CN109359694B - 一种基于混合协同表示的分类器的图像分类方法和装置 - Google Patents

一种基于混合协同表示的分类器的图像分类方法和装置 Download PDF

Info

Publication number
CN109359694B
CN109359694B CN201811241312.6A CN201811241312A CN109359694B CN 109359694 B CN109359694 B CN 109359694B CN 201811241312 A CN201811241312 A CN 201811241312A CN 109359694 B CN109359694 B CN 109359694B
Authority
CN
China
Prior art keywords
phi
image
collaborative representation
sample
class
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811241312.6A
Other languages
English (en)
Other versions
CN109359694A (zh
Inventor
刘宝弟
谢文阳
王延江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201811241312.6A priority Critical patent/CN109359694B/zh
Publication of CN109359694A publication Critical patent/CN109359694A/zh
Application granted granted Critical
Publication of CN109359694B publication Critical patent/CN109359694B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于混合协同表示的分类器的图像分类方法和装置,属于模式识别技术领域,在基于传统协同表示分类器的基础上,增加类属协同表示约束项,由于传统的协同表示分类器能够使测试样本在整个训练样本空间中具有较好的拟合效果,类属协同表示约束项能使测试样本在其所属的类别的训练样本子空间中具有较优的拟合效果,两者相互配合,不仅改善了类属协同表示约束项在其它类别的训练样本子空间中拟合误差大的缺陷,而且改善了传统的协同表示分类器的图像鉴别性能;能够更好的处理样本空间内禀的非线性结构性质,将特征空间线性不可分的模式通过非线性映射到更高维特征空间实现线性可分,从而进一步提升图像分类性能。

Description

一种基于混合协同表示的分类器的图像分类方法和装置
技术领域
本发明涉及模式识别技术领域,特别涉及一种基于混合协同表示的分类器的图像分类方法和装置。
背景技术
模式识别(英语:Pattern Recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。我们把环境与客体统称为“模式”。随着计算机技术的发展,人类有可能研究复杂的信息处理过程。信息处理过程的一个重要形式是生命体对环境及客体的识别。对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。这是模式识别的两个重要方面。市场上可见到的代表性产品有光学字符识别、语音识别系统。模式识别是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。
模式识别过程通常包含两个阶段,第一个阶段是特征提取,另一个是构造分类器和标签预测。其中,分类器设计(Classifier Design)作为模式识别系统的一个重要环节,一直以来都是模式识别领域研究的核心问题之一。
目前,主要的分类器设计方法有以下几种:
(1)支持向量机方法(英文:Support Vector Machine):是Corinna Cortes和Vapnik等于1995年首先提出来的,它旨在通过最大化类别间隔建立最优分类面。该类方法在解决小样本、非线性及高维模式识别中表现出许多特有的优势。然而,该类分类器只有少量的边界点(即支持向量)参与到分类面建立,如果边界点分布的位置不好,那么对于分类是十分不利的。
(2)线性回归的多类分类方法(英文:Linear Regression based Classifier):线性回归的多类分类方法是由Imran Naseem等人于2010年提出的,该分类方法将测试样本在每类训练样本子空间中进行线性拟合,通过判断拟合误差来决定测试样本的类别。该分类方法能够有效地通过类属线性拟合的方法提取鉴别信息。但是这种方法会产生较大的拟合误差,并且容易产生不稳定的解(拟合矩阵不满秩)。
(3)基于稀疏表示的多类分类方法(英文:Sparse Representation basedClassifier):是由J.Wright等人于2009年提出的,该分类方法首先将测试样本在所有训练集上进行稀疏编码,然后根据产生最小编码误差的类别决定分类结果。该分类方法在多类分类中取得优异的性能,但是该方法并没有考虑测试样本在每类训练样本子空间的拟合信息。
(4)基于协同表示的多类分类方法(英文:Collaborative Representation basedClassifier):是由zhang等人于2011年提出,该分类方法首先将测试样本在所有训练集上进行协同表示,然后根据产生最小编码误差的类别决定分类结果。该分类方法在大多数数据集上性能优于基于稀疏表示的多类分类方法。但是该方法也没有考虑测试样本在每类训练样本子空间的拟合信息。
发明内容
为了解决现有技术的分类器设计方法在图像分类过程中存在的问题,本发明实施例提供一种基于混合协同表示的分类器的图像分类方法和装置,通过将类属协同表示算法作为约束项嵌入基于协同表示算法的分类器模型中,从而有效的改变分类器的鉴别分类性能,进一步提升图像分类性能。所述技术方案如下:
第一方面,本发明提供了一种基于混合协同表示的分类器的图像分类方法包括:
采用卷积神经网络提取图像特征;
采用混合协同表示目标优化函数对核空间测试样本图像特征φ(y)进行混合协同表示,其中,所述混合协同表示目标优化函数为:
Figure GDA0003061627390000021
其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y);X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X);φ(Xc)是由第c类训练样本特征在核空间的映射,s为样本φ(y)的协同表示向量,sc代表样本φ(y)用第c类训练样本特征φ(Xc)进行的协同表示,s=[s1 s2 … sc … sC]T,C表示类别数,τ用于调整类属协同表示项所占的比例,λ,γ用于平衡拟合误差和协同表示,β=λ+τγ;
Figure GDA0003061627390000031
代表向量2范数的平方;
求解所述混合协同表示目标优化函数的最优解,其中,所述最优解的求解公式如下:
Figure GDA0003061627390000032
其中,κ(X,X)=φ(X)Tφ(X),
Figure GDA0003061627390000033
κ(X,y)=φ(X)Tφ(y),
Figure GDA0003061627390000038
表示[0,…,φ(Xc),…,0];
获取核空间测试样本图像特征φ(y)在每类训练样本特征之间的拟合误差,并将所述拟合误差中最小的一类确定为待分类图像所属的类。
可选的,所述采用混合协同表示目标优化函数对核空间测试样本图像特征φ(y)进行混合协同表示,具体为:
采用目标优化函数
Figure GDA0003061627390000035
对核空间测试样本图像特征φ(y)进行协同表示,其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y),X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X),s为样本φ(y)的协同表示向量;
采用目标优化函数
Figure GDA0003061627390000036
对核空间测试样本图像特征φ(y)进行类属协同表示,其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y),X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X),sc代表样本φ(y)用第c类训练样本特征φ(Xc)进行的协同表示;
将协同表示和类属协同表示的核空间测试样本图像特征φ(y)进行求和得到所述混合协同表示目标优化函数。
可选的,所述获取核空间测试样本图像特征φ(y)在每类训练样本特征之间的拟合误差,并将所述拟合误差中最小的一类确定为待分类图像所属的类,具体为:
根据公式
Figure GDA0003061627390000037
获取核空间测试样本图像特征φ(y)在每类训练样本特征之间的拟合误差,其中,
Figure GDA0003061627390000041
表示核空间测试样本特征φ(y)在每一类样本子空间的混合协同表示形式;
根据公式
Figure GDA0003061627390000042
确定所述拟合误差中最小值,并将所述拟合误差中最小的一类确定为待分类图像所属的类。
第二方面,本发明提供了一种基于混合协同表示的分类器的图像分类装置包括:
提取模块,用于采用卷积神经网络提取图像特征;
表示模块,用于采用混合协同表示目标优化函数对核空间测试样本图像特征φ(y)进行混合协同表示,其中,所述混合协同表示目标优化函数为:
Figure GDA0003061627390000043
其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y);X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X);φ(Xc)是由第c类训练样本特征在核空间的映射,s为样本φ(y)的协同表示向量,sc代表样本φ(y)用第c类训练样本特征φ(Xc)进行的协同表示,s=[s1 s2 … sc … sC]T,C表示类别数,τ用于调整类属协同表示项所占的比例,λ,γ用于平衡拟合误差和协同表示,β=λ+τγ;
Figure GDA0003061627390000044
代表向量2范数的平方;
求解模块,用于求解所述混合协同表示目标优化函数的最优解,其中,所述最优解的求解公式如下:
Figure GDA0003061627390000045
其中,κ(X,X)=φ(X)Tφ(X),
Figure GDA0003061627390000046
κ(X,y)=φ(X)Tφ(y),
Figure GDA0003061627390000049
表示[0,…,φ(Xc),…,0];
确定模块,用于获取核空间测试样本图像特征φ(y)在每类训练样本特征之间的拟合误差,并将所述拟合误差中最小的一类确定为待分类图像所属的类。
可选的,所述表示模块具体包括:
第一表示子模块,用于采用目标优化函数
Figure GDA0003061627390000048
对核空间测试样本图像特征φ(y)进行协同表示,其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y),X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X),s为样本φ(y)的协同表示向量;
第二表示子模块,用于采用目标优化函数
Figure GDA0003061627390000051
对核空间测试样本图像特征φ(y)进行类属协同表示,其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y),X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X),sc代表样本φ(y)用第c类训练样本特征φ(Xc)进行的协同表示;
获取子模块,用于将协同表示和类属协同表示的核空间测试样本图像特征φ(y)进行求和得到所述混合协同表示目标优化函数。
可选的,所述确定模块具体用于:
根据公式
Figure GDA0003061627390000052
获取核空间测试样本图像特征φ(y)在每类训练样本特征之间的拟合误差,其中,
Figure GDA0003061627390000053
表示核空间测试样本特征φ(y)在每一类样本子空间的混合协同表示形式;
根据公式
Figure GDA0003061627390000054
确定所述拟合误差中最小值,并将所述拟合误差中最小的一类确定为待分类图像所属的类。
本发明实施例提供的技术方案带来的有益效果是:
本发明实施例提供的一种基于混合协同表示的分类器的图像分类方法和装置在基于传统协同表示分类器
Figure GDA0003061627390000055
的基础上,增加类属协同表示约束项
Figure GDA0003061627390000056
由于传统的协同表示分类器能够使测试样本在整个训练样本空间中具有较好的拟合效果,类属协同表示约束项能使测试样本在其所属的类别的训练样本子空间中具有较优的拟合效果,两者相互配合,不仅改善了类属协同表示约束项在其它类别的训练样本子空间中拟合误差大的缺陷,而且改善了传统的协同表示分类器的图像鉴别性能;而且,本发明将样本图像映射到核空间,并在核空间对样本进行协同表达,能够更好的处理样本空间内禀的非线性结构性质,将特征空间线性不可分的模式通过非线性映射到更高维特征空间实现线性可分,从而进一步提升图像分类性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种基于混合协同表示的分类器的图像分类方法的流程示意图;
图2是本发明实施例提供的一种基于混合协同表示的分类器的图像分类装置的结构框图;
图3是图2中表示模块的结构框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
下面将结合附图1、附图2和附图3,对本发明实施例的一种基于混合协同表示的分类器的图像分类方法和装置进行详细说明。
参考附图1所示,本发明实施例的一种基于混合协同表示的分类器的图像分类方法包括:
步骤110:采用卷积神经网络提取图像特征。
采用卷积神经网络模型VGG模型提取图像特征。具体的,首先,将图像尺度大小变为224x224大小,然后调用VGG模型,得到待处理图像的特征。其中,采用卷积神经网络提取图像特征的过程并不是本发明的保护内容,采用卷积神经网络提取图像特征属于已有技术,是一种常用的图像特征提取方法,本领域技术人员可以参考已有技术,本发明实施例在此不再累述。
步骤120:采用混合协同表示目标优化函数对核空间测试样本图像特征φ(y)进行混合协同表示。
定义y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y),定义X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X)。
采用目标优化函数
Figure GDA0003061627390000061
对核空间测试样本图像特征φ(y)进行协同表示,其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y),X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X),s为样本φ(y)的协同表示向量;
采用目标优化函数
Figure GDA0003061627390000071
对核空间测试样本图像特征φ(y)进行类属协同表示,其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y),X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X),sc代表样本φ(y)用第c类训练样本特征φ(Xc)进行的协同表示;
将协同表示和类属协同表示的核空间测试样本图像特征φ(y)进行求和得到所述混合协同表示目标优化函数,也即将采用目标优化函数
Figure GDA0003061627390000072
对核空间测试样本图像特征φ(y)进行协同表示和采用目标优化函数
Figure GDA0003061627390000073
对核空间测试样本图像特征φ(y)进行类属协同表示相组合即可得到混合协同表示目标优化函数,其中,混合协同表示目标优化函数的表达式如下:
Figure GDA0003061627390000074
对上述的混合协同表示目标优化函数的表达式进行整理
Figure GDA0003061627390000075
式中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y);X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X);φ(Xc)是由第c类训练样本特征在核空间的映射,s为样本φ(y)的协同表示向量,sc代表样本φ(y)用第c类训练样本特征φ(Xc)进行的协同表示,s=[s1 s2 … sc …sC]T,C表示类别数,τ用于调整类属协同表示项所占的比例,λ,γ用于平衡拟合误差和协同表示,β=λ+τγ;
Figure GDA0003061627390000076
代表向量2范数的平方。
步骤130:求解所述混合协同表示目标优化函数的最优解。
Figure GDA0003061627390000077
表示[0,…,φ(Xc),…,0],进而可以将步骤120中的混合协同表示目标优化函数的表达式简化如下:
Figure GDA0003061627390000081
进而可以求解该混合协同表示目标优化函数的最优解,其中,最优解的表达式如下:
Figure GDA0003061627390000082
式中,κ(X,X)=φ(X)Tφ(X),
Figure GDA0003061627390000083
κ(X,y)=φ(X)Tφ(y),均为核函数,可以是目前常用的多项式核函数、径向基核函数中的一种或多种,本发明实施例对此不做限制。
步骤140:获取核空间测试样本图像特征φ(y)在每类训练样本特征之间的拟合误差,并将所述拟合误差中最小的一类确定为待分类图像所属的类。
具体的,根据公式
Figure GDA0003061627390000084
获取核空间测试样本图像特征φ(y)在每类训练样本特征之间的拟合误差,其中,
Figure GDA0003061627390000085
表示核空间测试样本特征φ(y)在每一类样本子空间的混合协同表示形式;根据公式
Figure GDA0003061627390000086
确定所述拟合误差中最小值,并将所述拟合误差中最小的一类确定为待分类图像所属的类,也即比较核空间测试样本图像特征φ(y)和每类训练样本特征的拟合误差,其中,待分类图像属于拟合误差最小的一类。
本发明实施例提供的一种基于混合协同表示的分类器的图像分类方法和装置在基于传统协同表示分类器
Figure GDA0003061627390000087
的基础上,增加类属协同表示约束项
Figure GDA0003061627390000088
由于传统的协同表示分类器能够使测试样本在整个训练样本空间中具有较好的拟合效果,类属协同表示约束项能使测试样本在其所属的类别的训练样本子空间中具有较优的拟合效果,两者相互配合,不仅改善了类属协同表示约束项在其它类别的训练样本子空间中拟合误差大的缺陷,而且改善了传统的协同表示分类器的图像鉴别性能;而且,本发明将样本图像映射到核空间,并在核空间对样本进行协同表达,能够更好的处理样本空间内禀的非线性结构性质,将特征空间线性不可分的模式通过非线性映射到更高维特征空间实现线性可分,从而进一步提升图像分类性能。
参见图2所示,本发明实施例提供了一种基于混合协同表示的分类器的图像分类装置包括:
提取模块201,用于采用卷积神经网络提取图像特征;
表示模块202,用于采用混合协同表示目标优化函数对核空间测试样本图像特征φ(y)进行混合协同表示,其中,所述混合协同表示目标优化函数为:
Figure GDA0003061627390000091
其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y);X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X);φ(Xc)是由第c类训练样本特征在核空间的映射,s为样本φ(y)的协同表示向量,sc代表样本φ(y)用第c类训练样本特征φ(Xc)进行的协同表示,s=[s1 s2 … sc … sC]T,C表示类别数,τ用于调整类属协同表示项所占的比例,λ,γ用于平衡拟合误差和协同表示,β=λ+τγ;
Figure GDA0003061627390000092
代表向量2范数的平方;
求解模块203,用于求解所述混合协同表示目标优化函数的最优解,其中,所述最优解的求解公式如下:
Figure GDA0003061627390000093
其中,κ(X,X)=φ(X)Tφ(X),
Figure GDA0003061627390000094
κ(X,y)=φ(X)Tφ(y),
Figure GDA0003061627390000097
表示[0,…,φ(Xc),…,0];
确定模块204,用于获取核空间测试样本图像特征φ(y)在每类训练样本特征之间的拟合误差,并将所述拟合误差中最小的一类确定为待分类图像所属的类。
其中,参考图3所示,表示模块202具体包括:
第一表示子模块2021,用于采用目标优化函数
Figure GDA0003061627390000096
对核空间测试样本图像特征φ(y)进行协同表示,其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y),X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X),s为样本φ(y)的协同表示向量;
第二表示子模块2022,用于采用目标优化函数
Figure GDA0003061627390000101
对核空间测试样本图像特征φ(y)进行类属协同表示,其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y),X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X),sc代表样本φ(y)用第c类训练样本特征φ(Xc)进行的协同表示;
获取子模块2023,用于将协同表示和类属协同表示的核空间测试样本图像特征φ(y)进行求和得到所述混合协同表示目标优化函数。
可选的,确定模块204具体用于:
根据公式
Figure GDA0003061627390000102
获取核空间测试样本图像特征φ(y)在每类训练样本特征之间的拟合误差,其中,
Figure GDA0003061627390000103
表示核空间测试样本特征φ(y)在每一类样本子空间的混合协同表示形式;
根据公式
Figure GDA0003061627390000104
确定所述拟合误差中最小值,并将所述拟合误差中最小的一类确定为待分类图像所属的类。
需要说明的是:上述实施例提供的一种基于混合协同表示的分类器的图像分类装置在进行图像分类时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的一种基于混合协同表示的分类器的图像分类装置与一种基于混合协同表示的分类器的图像分类方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种基于混合协同表示的分类器的图像分类方法,其特征在于,所述方法包括:
采用卷积神经网络提取图像特征;
采用混合协同表示目标优化函数对核空间测试样本图像特征φ(y)进行混合协同表示,其中,所述混合协同表示目标优化函数为:
Figure FDA0003061627380000011
其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y);X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X);φ(Xc)是由第c类训练样本特征在核空间的映射,s为样本φ(y)的协同表示向量,sc代表样本φ(y)用第c类训练样本特征φ(Xc)进行的协同表示,s=[s1 s2…sc…sC]T,C表示类别数,τ用于调整类属协同表示项所占的比例,λ,γ用于平衡拟合误差和协同表示,β=λ+τγ;
Figure FDA0003061627380000012
代表向量2范数的平方;
求解所述混合协同表示目标优化函数的最优解,其中,所述最优解的求解公式如下:
Figure FDA0003061627380000013
其中,κ(X,X)=φ(X)Tφ(X),
Figure FDA0003061627380000014
κ(X,y)=φ(X)Tφ(y),
Figure FDA0003061627380000015
表示[0,…,φ(Xc),…,0];
获取核空间测试样本图像特征φ(y)在每类训练样本特征之间的拟合误差,并将所述拟合误差中最小的一类确定为待分类图像所属的类。
2.根据权利要求1所述的图像分类方法,其特征在于,所述采用混合协同表示目标优化函数对核空间测试样本图像特征φ(y)进行混合协同表示,具体为:
采用目标优化函数
Figure FDA0003061627380000016
对核空间测试样本图像特征φ(y)进行协同表示,其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y),X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X),s为样本φ(y)的协同表示向量;
采用目标优化函数
Figure FDA0003061627380000021
对核空间测试样本图像特征φ(y)进行类属协同表示,其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y),X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X),sc代表样本φ(y)用第c类训练样本特征φ(Xc)进行的协同表示;
将协同表示和类属协同表示的核空间测试样本图像特征φ(y)进行求和得到所述混合协同表示目标优化函数。
3.根据权利要求1或2所述的图像分类方法,其特征在于,所述获取核空间测试样本图像特征φ(y)在每类训练样本特征之间的拟合误差,并将所述拟合误差中最小的一类确定为待分类图像所属的类,具体为:
根据公式
Figure FDA0003061627380000022
获取核空间测试样本图像特征φ(y)在每类训练样本特征之间的拟合误差,其中,
Figure FDA0003061627380000023
表示核空间测试样本特征φ(y)在每一类样本子空间的混合协同表示形式;
根据公式
Figure FDA0003061627380000024
确定所述拟合误差中最小值,并将所述拟合误差中最小的一类确定为待分类图像所属的类。
4.一种基于混合协同表示的分类器的图像分类装置,其特征在于,所述图像分类装置包括:
提取模块,用于采用卷积神经网络提取图像特征;
表示模块,用于采用混合协同表示目标优化函数对核空间测试样本图像特征φ(y)进行混合协同表示,其中,所述混合协同表示目标优化函数为:
Figure FDA0003061627380000025
其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y);X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X);φ(Xc)是由第c类训练样本特征在核空间的映射,s为样本φ(y)的协同表示向量,sc代表样本φ(y)用第c类训练样本特征φ(Xc)进行的协同表示,s=[s1 s2…sc…sC]T,C表示类别数,τ用于调整类属协同表示项所占的比例,λ,γ用于平衡拟合误差和协同表示,β=λ+τγ;
Figure FDA0003061627380000026
代表向量2范数的平方;
求解模块,用于求解所述混合协同表示目标优化函数的最优解,其中,所述最优解的求解公式如下:
Figure FDA0003061627380000031
其中,κ(X,X)=φ(X)Tφ(X),
Figure FDA0003061627380000032
κ(X,y)=φ(X)Tφ(y),
Figure FDA0003061627380000033
表示[0,…,φ(Xc),…,0];
确定模块,用于获取核空间测试样本图像特征φ(y)在每类训练样本特征之间的拟合误差,并将所述拟合误差中最小的一类确定为待分类图像所属的类。
5.根据权利要求4所述的图像分类装置,其特征在于,所述表示模块具体包括:
第一表示子模块,用于采用目标优化函数
Figure FDA0003061627380000034
对核空间测试样本图像特征φ(y)进行协同表示,其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y),X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X),s为样本φ(y)的协同表示向量;
第二表示子模块,用于采用目标优化函数
Figure FDA0003061627380000035
对核空间测试样本图像特征φ(y)进行类属协同表示,其中,y∈RD×1为待分类的测试样本图像特征,D表示特征的维度,将y映射到核空间得到φ(y),X∈RD×N为训练样本图像特征,N表示训练样本个数,将X映射到核空间得到φ(X),sc代表样本φ(y)用第c类训练样本特征φ(Xc)进行的协同表示;
获取子模块,用于将协同表示和类属协同表示的核空间测试样本图像特征φ(y)进行求和得到所述混合协同表示目标优化函数。
6.根据权利要求4或5所述的图像分类装置,其特征在于,所述确定模块具体用于:
根据公式
Figure FDA0003061627380000036
获取核空间测试样本图像特征φ(y)在每类训练样本特征之间的拟合误差,其中,
Figure FDA0003061627380000037
表示核空间测试样本特征φ(y)在每一类样本子空间的混合协同表示形式;
根据公式
Figure FDA0003061627380000041
确定所述拟合误差中最小值,并将所述拟合误差中最小的一类确定为待分类图像所属的类。
CN201811241312.6A 2018-10-24 2018-10-24 一种基于混合协同表示的分类器的图像分类方法和装置 Active CN109359694B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811241312.6A CN109359694B (zh) 2018-10-24 2018-10-24 一种基于混合协同表示的分类器的图像分类方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811241312.6A CN109359694B (zh) 2018-10-24 2018-10-24 一种基于混合协同表示的分类器的图像分类方法和装置

Publications (2)

Publication Number Publication Date
CN109359694A CN109359694A (zh) 2019-02-19
CN109359694B true CN109359694B (zh) 2021-07-02

Family

ID=65346541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811241312.6A Active CN109359694B (zh) 2018-10-24 2018-10-24 一种基于混合协同表示的分类器的图像分类方法和装置

Country Status (1)

Country Link
CN (1) CN109359694B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113378942B (zh) * 2021-06-16 2022-07-01 中国石油大学(华东) 基于多头特征协作的小样本图像分类方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101632067A (zh) * 2007-03-12 2010-01-20 思杰系统有限公司 用于终端用户体验监控的系统和方法
CN105740908A (zh) * 2016-01-31 2016-07-06 中国石油大学(华东) 基于核空间自解释稀疏表示的分类器设计方法
CN105760821A (zh) * 2016-01-31 2016-07-13 中国石油大学(华东) 基于核空间的分类聚集稀疏表示的人脸识别方法
CN105868796A (zh) * 2016-04-26 2016-08-17 中国石油大学(华东) 基于核空间的线性鉴别稀疏表示分类器的设计方法
CN108229259A (zh) * 2016-12-22 2018-06-29 扬州大学 一种基于协同表示分类的迭代优化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6519355B2 (en) * 2001-03-28 2003-02-11 Alan C. Nelson Optical projection imaging system and method for automatically detecting cells having nuclear and cytoplasmic densitometric features associated with disease

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101632067A (zh) * 2007-03-12 2010-01-20 思杰系统有限公司 用于终端用户体验监控的系统和方法
CN105740908A (zh) * 2016-01-31 2016-07-06 中国石油大学(华东) 基于核空间自解释稀疏表示的分类器设计方法
CN105760821A (zh) * 2016-01-31 2016-07-13 中国石油大学(华东) 基于核空间的分类聚集稀疏表示的人脸识别方法
CN105868796A (zh) * 2016-04-26 2016-08-17 中国石油大学(华东) 基于核空间的线性鉴别稀疏表示分类器的设计方法
CN108229259A (zh) * 2016-12-22 2018-06-29 扬州大学 一种基于协同表示分类的迭代优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Nuclear Norm-Based 2DLPP for Image Classification;Yuwu Lu;《IEEE TRANSACTIONS ON MULTIMEDIA》;20171130;第19卷(第11期);第2391-2403页 *
基于KL距离的KPCA人脸识别算法;王春芳 等;《计算机工程与应用》;20160707;第52卷(第9期);第130-134页 *

Also Published As

Publication number Publication date
CN109359694A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
CN108564129B (zh) 一种基于生成对抗网络的轨迹数据分类方法
WO2019015246A1 (zh) 图像特征获取
CN112528025A (zh) 基于密度的文本聚类方法、装置、设备及存储介质
CN109919252B (zh) 利用少数标注图像生成分类器的方法
CN111667022A (zh) 用户数据处理方法、装置、计算机设备和存储介质
CN109993236A (zh) 基于one-shot Siamese卷积神经网络的少样本满文匹配方法
CN111401443B (zh) 基于多特征提取的宽度学习系统
CN112529638B (zh) 基于用户分类和深度学习的服务需求动态预测方法及系统
CN115546525A (zh) 多视图聚类方法、装置、电子设备及存储介质
CN112347910A (zh) 一种基于多模态深度学习的信号指纹识别方法
CN112541530B (zh) 针对聚类模型的数据预处理方法及装置
CN109359694B (zh) 一种基于混合协同表示的分类器的图像分类方法和装置
CN114358279A (zh) 图像识别网络模型剪枝方法、装置、设备及存储介质
CN112989843A (zh) 意图识别方法、装置、计算设备及存储介质
CN111652238B (zh) 一种多模型集成方法及系统
US11875555B2 (en) Applying self-confidence in multi-label classification to model training
CN113177602B (zh) 图像分类方法、装置、电子设备和存储介质
CN112463964B (zh) 文本分类及模型训练方法、装置、设备及存储介质
Ärje et al. Breaking the curse of dimensionality in quadratic discriminant analysis models with a novel variant of a Bayes classifier enhances automated taxa identification of freshwater macroinvertebrates
CN113837271A (zh) 一种基于特征选择的分类改进算法
Dani et al. Survey on the use of CNN and Deep Learning in Image Classification
KR20190078710A (ko) 이미지 분류 시스템 및 방법
CN115329983A (zh) 基于置信度分析的黑盒模型分类方法
CN111340111B (zh) 基于小波核极限学习机识别人脸图像集方法
CN116912921B (zh) 表情识别方法、装置、电子设备及可读存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant