CN109360610A - 一种基于模糊神经网络的化学分子生物毒性预测模型算法 - Google Patents

一种基于模糊神经网络的化学分子生物毒性预测模型算法 Download PDF

Info

Publication number
CN109360610A
CN109360610A CN201811415938.4A CN201811415938A CN109360610A CN 109360610 A CN109360610 A CN 109360610A CN 201811415938 A CN201811415938 A CN 201811415938A CN 109360610 A CN109360610 A CN 109360610A
Authority
CN
China
Prior art keywords
toxicity
layer
model
chemical molecular
fuzzy neural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811415938.4A
Other languages
English (en)
Other versions
CN109360610B (zh
Inventor
邓明毅
田开平
谢刚
罗平亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201811415938.4A priority Critical patent/CN109360610B/zh
Publication of CN109360610A publication Critical patent/CN109360610A/zh
Application granted granted Critical
Publication of CN109360610B publication Critical patent/CN109360610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于模糊神经网络的化学分子生物毒性预测模型算法,利用模糊神经网络模型预测的方法实现对化学分子的生物毒性提前预测和控制。针对在化学分子合成过程中,不同分子结构的化学分子疏水性对生物毒性的影响具有不确定性、非线性等特点,难以实现针对化学分子合成过程建立精确的模型,因此设计了基于模糊神经网络的生物毒性预测模型,该方法通过调整模糊神经网络参数,提高神经网络处理能力,实现了化学分子的毒性高精度前端预测。实验结果表明该方法具有较好的自适应能力,能够达到提前预测和控制化学分子合成中的生物毒性,降低了化学合成的成本、缩短了化学合成的时间、减少了对环境的污染。

Description

一种基于模糊神经网络的化学分子生物毒性预测模型算法
技术领域
本发明属于化工技术领域,具体是一种基于模糊神经网络的化学分子生物毒性预测模型算法。
背景技术
近些年来,化学物质合成技术飞快发展,合成物质已经应用于社会的各行各业,随着工业的高度发展,全球化学品的种类和年产量在急剧增长,化学污染物在品种和数量上日益增多,化学物质的污染处理早已受到了世界重点关注,其中研究如何减小化学物质的毒性已经成为了当今社会急需解决的问题。因此,在研究化学物质合成过程中运行控制技术,在保证精确控制的前提下,实现化学物质排放时毒性达标,减小环境污染,是未来环保型化学物质研究的必然趋势。
目前,针对化学物质生物毒性控制通常前段检测控制和后端排放处理。前端检测控制常采用的方法就是通过利用各种仪器对已合成的化学物质毒性检测,超过指标则重新合成或者禁止使用,这种方法容易造成大量经济损失,并且合成过程比较复杂麻烦;而后端排放处理通常是物质排放后对其造成的污染进行处理,这种手段容易造成环境污染和加大处理经济成本。姚碧云等人在论文《QSAR方法在毒性预测中的应用和进展》中给出了一种基于QSAR 的毒性预测方法,但其给出的是一种思路,未给出任何实质性的步骤和研究数据,无法得到其方案可行的结论,专利号为CN201510347479.0、CN201310705921.3等文献也给出了类似的方案,但其计算预测精度较小,误差较大。针对这一种情况,本文中给出了一种基于自适应模糊神经网络预测模型进行预测控制算法,利用模糊神经网络预测模型对建立的疏水性与生物毒性QSAR模型关系加以精确计算,比原来的预测手段提高了精确度,减小了预测误差,实现了对化学物质生物毒性的提前预测,降低了化学合成的成本和减小了环境污染。
发明内容
针对上述问题,本发明设计了一种基于自适应模糊神经网络的生物毒性预测模型算法,通过构建自适应模糊神经网络模型,利用模型预测控制的方法实现生物毒性的提前预测。
本发明的技术方案如下:
本发明获得了一种基于自适应模糊神经网络的化学分子生物毒性预测模型算法,该方法是基于自适应模糊神经网络,构建了化学分子生物毒性预测模型,通过改变神经网络参数,达到预测化学分子生物毒性的目的;提高了化学分子的预测精度,减小了预测误差。
本发明采用了如下的技术方案和步骤:
1、建立生物毒性与辛醇/水分配系数的QSAR模型关系。具体是指,建立用于化学分子合成过程中生物毒性(用LC50半数致死浓度)与辛醇/水分配系数的模型关系;其步骤为:利用回归分析法推导logKow和毒性EC50之间的数学表达式,建立方程:y=ax+b,其中y表示毒性效应浓度,即为Log LC50,单位为mmol/L,x是LogKow值;最终得到公式:
Log(LC50)=aLog(Kow)+b(1)。
式(1)中的a,b为线性回归系数,应用这些导出的线性方程后,用于计算未测试化学品的毒性值,mmol/L。
2、根据步骤1的生物毒性与辛醇/水分配系数的QSAR模型关系,建立自适应模糊神经网络化学分子毒性预测模型,目的是使得计算的生物毒性值更加精确。这里我们选取了包含 5层的NFN结构,包括输入层,可信度层,归一化层,解模糊层,输出层。下面是各层的计算函数:
网络第一层为输入层,主要目的是将输入信号模糊化,得到信号隶属度。我们可以采用某种函数来实现,通常包括高斯函数,钟形函数、Sigmoid函数等,这里我们采用高斯函数来实现:
式中,i取值1、2,c为函数的中心值,a为函数的中心宽度值。
网络第二层是可信度层,目的是把模糊化的信号隶属度结果相乘,实际得到的是每条模糊推理规则的可信度。
ω1=μ1μ3,ω2=μ1μ4,ω3=μ2μ3,ω4=μ2μ4 (3)
网络第三层为归一化层,目的是将可信度层的可信度进行归一化计算。
网络第四层为解模糊层,目的是计算每条规则的输出,把输入信号x1,x2引入解模糊网络模型,通常包括一阶Sugeno模型或者二阶Sugeno模型,这里我们采用一阶Sugeno模型,其函数如下:
式中,n取值1、2、3、4,P,Q,R为线性回归系数。
网络第五层为输出层,是各条规则的累加,y=∑On
3、根据步骤2的自适应模糊神经网络化学分子毒性预测模型,建立优化NFN参数的遗传算法模型,具体是修正了模糊神经网络参数,使得计算值更加精确;建立符合度函数:
F=1/(1+E)(6)
E为与控制目标的误差,F(t)是模糊神经网络模型的输出;Fp是输出的控制目标。
4、根据步骤2所述的一种基于模糊神经网络的化学分子生物毒性预测模型算法,其特征在于,完成上述步骤后,进行:
步骤S4、利用优化后的模糊神经网络模型对新分子的生物毒性值进行计算预测,根据所计算的生物毒性值判断该分子是否符合要求。如《中国环境保护行业标准》的要求。
本发明的有益效果是:
1、本发明中研究了化学分子的疏水性(用辛醇/水分配系数来表示)与生物毒性的关系;
2、本发明建立了化学分子的疏水性(用辛醇/水分配系数来表示)与生物毒性的QSAR 模型关系,并利用线性回归法解出了具体的方程值;
3、本发明中建立了自适应模糊神经网络的生物毒性预测模型算法,并通过优化参数后的新模型对生物毒性进行了计算和预测,比原来的生物毒性QSAR模型相比,具有精度高、误差小、高效稳定等特点。
附图说明
图1为本发明的流程结构图;
图2为本发明的模糊神经网络拓扑结构;
图3为本发明的不同结构化合物的生物毒性测量值与预测值;
图4为本发明的不同结构化合物的生物毒性测量值与预测值的误差。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
在本次实例中,我们选取含氯乙烷的不同结构的化学分子,通过实验我们可以得出不同分子的疏水性,即logKow值,以及部分物质的毒性检测值,同时,采用以上方法我们可以对不同分子进行毒性预测,最终通过对比可以看出预测值与检测值的误差较小,如表1所示。这里以计算预测氯取代基的乙烷分子毒性为例。
根据如图1所示,本发明的基于自适应模糊神经网络的化学分子生物毒性预测模型算法,主要步骤如下内容如下:
1、建立用于化学分子合成过程中生物毒性(用LC50半数致死浓度)与辛醇/水分配系数 (Kow)的QSAR模型关系,利用回归分析法推导logKow和毒性EC50之间的数学表达式,建立方程:y=ax+b,其中“y”表示毒性效应浓度(即,Log LC50,单位为mmol/L),“x”是LogKow值。将现有的部分常用的结构化合物的辛醇/水分配系数进行统计,并制作下表1,根据表1中的辛醇/水分配系数的数据,采用线性回归法中的最小二乘法对一元方程“y=ax+ b”进行推导,可以计算得出回归系数的值a为-0.746,b为0.89。
则最终可写为:
Log(LC50)=-0.746Log(Kow)+0.89 (8)
计算含氯乙烷的不同结构的化学分子的Log LC50值,如表1所示。
表1
不同结构化合物 辛醇-水分配系数 LC<sup>50</sup>测量值 QSAR预测值
氯乙烷 1.54407 0.27251 -0.26187
1,1-二氯乙烷 1.79029 0.06416 -0.44555
1,2-二氯乙烷 1.48001 0.32672 -0.21409
1,1,1-三氯乙烷 2.49969 -0.53614 -0.97477
1,1,2-三氯乙烷 2.46982 -0.51086 -0.95249
1,1,1,2-四氯乙烷 2.38917 -0.44261 -0.89232
五氯乙烷 2.88986 -0.86630 -1.26584
六氯乙烷 4.59988 -2.31332 -2.54151
2、根据步骤1建立自适应模糊神经网络化学分子毒性预测模型,建立了基于Sugeno模型,这里我们选取了包含5层的NFN结构,包括输入层,可信度层,归一化层,解模糊层,输出层。如图2所示,下面是各层的计算函数:
网络第一层为输入层,主要目的是将输入信号模糊化,得到信号隶属度。我们可以采用某种函数来实现,通常包括高斯函数,钟形函数、Sigmoid函数等,这里我们采用高斯函数来实现:
式中,i取值1、2,c为函数的中心值,a为函数的中心宽度值。
对上式函两边求取Log函数,通过积分求得c=1.6,a=0.14。得到函数
网络第二层是可信度层,目的是把模糊化的信号隶属度结果相乘,实际得到的是每条模糊推理规则的可信度。
ω1=μ1μ3,ω2=μ1μ4,ω3=μ2μ3,ω4=μ2μ4 (10)
网络第三层为归一化层,目的是将可信度层的可信度进行归一化计算。
网络第四层为解模糊层,目的是计算每条规则的输出,把输入信号x1,x2引入解模糊网络模型,通常包括一阶Sugeno模型或者二阶Sugeno模型,这里我们采用一阶Sugeno模型,其函数如下:
式中,n取值1、2、3、4,P,Q,R为线性回归系数。
网络第五层为输出层,是各条规则的累加,y=∑On
3、根据步骤2建立优化NFN参数的遗传算法模型,其特征在于修正了模糊神经网络参数,使得计算值更加精确。建立符合度函数:
F=1/(1+E) (13)
E为与控制目标的误差,F(t)是模糊神经网络模型的输出;Fp是输出的控制目标。
4、根据步骤2所述的一种基于模糊神经网络的化学分子生物毒性预测模型算法,其特征在于,完成上述步骤后,进行:
步骤S4、利用优化后的模糊神经网络模型对含氯取代基的乙烷的生物毒性值进行计算预测,代入步骤3中,最终计算出LC50。如表2所示。根据图3和图4所示可以发现,经过模糊神经网络模型计算测得的值比原有的函数值更加精确,误差值更小。
表2
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (5)

1.一种基于模糊神经网络的化学分子生物毒性预测模型算法,针对化学分子合成中生物毒性量进行预测控制,以不同化学结构的疏水性为控制量,生物毒性量为被控量,其特征在于,包括以下步骤:
S1、建立生物毒性与辛醇/水分配系数的QSAR模型;
S2、建立自适应模糊神经网络化学分子毒性预测模型;
S3、建立优化NFN参数的遗传算法模型。
2.根据权利要求1所述的一种基于模糊神经网络的化学分子生物毒性预测模型算法,其特征在于,步骤S1所述的建立生物毒性与辛醇/水分配系数的QSAR模型关系,具体是指,建立用于化学分子合成过程中生物毒性与辛醇/水分配系数的模型关系,生物毒性用LC50半数致死浓度表示;其步骤为:利用回归分析法推导log Kow和毒性EC50之间的数学表达式,建立方程:y=ax+b,其中y表示毒性效应浓度,即为Log LC50,单位为mmol/L,x是Log Kow值;最终得到公式:
Log(LC50)=aLog(Kow)+b (1)
式(1)中的a,b为线性回归系数,应用这些导出的线性方程后,用于计算未测试化学品的毒性值,mmol/L。
3.根据权利要求1所述的一种基于模糊神经网络的化学分子生物毒性预测模型算法,其特征在于,步骤S2所述的自适应模糊神经网络化学分子毒性预测模型,建立了基于Sugeno模型,并选取了包含5层的NFN结构,包括:输入层、可信度层、归一化层、解模糊层、输出层,下面是各层的计算函数:
网络第一层为输入层,主要目的是将输入信号模糊化,得到信号隶属度;采用某种函数来实现,通常包括高斯函数,钟形函数、Sigmoid函数,这里我们采用高斯函数来实现:
式中,i取值1、2,c为函数的中心值,a为函数的中心宽度值;
网络第二层是可信度层,目的是把模糊化的信号隶属度结果相乘,实际得到的是每条模糊推理规则的可信度;
ω1=μ1μ3,ω2=μ1μ4,ω3=μ2μ3,ω4=μ2μ4 (3)
网络第三层为归一化层,目的是将可信度层的可信度进行归一化计算;
网络第四层为解模糊层,目的是计算每条规则的输出,把输入信号x1,x2引入解模糊网络模型,通常包括一阶Sugeno模型或者二阶Sugeno模型,这里我们采用一阶Sugeno模型,其函数如下:
式中,n取值1、2、3、4,P,Q,R为线性回归系数;
网络第五层为输出层,是各条规则的累加,y=∑On
4.根据权利要求1所述的一种基于模糊神经网络的化学分子生物毒性预测模型算法,其特征在于,所述步骤S3中提到的建立优化NFN参数的遗传算法模型,具体是修正了模糊神经网络参数,使得计算值更加精确;建立符合度函数:
F=1/(1+E) (6)
式中,
E为与控制目标的误差;
F(t)是模糊神经网络模型的输出;
Fp是输出的控制目标。
5.根据权利要求1所述的一种基于模糊神经网络的化学分子生物毒性预测模型算法,其特征在于,完成上述步骤后,进行:
步骤S4、利用优化后的模糊神经网络模型对新分子的生物毒性值进行计算预测,根据所计算的生物毒性值判断该分子是否符合要求。
CN201811415938.4A 2018-11-26 2018-11-26 一种基于模糊神经网络的化学分子生物毒性预测模型的方法 Active CN109360610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811415938.4A CN109360610B (zh) 2018-11-26 2018-11-26 一种基于模糊神经网络的化学分子生物毒性预测模型的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811415938.4A CN109360610B (zh) 2018-11-26 2018-11-26 一种基于模糊神经网络的化学分子生物毒性预测模型的方法

Publications (2)

Publication Number Publication Date
CN109360610A true CN109360610A (zh) 2019-02-19
CN109360610B CN109360610B (zh) 2019-11-15

Family

ID=65338859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811415938.4A Active CN109360610B (zh) 2018-11-26 2018-11-26 一种基于模糊神经网络的化学分子生物毒性预测模型的方法

Country Status (1)

Country Link
CN (1) CN109360610B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109979541A (zh) * 2019-03-20 2019-07-05 四川大学 基于胶囊网络的药物分子药代动力学性质和毒性预测方法
CN110415770A (zh) * 2019-08-26 2019-11-05 南京大学 一种基于剂量-效应简化转录组的预测化学品胚胎发育毒性的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079263A2 (en) * 1999-06-18 2000-12-28 Synt:Em S.A. Identifying active molecules using physico-chemical parameters
CN102625446A (zh) * 2012-03-02 2012-08-01 黄东 一种物联网中的物件标签定位方法
CN102930113A (zh) * 2012-11-14 2013-02-13 华南农业大学 用于预测化合物活性的两级拟合qsar模型的构建方法
CN104102826A (zh) * 2014-07-03 2014-10-15 同济大学 一种确定混合物正辛醇/水分配系数的方法
CN105069315A (zh) * 2015-08-26 2015-11-18 中国环境科学研究院 基于金属形态和有效性的水生生物毒性预测方法
CN105205322A (zh) * 2015-09-17 2015-12-30 中国环境科学研究院 基于模型预测的生物毒性预测方法
CN106125007A (zh) * 2016-08-31 2016-11-16 北京新能源汽车股份有限公司 一种电池剩余电量的确定方法、装置及汽车
CN107085672A (zh) * 2017-05-24 2017-08-22 中国环境科学研究院 一种应用于制定水质基准的毒性预测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079263A2 (en) * 1999-06-18 2000-12-28 Synt:Em S.A. Identifying active molecules using physico-chemical parameters
CN102625446A (zh) * 2012-03-02 2012-08-01 黄东 一种物联网中的物件标签定位方法
CN102930113A (zh) * 2012-11-14 2013-02-13 华南农业大学 用于预测化合物活性的两级拟合qsar模型的构建方法
CN104102826A (zh) * 2014-07-03 2014-10-15 同济大学 一种确定混合物正辛醇/水分配系数的方法
CN105069315A (zh) * 2015-08-26 2015-11-18 中国环境科学研究院 基于金属形态和有效性的水生生物毒性预测方法
CN105205322A (zh) * 2015-09-17 2015-12-30 中国环境科学研究院 基于模型预测的生物毒性预测方法
CN106125007A (zh) * 2016-08-31 2016-11-16 北京新能源汽车股份有限公司 一种电池剩余电量的确定方法、装置及汽车
CN107085672A (zh) * 2017-05-24 2017-08-22 中国环境科学研究院 一种应用于制定水质基准的毒性预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘平 等: ""辨识药物定量构效关系的模糊神经网络方法研究"", 《高等学校化学学报》 *
高守国 等: ""模糊人工神经网络方法在QSAR研究中的应用"", 《计算机与应用化学》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109979541A (zh) * 2019-03-20 2019-07-05 四川大学 基于胶囊网络的药物分子药代动力学性质和毒性预测方法
CN109979541B (zh) * 2019-03-20 2021-06-22 四川大学 基于胶囊网络的药物分子药代动力学性质和毒性预测方法
CN110415770A (zh) * 2019-08-26 2019-11-05 南京大学 一种基于剂量-效应简化转录组的预测化学品胚胎发育毒性的方法

Also Published As

Publication number Publication date
CN109360610B (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
Hou et al. Estimate ecotoxicity characterization factors for chemicals in life cycle assessment using machine learning models
Li et al. Comparison of random forests and other statistical methods for the prediction of lake water level: a case study of the Poyang Lake in China
Melagraki et al. Enalos KNIME nodes: Exploring corrosion inhibition of steel in acidic medium
Nhu et al. Daily water level prediction of Zrebar Lake (Iran): a comparison between M5P, random forest, random tree and reduced error pruning trees algorithms
Sani-Kast et al. A network perspective reveals decreasing material diversity in studies on nanoparticle interactions with dissolved organic matter
WO2016179864A1 (zh) 一种基于金属定量构效关系的淡水急性基准预测方法
Topuz et al. An approach for environmental risk assessment of engineered nanomaterials using Analytical Hierarchy Process (AHP) and fuzzy inference rules
CN109360610B (zh) 一种基于模糊神经网络的化学分子生物毒性预测模型的方法
Speck-Planche et al. QSAR model toward the rational design of new agrochemical fungicides with a defined resistance risk using substructural descriptors
CN110111113A (zh) 一种异常交易节点的检测方法及装置
Chen et al. Effect of phase I estimation on phase II control chart performance with profile data
Packalen Edge factors: Scientific frontier positions of nations
Shamsipur et al. An efficient variable selection method based on the use of external memory in ant colony optimization. Application to QSAR/QSPR studies
Yu et al. In silico nanosafety assessment tools and their ecosystem-level integration prospect
Kumar et al. Unswerving modeling of hepatotoxicity of cadmium containing quantum dots using amalgamation of quasiSMILES, index of ideality of correlation, and consensus modeling
Gal et al. Development and application of a sustainability index for a lake ecosystem
Rocha et al. Classification of biodegradable materials using QSAR modelling with uncertainty estimation
Priyadarshi et al. Understanding plankton ecosystem dynamics under realistic micro-scale variability requires modeling at least three trophic levels
Hu et al. Performance of ensemble‐learning models for predicting eutrophication in Zhuyi Bay, Three Gorges Reservoir
Lassiter et al. Fate of toxic organic substances in the aquatic environment
Henao et al. Multi-omics regulatory network inference in the presence of missing data
Zhang et al. Predicting the effect of silver nanoparticles on soil enzyme activity using the machine learning method: type, size, dose and exposure time
Paul et al. Real time monitoring of water quality for rural areas: A machine learning and internet of things approach
De Lisle et al. Condition dependence and the paradox of missing plasticity costs
Wu et al. Generalized autoregressive conditional heteroskedastic model for water quality analyses and time series investigation in reservoir watersheds

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant