CN109359423B - 一种快速确定矩形波导法兰3阶无源互调产物电平的方法 - Google Patents

一种快速确定矩形波导法兰3阶无源互调产物电平的方法 Download PDF

Info

Publication number
CN109359423B
CN109359423B CN201811369311.XA CN201811369311A CN109359423B CN 109359423 B CN109359423 B CN 109359423B CN 201811369311 A CN201811369311 A CN 201811369311A CN 109359423 B CN109359423 B CN 109359423B
Authority
CN
China
Prior art keywords
rectangular waveguide
passive intermodulation
flange
waveguide flange
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811369311.XA
Other languages
English (en)
Other versions
CN109359423A (zh
Inventor
李东
何鋆
王琪
封国宝
胡天存
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Xian Institute of Space Radio Technology
Original Assignee
Beijing Institute of Technology BIT
Xian Institute of Space Radio Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT, Xian Institute of Space Radio Technology filed Critical Beijing Institute of Technology BIT
Priority to CN201811369311.XA priority Critical patent/CN109359423B/zh
Publication of CN109359423A publication Critical patent/CN109359423A/zh
Application granted granted Critical
Publication of CN109359423B publication Critical patent/CN109359423B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Waveguides (AREA)

Abstract

本发明公开的一种快速确定矩形波导法兰3阶无源互调产物电平的方法,属于微波部件无源互调领域。本发明实现方法为:步骤1:将矩形波导法兰接触面等效为金属‑绝缘层‑金属结构,确定矩形波导法兰接触面两侧的电势差;步骤2:利用矩形波导尺寸、法兰接触面积以及接触面两侧的电势差确定矩形波导法兰接触面产生的3阶非线性电流;步骤3:利用载波频率、矩形波导尺寸以及3阶非线性电流,确定矩形波导法兰3阶无源互调产物的电平。本发明在无需提前获取无源互调低阶产物和表面形貌参数测量值的情况下,通过简单计算获得矩形波导法兰的3阶无源互调产物电平,因而能够大幅提高矩形波导法兰无源互调问题的解决效率,降低成本。

Description

一种快速确定矩形波导法兰3阶无源互调产物电平的方法
技术领域
本发明涉及一种快速确定矩形波导法兰3阶无源互调产物电平的方法,可快速分析波导尺寸、接触面积和载波频率对3阶无源互调产物电平的影响,主要针对微波通信系统中大功率波导法兰的设计和制造,属于微波部件无源互调领域。
背景技术
目前随着发射功率的持续增大和接收灵敏度的持续提高,空间卫星通信系统和地面移动通信系统对微波部件无源互调的指标要求越来越高。波导法兰是大功率信号的通道,并且还包含金属-金属接触这一极易产生无源互调的结构,它的无源互调指标受到了严格的关注和限定。波导法兰产品的无源互调性是否符合要求,是以实际测试值作为判断标准。在产品制造好后,如果实验检测发现无源互调指标不满足要求,则需要分析可能的原因,重新设计、制造和再检测,造成无源互调问题的解决周期长、生产成本高。如果在设计时就能够对波导法兰的无源互调进行预测,则会大幅降低无源互调问题的解决成本。
目前国际上有关矩形波导法兰无源互调产物电平的预测方法主要有两种。一种是利用低阶产物的电平预测高阶产物的电平,常用的方法主要有幂级数法和Volterra级数法。这种方法能够有效预测矩形波导法兰的高阶无源互调产物电平,但缺点是需要提前通过实验检测获得部件低阶(含3阶)互调产物电平的测量值。另一种是建立非线性电路模型,在获得非线性电路阻抗的基础上计算得到波导法兰接触间的电势差(压降)。再结合具体的非线性物理效应如量子隧穿或热电子发射,获得低阶无源互调产物的电平。这种方法可以预测无源互调产物的电平,但缺点是同样需要提前获得产品法兰的表面形貌参数,并且引入参数多,计算过程复杂。
发明内容
针对现有无源互调预测方法中的缺陷,本发明要解决的技术问题是提供一种快速确定矩形波导法兰3阶无源互调产物电平的方法,在无需提前获取无源互调低阶产物和表面形貌参数测量值的情况下,通过简单计算获得矩形波导法兰的3阶无源互调产物电平,因而能够大幅提高矩形波导法兰无源互调问题的解决效率,降低成本。所述矩形波导法兰3阶无源互调产物电平影响分析包括快速分析波导尺寸、接触面积和载波频率对3阶无源互调产物电平的影响。
本发明公开的一种快速确定矩形波导法兰3阶无源互调产物电平的方法,包括如下步骤:
步骤1:将矩形波导法兰接触面等效为金属-绝缘层-金属结构,确定矩形波导法兰接触面两侧的电势差;
将矩形波导法兰接触面等效为金属-绝缘层-金属结构,根据电流连续性方程获得矩形波导法兰接触面两侧的电势差V;
Figure BDA0001869405080000021
其中,
Figure BDA0001869405080000022
a和b分别为矩形波导宽边和窄边长度,P为载波功率,ω为载波频率,w为法兰接触面的宽度,H为绝缘层厚度,ε为介电常数,μ为磁导率。
步骤2:利用矩形波导尺寸、法兰接触面积以及接触面两侧的电势差确定矩形波导法兰接触面产生的3阶非线性电流;
根据量子隧穿效应,并利用矩形波导尺寸、法兰接触面积以及步骤1中获得的电势差V,确定矩形波导法兰接触面产生的3阶非线性电流I3
Figure BDA0001869405080000023
其中,
Figure BDA0001869405080000024
n=100,q为单位电荷量,h为普朗克常数,
Figure BDA0001869405080000025
为势垒高度,m为电子静止质量;
步骤3:利用载波频率、矩形波导尺寸以及3阶非线性电流,确定矩形波导法兰3阶无源互调产物的电平;
根据步骤2中获得的3阶非线性电流I3,并利用载波频率和矩形波导尺寸,确定矩形波导法兰3阶无源互调产物的电平P3
Figure BDA0001869405080000026
还包括步骤4:根据确定的3阶无源互调产物的电平,指导设计并制造满足无源互调指标要求的矩形波导法兰;
应用步骤3中确定的无源互调产物的电平P3,能够检测矩形波导法兰的无源互调指标是否符合工程要求,因而能够指导工程结构的设计,大幅提高波导法兰无源互调问题的解决效率,降低成本。在低无源互调矩形波导法兰设计和制造方面具有广阔应用前景。
有益效果:
1、本发明公开的一种快速确定矩形波导法兰3阶无源互调产物电平的方法,采用金属-绝缘层-金属结构等效矩形波导法兰金属-金属接触的微观结构,相比于传统的等效电路方法,通过简单地求解电流连续性方程就可获得矩形波导法兰接触面两侧的电势差。
2、本发明公开的一种快速确定矩形波导法兰3阶无源互调产物电平的方法,只需设定绝缘层的厚度和势垒高度两个参数,相比于传统的考虑金属表面微观形貌参数和网格剖分的方法,大幅减少了计算参数,提高了计算效率。
3、本发明公开的一种快速确定矩形波导法兰3阶无源互调产物电平的方法,计算流程简单,本领域技术人员按照本发明的方法计算,可快速准确地确定矩形波导法兰3阶无源互调产物电平,进而提高工程中无源互调问题的解决效率。
附图说明
图1为本发明的一种快速确定矩形波导法兰3阶无源互调产物电平的方法流程示意图。
具体实施方式
为了更好的说明本发明的目的和优点,下面结合附图和实例对发明内容做进一步说明。
实施例:FDM22、FDM40、FDM84和FDM180四种波导法兰。
本实施例公开一种快速确定矩形波导法兰3阶无源互调产物电平的方法,包括如下步骤:
步骤1:将矩形波导法兰接触面等效为金属-绝缘层-金属结构,确定矩形波导法兰接触面两侧的电势差;
将矩形波导法兰接触面等效为金属-绝缘层-金属结构,根据电流连续性方程获得矩形波导法兰接触面两侧的电势差V;
Figure BDA0001869405080000041
其中,
Figure BDA0001869405080000042
H=1×10-9m,μ=1.256637×10-6H/m,ε=8.854188×10-12F/m,矩形波导宽边a和窄边b、载波功率P、载波频率ω和法兰接触面宽度w如表1所示。
表1波导法兰和载波的参数
法兰型号 FDM22 FDM40 FDM84 FDM180
宽边a(mm) 109.22 58.17 28.499 12.954
窄边b(mm) 54.61 29.08 12.624 6.477
载波功率P(dBm) 43 43 43 43
载波频率ω(GHz) 2.2 3.6 7.2 15
接触面宽度w(mm) 2.06 1.63 1.63 1.02
步骤2:利用矩形波导尺寸、法兰接触面积以及接触面两侧的电势差确定矩形波导法兰接触面产生的3阶非线性电流;
根据量子隧穿效应,并利用矩形波导尺寸、法兰接触面积以及步骤1中获得的电势差V,确定矩形波导法兰接触面产生的3阶非线性电流I3
Figure BDA0001869405080000043
其中,
Figure BDA0001869405080000044
n=100,q=1.602177×10-19C,h=6.626069×10-34J/s,
Figure BDA0001869405080000045
m=9.109383×10-31kg;
步骤3:利用载波频率、矩形波导尺寸以及3阶非线性电流,确定矩形波导法兰3阶无源互调产物的电平;
根据步骤2中获得的3阶非线性电流I3,并利用载波频率和矩形波导尺寸,确定矩形波导法兰3阶无源互调产物的电平P3
Figure BDA0001869405080000046
利用表1所示的载波频率、矩形波导尺寸以及步骤2中获得的3阶非线性电流I3,由式(6)确定FDM22、FDM40、FDM84和FDM180波导法兰3阶无源互调产物的电平分别为-189.2dBm、-166.8dBm、-150.4dBm和-128.1dBm。
步骤4:根据确定的3阶无源互调产物的电平,指导设计并制造满足无源互调指标要求的矩形波导法兰。
以工程中要求的3阶无源互调不高于-130dBm情况为例(双载波功率均为43dBm),步骤3中确定的FDM22、FDM40、FDM84和FDM180波导法兰3阶无源互调产物的电平P3分别为-189.2dBm、-166.8dBm、-150.4dBm和-128.1dBm。只有FDM180波导法兰的3阶无源互调产物的电平超过了-130dBm的工程要求,所以在设计和制造时应选择FDM22、FDM40或FDM84波导法兰。
本实施例公开的一种快速确定矩形波导法兰3阶无源互调产物电平的方法,采用金属-绝缘层-金属结构等效矩形波导法兰金属-金属接触的微观结构,只需设定绝缘层的厚度和势垒高度两个参数,相比于传统的考虑金属表面微观形貌参数和网格剖分的方法,能够大幅减少计算参数,提高计算效率,本领域技术人员按照本发明的方法计算,可快速准确地确定矩形波导法兰3阶无源互调产物电平,进而提高工程中无源互调问题的解决效率。
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种快速确定矩形波导法兰3阶无源互调产物电平的方法,其特征在于:包括如下步骤,
步骤1:将矩形波导法兰接触面等效为金属-绝缘层-金属结构,确定矩形波导法兰接触面两侧的电势差;
步骤2:利用矩形波导尺寸、法兰接触面积以及接触面两侧的电势差确定矩形波导法兰接触面产生的3阶非线性电流;
步骤3:利用载波频率、矩形波导尺寸以及3阶非线性电流,确定矩形波导法兰3阶无源互调产物的电平;
步骤1具体实现方法为,
将矩形波导法兰接触面等效为金属-绝缘层-金属结构,根据电流连续性方程获得矩形波导法兰接触面两侧的电势差V;
Figure FDA0002558570280000011
其中,
Figure FDA0002558570280000012
a和b分别为矩形波导宽边和窄边长度,P为载波功率,ω为载波频率,w为法兰接触面的宽度,H为绝缘层厚度,ε为介电常数,μ为磁导率。
2.如权利要求1所述的一种快速确定矩形波导法兰3阶无源互调产物电平的方法,其特征在于:还包括步骤4:根据确定的3阶无源互调产物的电平,指导设计并制造满足无源互调指标要求的矩形波导法兰。
3.如权利要求2所述的一种快速确定矩形波导法兰3阶无源互调产物电平的方法,其特征在于:步骤2具体实现方法为,
根据量子隧穿效应,并利用矩形波导尺寸、法兰接触面积以及步骤1中获得的电势差V,确定矩形波导法兰接触面产生的3阶非线性电流I3
Figure FDA0002558570280000013
其中,
Figure FDA0002558570280000014
q为单位电荷量,h为普朗克常数,
Figure FDA0002558570280000015
为势垒高度,m为电子静止质量,n为常数。
4.如权利要求3所述的一种快速确定矩形波导法兰3阶无源互调产物电平的方法,其特征在于:步骤3具体实现方法为,
根据步骤2中获得的3阶非线性电流I3,并利用载波频率和矩形波导尺寸,确定矩形波导法兰3阶无源互调产物的电平P3
Figure FDA0002558570280000021
5.如权利要求3所述的一种快速确定矩形波导法兰3阶无源互调产物电平的方法,其特征在于:公式(2)中n=100。
CN201811369311.XA 2018-11-16 2018-11-16 一种快速确定矩形波导法兰3阶无源互调产物电平的方法 Expired - Fee Related CN109359423B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811369311.XA CN109359423B (zh) 2018-11-16 2018-11-16 一种快速确定矩形波导法兰3阶无源互调产物电平的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811369311.XA CN109359423B (zh) 2018-11-16 2018-11-16 一种快速确定矩形波导法兰3阶无源互调产物电平的方法

Publications (2)

Publication Number Publication Date
CN109359423A CN109359423A (zh) 2019-02-19
CN109359423B true CN109359423B (zh) 2020-10-23

Family

ID=65345537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811369311.XA Expired - Fee Related CN109359423B (zh) 2018-11-16 2018-11-16 一种快速确定矩形波导法兰3阶无源互调产物电平的方法

Country Status (1)

Country Link
CN (1) CN109359423B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841276A (zh) * 2012-08-24 2012-12-26 西安空间无线电技术研究所 一种测试金属网无源互调的方法
CN105069247A (zh) * 2015-08-21 2015-11-18 西安空间无线电技术研究所 一种基于时域有限差分的微波部件无源互调数值分析方法
CN105069206A (zh) * 2015-07-24 2015-11-18 西安空间无线电技术研究所 一种确定微波部件的无源互调产物的方法
CN106093645A (zh) * 2016-06-17 2016-11-09 西安空间无线电技术研究所 确定微波部件宽功率变化范围高阶无源互调电平的方法
CN106156440A (zh) * 2016-07-22 2016-11-23 西安空间无线电技术研究所 一种快速确定腔体滤波器无源互调电平的方法
CN107154826A (zh) * 2017-04-28 2017-09-12 西安空间无线电技术研究所 一种确定大功率微波部件高阶无源互调电平的方法
US9929476B2 (en) * 2015-05-07 2018-03-27 Commscope Technologies Llc Cable end PIM block for soldered connector and cable interconnection
CN108649306A (zh) * 2018-03-28 2018-10-12 西安空间无线电技术研究所 一种低无源互调波导法兰及设计方法
CN108777585A (zh) * 2018-02-09 2018-11-09 香港梵行科技有限公司 一种自适应抵消无线收发系统中无源互调信号的装置及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8400318B2 (en) * 2007-09-24 2013-03-19 John Mezzalingua Associates, Inc. Method for determining electrical power signal levels in a transmission system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841276A (zh) * 2012-08-24 2012-12-26 西安空间无线电技术研究所 一种测试金属网无源互调的方法
US9929476B2 (en) * 2015-05-07 2018-03-27 Commscope Technologies Llc Cable end PIM block for soldered connector and cable interconnection
CN105069206A (zh) * 2015-07-24 2015-11-18 西安空间无线电技术研究所 一种确定微波部件的无源互调产物的方法
CN105069247A (zh) * 2015-08-21 2015-11-18 西安空间无线电技术研究所 一种基于时域有限差分的微波部件无源互调数值分析方法
CN106093645A (zh) * 2016-06-17 2016-11-09 西安空间无线电技术研究所 确定微波部件宽功率变化范围高阶无源互调电平的方法
CN106156440A (zh) * 2016-07-22 2016-11-23 西安空间无线电技术研究所 一种快速确定腔体滤波器无源互调电平的方法
CN107154826A (zh) * 2017-04-28 2017-09-12 西安空间无线电技术研究所 一种确定大功率微波部件高阶无源互调电平的方法
CN108777585A (zh) * 2018-02-09 2018-11-09 香港梵行科技有限公司 一种自适应抵消无线收发系统中无源互调信号的装置及方法
CN108649306A (zh) * 2018-03-28 2018-10-12 西安空间无线电技术研究所 一种低无源互调波导法兰及设计方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
《Analytic Passive Intermodulation Model for Flange Connection Based on Metallic Contact Nonlinearity Approximation》;Xiaolong Zhao等;《IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES》;20170731;第65卷(第7期);第2279-2287页 *
《Calculation of Passive Intermodulation between Rough Waveguide Flanges Induced by Quantum Tunneling》;Ming Ye等;《2010 Asia-Pacific International Symposium on Electromagnetic Compatibility》;20100416;第1112-1115页 *
《Passive-Intermodulation Analysis Between Rough Rectangular Waveguide Flanges》;Carlos Vicente等;《IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES》;20050831;第53卷(第8期);第2515-2525页 *
《微带线热致无源互调产物计算模型》;何鋆 等;《西安电子科技大学学报(自然科学版)》;20170630;第44卷(第3期);第120-126页 *
《微波波导法兰MM结构PIM的分析与计算》;张淑娥 等;《光通信研究》;20170831(第1期);第48-51页 *
《微波波导连接器无源互调的研究》;孙丽红;《中国优秀硕士学位论文全文数据库 信息科技辑》;20180315(第3期);正文第1-43页 *

Also Published As

Publication number Publication date
CN109359423A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
Anza et al. Prediction of multipactor breakdown for multicarrier applications: The quasi-stationary method
Faruk et al. On the study of empirical path loss models for accurate prediction of TV signal for secondary users
CN104796091B (zh) 基于分段记忆多项式的功率放大器建模及数字预失真方法
Faruk et al. Error bounds of empirical path loss models at VHF/UHF bands in Kwara State, Nigeria
WO2022022486A1 (zh) 用于基站节能的处理方法和处理装置
CN105069247A (zh) 一种基于时域有限差分的微波部件无源互调数值分析方法
CN109359423B (zh) 一种快速确定矩形波导法兰3阶无源互调产物电平的方法
CN113179140A (zh) 一种基于遮挡物衰减因子的高频段信道建模方法及装置
Dao et al. Rain fade slope model in satellite path based on data measured in heavy rain zone
CN103675611A (zh) 管型绝缘母线局部放电检测中的采集点定位方法和系统
Ghanim et al. Rain attenuation statistics over 5G millimetre wave links in Malaysia
CN117113752A (zh) 高海拔换流阀放电击穿电压仿真计算方法、系统、终端及介质
Faruk et al. Optimization of Davidson Model based on RF measurement conducted in UHF/VHF bands
CN112018479B (zh) 通讯用环行器无源交调抑制方法
Michel et al. Optimization of Okumura Hata Model in 800MHz based on Newton Second Order algorithm. Case of Yaoundé, Cameroon
CN103646968B (zh) 一种基于电容结构的hemt栅泄漏电流分离结构与方法
Patzold et al. A spatial simulation model for shadow fading processes in mobile radio channels
US20150341868A1 (en) Power adjustment method and apparatus based on low delay power detection before dpd
Mendes et al. GSM downlink spectrum occupancy modeling
Yan et al. Predicting the Power Spectrum of Amplified OFDM Signals Using Higher‐Order Intercept Points
CN112969193A (zh) 无线网络的干扰确定方法、装置及设备
CN102520322A (zh) 一种gis局部放电外置式传感器
Nouri et al. Global modeling of millimeter-wave transistors: Analysis of electromagnetic-wave propagation effects
CN202421426U (zh) 一种gis局部放电外置式传感器
Sung et al. Skew log-normal channel model for indoor cooperative localization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201023

Termination date: 20211116