和CO排放。与现有技术相比,本发明所述的控制方法在保证氢发动机起动可靠性的同时实现了氢发动机起动阶段低NOx排放前提下,实现了HC和CO排放的降低,具有一定的创新性和应用前景。

Description

一种纯氢发动机起动控制方法
技术领域
本发明属于发动机燃烧及排放控制领域,具体涉及一种用于纯氢发动机起动控制方法。
背景技术
随着能源的逐年消耗和排放法规的日益严苛,积极开发新能源、寻找车用发动机代用燃料已经成为发动机领域重要的研究课题。在众多的发动机代用燃料中,氢气因具有点火能量低、燃烧界限宽、火焰传播速度快、燃烧产物清洁等优良燃烧特性,而被广泛认为是车用发动机较为理想的替代燃料之一。同时,氢在发动机上应用时不需要对发动机本体进行过多改造,具有改装成本低且适用于在用车辆的特点。因此,氢发动机可以被看作是一种简单、易行的实现发动机节能、减排的有效技术手段。另一方面,氢发动机污染物的排放方面具有常规石油燃料发动机无可比拟的优点,它的唯一有害排放物是NOx,因此控制NOx排放成为氢发动机发展亟需解决的问题。
起动(包括冷起动和热起动)是发动机的一种典型工况,虽然时间较短,却是发动机状态最不稳定、燃烧最恶劣的工况。降低氢发动机起动阶段的NOx排放,对于改善氢发动机整体性能、推广氢发动机汽车具有重要的意义。现有控制氢发动机NOx排放的手段主要有推迟点火时刻、稀薄燃烧、浓燃、喷水及EGR等。由于发动机起动工况的不稳定性,采用推迟点火时刻、稀薄燃烧、喷水及EGR技术均不利于发动机的成功起动,而大量试验研究证明采用浓燃策略可以在保证氢发动机成功起动的同时有效降低起动阶段NOx排放。
浓燃是指发动机在实际空燃比小于理论空燃比时的燃烧,即混合气过量空气系数大于1。这里的“过量空气系数”是指理论空燃比与实际空燃比的比值,是衡量燃烧过程中氢气与空气比例的物理量,过量空气系数大于1表明缸内理论氢气量小于实际氢气量,即称为浓燃。浓燃对氢发动机排放影响的机理如下:氢发动机中NOx生成量与燃烧室温度、燃烧室高温持续时间以及在燃烧室高温条件下氧气(O2)的浓度有关,而温度对NOx生成影响最为显著。当发动机在浓混合气下运转时,缸内空气量较少,减少了与氮气结合的氧气数量。同时,发动机处于浓混合气燃烧模式下,排气中存在部分氢气,可作为还原剂在三元催化器中还原已生成的NOx,进一步降低NOx的排放。
然而,由于采用加浓策略会导致发动机在起动初期转速升高,这会导致一部分润滑油进入缸内燃烧并生成HC和CO排放,而浓燃起动策略过程中空气量较少,不利于CO和HC的氧化,这会进一步导致HC和CO的升高。另外,发动机在热起动和冷起动时三元催化器的温度不同,而催化器转化效率的高低与温度有着直接的关系。
因此,本申请提高了一种纯氢发动机起动控制方法,该方法在不同三元催化器温度条件下,采用浓燃起动配合点火角推迟策略来实现氢发动机起动阶段低NOx排放前提下,HC和CO排放的降低。
发明内容
本发明的目的是提供一种纯氢发动机起动控制方法,该方法通过在不同三元催化器温度条件下,采用浓燃起动配合点火角推迟策略来实现氢发动机起动阶段低NOx排放前提下,HC和CO排放的降低;通过划分发动机起动前催化器载体的温度区间,结合氢-空气混合气浓度和点火提前角对氢发动机排放的影响机理及温度对三元催化器影响机理,对不同温度区间执行相应的控制方法来有效降低起动过程中HC、CO和NOx排放。
为了达到降低氢发动机起动过程中HC、CO和NOx排放的目的并保证发动机的成功起动,本发明所述的一种纯氢发动机起动控制方法可分为三个控制阶段:
(1)当发动机起动时,催化器载体温度tTWC<t0(t0为催化器起燃温度)时,过量空气系数可取0.7≤λ0<0.9内任意数值U1,点火角可取-10°≤IT0<0°内任意数值J1,且随tTWC的升高,λ0和IT0线性增加。tTWC每升高10℃,过量空气系数λ升高数值为(0.9-U1)*10/(t0-tTWC),点火角IT升高数值为(0-J1)*10/(t0-t)。
(2)当发动机起动时,催化器载体温度t0≤tTWC≤t1(t1为三元催化器催化转化率为90%时的温度)时,λ1可取λ0≤λ1<1.2内任意数值U2,点火角可取IT0≤IT1<15°内任意数值J2,且随tTWC的升高,λ1和IT1线性增加。tTWC每升高10℃,过量空气系数λ升高数值为(1.2-U2)*10/(t1-t0),点火角IT升高数值为(15-J2)*10/(t1-t0)。
(3)当发动机起动时,催化器载体温度tTWC>t1时,发动机应在某一恒定过量空气系数λ2和上止点前某一点火角IT2下运行,λ2及IT2不随催化器载体温度的变化而调整,过量空气系数可取1.0≤λ2<λ3内任意数值(λ3为缸内燃料稀薄燃烧极限值)U3,点火角可取15℃≤IT2<IT3(IT3为该发动机最大扭矩点火时刻对应的点火角)内任意数值J3.
三元催化器载体温度是由安装于催化器载体的热电偶测得,过量空气系数通过空气流量和氢气流量测得,上述信号转换成电信号发送至发动机电子控制单元(ECU)进行处理,ECU通过控制氢气和空气流量以及点火角实现不同过量空气系数λ0配合点火角IT0起动策略。
本发明的有益效果是:
本发明旨在提出一种纯氢发动机起动控制方法,其优点是:该方法通过在不同三元催化器温度条件下,采用浓燃起动配合点火角推迟策略来实现氢发动机起动阶段低NOx排放前提下,HC和CO排放的降低;通过划分发动机起动前催化器载体的温度区间,结合氢-空气混合气浓度和点火提前角对氢发动机排放的影响机理及温度对三元催化器影响机理,对不同温度区间执行相应的控制方法来有效降低起动过程中HC、CO和NOx排放,具有一定的创新性和应用前景。
附图说明
图1所示为氢发动机起动时三元催化器前NOx排放量随着混合气过量空气系数的变化规律。由图中曲线变化趋势可以看出,当混合气过量空气系数小于1.4时,NOx排放量逐渐降低;当混合气过量空气系数在0.7~1.0时,氢内燃机获得了较于稀燃更低的NOx排放,且该排放随混合气浓度的增加而急剧下降,当过量空气系数低于0.8时,NOx排放量极低,不需配合三元催化器即可实现起动低排放。
图2所示为氢发动机起动时三元催化器前HC和CO排放量随着混合气过量空气系数的变化规律。由图中曲线变化趋势可以看出,当混合气过量空气系数逐渐减少时,CO会出现明显上升,HC也有小幅度升高,因此,需要在保证氢内燃机低NOx排放量的基础上,进一步降低HC,特别是CO排放。
图3所示为氢发动机起动时三元催化器前NOx、HC和CO排放量随点火角是变化规律。由图中曲线变化趋势可以看出,当点火角由上止点后25°推迟至上止点后10°时,NOx、HC和CO排放均明显降低。
图4所示为三元催化器转化效率随催化器载体温度的变化规律。由图可以看出,t0为催化器的起燃温度,当催化器载体温度低于t0时,催化器没有起燃,转化效率极低,无法对排气中的NOx进一步净化;当催化器载体温度在t0至t1之间时,催化器转化效率随温度的升高快速升高,可对排气中的NOx进一步催化还原;当催化器载体温度高于t1时,三元催化器达到最大转化效率,此时升高温度无法进一步提升催化器的转化效率。
图5为氢发动机起动控制系统简图。图中:1、储氢系统2、氢气减压阀3、氢气流量控制器4、氢气进气管5、空气进气管6、空气流量控制器7、发动机8、排气管9、三元催化器10、电子控制单元(ECU)
a、发动机转速信号b、发动机点火角信号c、氢气流量信号d、空气流量信号、e、三元催化器温度信号。
具体实施方式
下面结合附图和具体实施方式对于本发明做进一步的说明:
当发动机起动时,催化器载体温度tTWC<t0(t0为催化器起燃温度)时,三元催化器没有起燃,催化转化效率低,无法对排气中的NOx进一步净化,为了保证起动阶段NOx排放较低,过量空气系数可取0.7≤λ0<0.9内任意数值U1,点火角可取-10°≤IT0<0°内任意数值J1,且随tTWC的升高,λ0和IT0线性增加。tTWC每升高10℃,过量空气系数λ升高数值为(0.9-U1)*10/(t0-tTWC),点火角IT升高数值为(0-J1)*10/(t0-t)。
当发动机起动时,催化器载体温度t0≤tTWC≤t1(t1为三元催化器催化转化率为90%时的温度)时,此时随着催化器载体温度的升高,三元催化器对NOx转化效率逐渐提高,可对排气中的NOx进一步催化还原。因此,在此工段下,λ1可取λ0≤λ1<1.2内任意数值U2,点火角可取IT0≤IT1<15°内任意数值J2,且随tTWC的升高,λ1和IT1线性增加。tTWC每升高10℃,过量空气系数λ升高数值为(1.2-U2)*10/(t1-t0),点火角IT升高数值为(15-J2)*10/(t1-t0)。
当发动机起动时,催化器载体温度tTWC>t1时,此时三元催化器转化率达到最大,且维持在某一值恒定。发动机应在某一恒定过量空气系数λ2和上止点前某一点火角IT2下运行,λ2及IT2不随催化器载体温度的变化而调整,过量空气系数可取1.0≤λ2<λ3内任意数值(λ3为缸内燃料稀薄燃烧极限值)U3,点火角可取15℃≤IT2<IT3(IT3为该发动机最大扭矩点火时刻对应的点火角)内任意数值J3
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种纯氢发动机起动控制方法,其特征在于,分为三个控制阶段:
(1)当发动机起动时,催化器载体温度tTWC<t0时,t0为催化器起燃温度,过量空气系数取0.7≤λ0<0.9内任意数值U1,点火角取-10°≤IT0<0°内任意数值J1,且随tTWC的升高,λ0和IT0线性增加;tTWC每升高10℃,过量空气系数λ升高数值为(0.9-U1)*10/(t0-tTWC),点火角IT升高数值为(0-J1)*10/(t0-t);
(2)当发动机起动时,催化器载体温度t0≤tTWC≤t1时,t1为三元催化器催化转化率为90%时的温度,λ1取λ0≤λ1<1.2内任意数值U2,点火角取IT0≤IT1<15°内任意数值J2,且随tTWC的升高,λ1和IT1线性增加;tTWC每升高10℃,过量空气系数λ升高数值为(1.2-U2)*10/(t1-t0),点火角IT升高数值为(15-J2)*10/(t1-t0);
(3)当发动机起动时,催化器载体温度tTWC>t1时,发动机应在某一恒定过量空气系数λ2和上止点前某一点火角IT2下运行,λ2及IT2不随催化器载体温度的变化而调整,过量空气系数取1.0≤λ2<λ3内任意数值U3,λ3为缸内燃料稀薄燃烧极限值;点火角取15℃≤IT2<IT3内任意数值J3,IT3为该发动机最大扭矩点火时刻对应的点火角。
CN201811653349.XA 2018-12-30 2018-12-30 一种纯氢发动机起动控制方法 Active CN109372613B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811653349.XA CN109372613B (zh) 2018-12-30 2018-12-30 一种纯氢发动机起动控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811653349.XA CN109372613B (zh) 2018-12-30 2018-12-30 一种纯氢发动机起动控制方法

Publications (2)

Publication Number Publication Date
CN109372613A true CN109372613A (zh) 2019-02-22
CN109372613B CN109372613B (zh) 2020-09-25

Family

ID=65372082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811653349.XA Active CN109372613B (zh) 2018-12-30 2018-12-30 一种纯氢发动机起动控制方法

Country Status (1)

Country Link
CN (1) CN109372613B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021163863A1 (zh) * 2020-02-18 2021-08-26 潍柴动力股份有限公司 一种发动机控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1378037A (zh) * 2001-03-27 2002-11-06 大众汽车股份公司 对尾气进行处理的方法和装置
CN1904329A (zh) * 2006-08-15 2007-01-31 北京工业大学 一种氢气-汽油混合燃料发动机及控制方法
JP2009167852A (ja) * 2008-01-15 2009-07-30 Toyota Motor Corp 水素エンジンの排気ガス浄化システム
CN108678864A (zh) * 2018-05-09 2018-10-19 北京工业大学 一种用于氢发动机起动减排放及氢气消耗率的控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1378037A (zh) * 2001-03-27 2002-11-06 大众汽车股份公司 对尾气进行处理的方法和装置
CN1904329A (zh) * 2006-08-15 2007-01-31 北京工业大学 一种氢气-汽油混合燃料发动机及控制方法
JP2009167852A (ja) * 2008-01-15 2009-07-30 Toyota Motor Corp 水素エンジンの排気ガス浄化システム
CN108678864A (zh) * 2018-05-09 2018-10-19 北京工业大学 一种用于氢发动机起动减排放及氢气消耗率的控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
纪常伟等: "混氢汽油机排放特性的试验", 《北京工业大学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021163863A1 (zh) * 2020-02-18 2021-08-26 潍柴动力股份有限公司 一种发动机控制方法及装置

Also Published As

Publication number Publication date
CN109372613B (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
Gao et al. Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up
CN100379966C (zh) 氢气燃料火花点火发动机
CN202017540U (zh) 用于处理汽油发动机的微粒物质的系统
CN202039925U (zh) 用于处理具有排气系统的汽油发动机的微粒物质的系统
JP4404531B2 (ja) コモンレール式噴射システムを用いた直接噴射ディーゼルエンジンのための微粒子フィルターの再生開始の方法
CN102052179B (zh) 用于在再生微粒过滤器的同时控制火花点火发动机的燃料的方法
EP2076666A2 (en) Exhaust gas control apparatus of an internal combustion engine
CN102032026A (zh) 用于具有微粒过滤器系统的火花点火发动机的燃料控制
JP2012057492A (ja) 触媒暖機制御装置
EP1979596A1 (en) Method and apparatus for operating a methane-fuelled engine and treating exhaust gas with a methane oxidation catalyst
Ren et al. Emission reduction characteristics of after-treatment system on natural gas engine: Effects of platinum group metal loadings and ratios
CN102444450A (zh) 用于内燃机的排气系统
US8381513B2 (en) Internal combustion engine system
EP2447494B1 (en) Exhaust emission control device for internal combustion engine
Kidokoro et al. Development of PZEV exhaust emission control system
CN108678864B (zh) 一种用于氢发动机起动减排放及氢气消耗率的控制方法
CN109372613A (zh) 一种纯氢发动机起动控制方法
US20130160429A1 (en) Limiting nox emissions
CN116696544A (zh) 一种氢燃料发动机系统及其瞬态控制方法、车载系统
Krishnanunni et al. Power improvement and NOx reduction strategies for a hydrogen-fueled multicylinder internal combustion engine
US6363714B1 (en) Plasma-catalyst control system
WO2011153970A2 (en) Method to reduce emissions of nitrogen oxides from combustion engines and/or to increase the performance of combustion engines while keeping the emissions of nitrogen oxides from combustion engines at the same level and/or to increase the overall performance of an engine, and a device to perform this method
US20150113955A1 (en) Method and device for reducing the emissions of an internal combustion engine
Tan et al. Experimental Study on Thermal Management Strategy of the Exhaust Gas of a Heavy-Duty Diesel Engine Based on In-Cylinder Injection Parameters
JP3675198B2 (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant