CN109358328A - Polar Coordinate Format Imaging Method for Bistatic Forward Looking SAR on Mobile Platforms - Google Patents
Polar Coordinate Format Imaging Method for Bistatic Forward Looking SAR on Mobile Platforms Download PDFInfo
- Publication number
- CN109358328A CN109358328A CN201811310156.4A CN201811310156A CN109358328A CN 109358328 A CN109358328 A CN 109358328A CN 201811310156 A CN201811310156 A CN 201811310156A CN 109358328 A CN109358328 A CN 109358328A
- Authority
- CN
- China
- Prior art keywords
- coordinate
- wavenumber
- calculate
- wavenumber spectrum
- polar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 42
- 238000001228 spectrum Methods 0.000 claims abstract description 37
- 238000012937 correction Methods 0.000 claims abstract description 24
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000013507 mapping Methods 0.000 claims abstract description 13
- 238000009825 accumulation Methods 0.000 claims abstract description 12
- 238000012952 Resampling Methods 0.000 claims abstract description 11
- 230000009466 transformation Effects 0.000 claims abstract description 9
- 230000006835 compression Effects 0.000 claims abstract description 4
- 238000007906 compression Methods 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims description 16
- 238000005070 sampling Methods 0.000 claims description 14
- 238000005452 bending Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 5
- 238000004422 calculation algorithm Methods 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 7
- 238000002592 echocardiography Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 229910015234 MoCo Inorganic materials 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/904—SAR modes
- G01S13/9058—Bistatic or multistatic SAR
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9004—SAR image acquisition techniques
- G01S13/9011—SAR image acquisition techniques with frequency domain processing of the SAR signals in azimuth
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/904—SAR modes
- G01S13/9043—Forward-looking SAR
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/904—SAR modes
- G01S13/9052—Spotlight mode
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开一种机动平台双基地前视聚束合成孔径雷达的极坐标格式成像方法,采用波数谱支撑域仿射变换的方法,将MP‑BFSAR的平行四边形波数谱支撑域变换为水平准矩形,然后通过距离向chirp‑z变换实现波数谱距离向极坐标到直角坐标的重采样,之后进行距离压缩和场景中心运动补偿,再在方位向上采用升采样映射积累的方法实现波数谱方位向极坐标到直角坐标的重采样;然后进行二维逆傅里叶变换,得到粗成像结果;最后通过散焦校正得到最终的成像结果;本发明所收集的波数谱的利用率相比于现有的方法明显提高。
The invention discloses a polar coordinate imaging method for a bistatic forward-looking beamforming synthetic aperture radar on a mobile platform. The method of affine transformation of the wavenumber spectrum support domain is adopted to transform the parallelogram wavenumber spectrum support domain of MP-BFSAR into a horizontal quasi-rectangle. , and then realize the resampling of the wavenumber spectrum from polar coordinates to Cartesian coordinates through distance chirp‑z transformation, and then perform distance compression and scene center motion compensation, and then use the method of upsampling mapping accumulation in the azimuth direction to realize the wavenumber spectrum azimuth polar Resampling from coordinates to Cartesian coordinates; then perform two-dimensional inverse Fourier transform to obtain rough imaging results; finally obtain final imaging results through defocus correction; the utilization rate of the collected wavenumber spectrum in the present invention is compared with the existing method is significantly improved.
Description
技术领域technical field
本发明属于双基地前视合成孔径雷达(Bistatic Forward-looking SyntheticAperture Radar,BFSAR)成像领域,特别涉及一种机动平台双基地前视聚束合成孔径雷达极坐标格式算法。The invention belongs to the field of bistatic forward-looking synthetic aperture radar (Bistatic Forward-looking Synthetic Aperture Radar, BFSAR) imaging, and particularly relates to a polar coordinate format algorithm of a mobile platform bistatic forward-looking beamforming synthetic aperture radar.
背景技术Background technique
由于发射站和接收站的空间分离性,双基地SAR突破了SAR的前视约束,使接收平台能够在飞行方向上对前视地形进行成像,这种独特的特性使得BFSAR成为一种很有前景的传感技术。BFSAR能够提供全天时、全天候的前视高分辨率图像。Due to the spatial separation of the transmitting station and the receiving station, bistatic SAR breaks through the forward-looking constraint of SAR, enabling the receiving platform to image the forward-looking terrain in the flight direction. This unique feature makes BFSAR a promising sensing technology. BFSAR can provide all-day, all-weather forward-looking high-resolution images.
由于其双基地前视配置,MP-BFSAR的回波表现出严重的二维空间误差,其波数谱支撑区域通常是平行四边形而不是矩形,因此很难有效地使用所收集的波数谱;由于MP-BFSAR波束通常工作在模式,以期在许多应用中持续获得感兴趣区域的高分辨率图像,这导致回波的复杂时频特性,如多普勒混叠。Due to its bistatic forward-looking configuration, the echoes of MP-BFSAR exhibit severe two-dimensional spatial errors, and its wavenumber spectrum support region is usually a parallelogram rather than a rectangle, making it difficult to efficiently use the collected wavenumber spectrum; due to MP -BFSAR beams are often operated in mode to consistently obtain high-resolution images of the region of interest in many applications, which leads to complex time-frequency properties of the echoes such as Doppler aliasing.
PFA算法(Parabola fitting algorithm:抛物线拟合算法)处理k空间(即波数域)中的回波。由于其独特的特性,如无模式引起的多普勒混叠、低平台轨迹限制和低计算复杂性等,所以PFA适用于处理SAR数据。目前PFA已广泛应用于单基地SAR和双基地SAR。The PFA algorithm (Parabola fitting algorithm: parabola fitting algorithm) deals with echoes in k-space (ie, wavenumber domain). PFA is suitable for processing SAR data due to its unique properties such as modeless Doppler aliasing, low platform trajectory constraints, and low computational complexity. At present, PFA has been widely used in monostatic SAR and bistatic SAR.
由于PFA采用平面波假设,但是实际波前存在弯曲,当成像场景较大时,需进行波前弯曲校正,对于大场景可能是无效的。Since the PFA adopts the plane wave assumption, but the actual wavefront is curved, when the imaging scene is large, the wavefront curvature correction needs to be performed, which may be invalid for the large scene.
文献“Polar format algorithm for bistatic SAR,IEEETrans.Aerosp.Electron.Syst.,vol.40,no.4,pp.1147–1159,Oct.2004”和“Space-variant filtering for wavefront curvature correction in polar formattedbistatic SAR image,IEEE Trans.Aerosp.Electron.Syst.,vol.48,no.2,pp.940–950,Apr.2012”提出了k-空间坐标轴旋转的方法,将倾斜的平行四边形的波数谱支撑域转变成水平的平行四边形,然而,仅当支撑区域是矩形或准矩形时,k空间轴旋转才有效。因此,不适用于支撑区域是平行四边形的MP-BFSAR;文献“Polar format algorithm wavefrontcurvature compensation under arbitrary radar flight path,IEEE Geosci.RemoteSens.Lett.,vol.9,no.3,pp.526–530,May 2012”中,为了补偿由波前弯曲引起的相位误差,提出了一种空变波前弯曲补偿滤波器,它利用了极坐标到直角坐标重采样操作的内同性特性,然而,空变波前弯曲补偿滤波器是隐含的,其计算涉及二维插值,这意味着它在实践中不方便且效率低;文献“Space-variant filtering for wavefront curvaturecorrection in polar formatted bistatic SAR image,IEEETrans.Aerosp.Electron.Syst.,vol.48,no.2,pp.940–950,Apr.2012”中,提出了一种解析的空变波前弯曲补偿滤波器,然而,它是通过假设平台以匀速直线运动轨迹移动而得出的,因此它不适用于MP-BFSAR,因为MP-BFSAR的运动轨迹是高度非线性的。Documents "Polar format algorithm for bistatic SAR, IEEETrans.Aerosp.Electron.Syst., vol.40, no.4, pp.1147–1159, Oct.2004" and "Space-variant filtering for wavefront curvature correction in polar formatted bistatic SAR image, IEEE Trans.Aerosp.Electron.Syst., vol.48, no.2, pp.940–950, Apr.2012" proposed a k-space coordinate axis rotation method to support the wavenumber spectrum of the inclined parallelogram The domain is transformed into a horizontal parallelogram, however, the k-space axis rotation is only valid if the support region is rectangular or quasi-rectangular. Therefore, it is not suitable for MP-BFSAR where the support region is a parallelogram; the paper "Polar format algorithm wavefrontcurvature compensation under arbitrary radar flight path, IEEE Geosci.RemoteSens.Lett., vol.9, no.3, pp.526–530, May 2012", in order to compensate for the phase error caused by wavefront bending, a space-varying wavefront bending compensation filter is proposed, which exploits the internal homogeneity of the polar-to-rectangular resampling operation, however, the space-varying wavefront The forward curvature compensation filter is implicit and its calculation involves two-dimensional interpolation, which means it is inconvenient and inefficient in practice; the paper "Space-variant filtering for wavefront curvaturecorrection in polar formatted bistatic SAR image, IEEETrans.Aerosp. Electron.Syst.,vol.48,no.2,pp.940–950,Apr.2012", an analytical space-varying wavefront bending compensation filter is proposed, however, it is made by assuming that the platform moves in a straight line with uniform velocity Therefore, it is not suitable for MP-BFSAR because the motion trajectory of MP-BFSAR is highly nonlinear.
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本发明提出一种机动平台双基地前视SAR的极坐标格式成像方法,采用KAM的方法,将平行四边形的波数谱支撑域变换到水平准矩形,使得收集的波数谱的利用率明显提高。In order to solve the above technical problems, the present invention proposes a polar coordinate imaging method for bistatic forward-looking SAR on a mobile platform. The KAM method is used to transform the parallelogram wavenumber spectrum support domain into a horizontal quasi-rectangle, so that the collected wavenumber spectrum has The utilization rate has increased significantly.
本发明采用的技术方案为:机动平台双基地前视SAR的极坐标格式成像方法,采用波数谱支撑域仿射变换(k-set affine mapping,KAM)的方法,将MP-BFSAR的平行四边形波数谱支撑域变换为水平准矩形,然后通过距离向chirp-z变换(Chirp-Z Transform,CZT)实现波数谱距离向极坐标到直角坐标的重采样,之后进行距离压缩和场景中心运动补偿,再在方位向上采用升采样映射积累(Upsampling mapping accumulation,UMA)的方法实现波数谱方位向极坐标到直角坐标的重采样;然后进行二维逆傅里叶变换(Inverse fastfourier transform,IFFT),得到粗成像结果;最后通过散焦校正得到最终的成像结果。The technical scheme adopted by the present invention is as follows: a polar coordinate format imaging method of a bistatic forward-looking SAR on a mobile platform, and a method of affine transformation (k-set affine mapping, KAM) in the support domain of the wave number spectrum is adopted to convert the parallelogram wave number of the MP-BFSAR The spectral support domain is transformed into a horizontal quasi-rectangle, and then the wavenumber spectrum is resampled from polar coordinates to rectangular coordinates by distance chirp-z transform (Chirp-Z Transform, CZT), and then distance compression and scene center motion compensation are performed. The Upsampling mapping accumulation (UMA) method is used in the azimuth direction to realize the resampling of the wavenumber spectrum from polar coordinates to rectangular coordinates; The imaging result; finally, the final imaging result is obtained through defocus correction.
波数谱仿射变换(KAM),具体过程如下:Wavenumber Spectral Affine Transform (KAM), the specific process is as follows:
A1、计算回波时延梯度;A1. Calculate echo delay gradient;
A2、计算回波多普勒梯度;A2. Calculate echo Doppler gradient;
A3、根据回波时延梯度与回波多普勒梯度计算仿射矩阵及其逆矩阵;A3. Calculate the affine matrix and its inverse matrix according to the echo delay gradient and the echo Doppler gradient;
A4、计算x坐标和y坐标方向的波数;A4. Calculate the wavenumber in the x-coordinate and y-coordinate directions;
A5、根据x坐标和y坐标方向的波数以及仿射矩阵,计算KAM后波数分布范围;A5. Calculate the wavenumber distribution range after KAM according to the wavenumbers in the x-coordinate and y-coordinate directions and the affine matrix;
A6、根据波数分布范围与仿射矩阵的逆矩阵,计算图像的坐标范围。A6. Calculate the coordinate range of the image according to the wavenumber distribution range and the inverse matrix of the affine matrix.
距离向CZT实现波数谱距离向极坐标到直角坐标的重采样;具体为:The distance CZT realizes the resampling of the wavenumber spectrum from polar coordinates to rectangular coordinates; specifically:
B1、回波信号建模;B1, echo signal modeling;
B2、对步骤B1建模的回波信号进行距离向CZT;B2. Perform distance CZT on the echo signal modeled in step B1;
方位向升采样映射积累,具体包括以下过程:Azimuth upsampling map accumulation, including the following processes:
C1、将步骤B2所得信号方位向升采样Nu倍;C1, upsampling the azimuth direction of the signal obtained in step B2 by Nu times;
C2、对经步骤C1之后的信号进行方位向信号积累。C2. Perform azimuth signal accumulation on the signal after step C1.
方位向信号积累Azimuth signal accumulation
C2、计算从η轴到kq轴的映射关系;C2. Calculate the mapping relationship from the n-axis to the k and q -axis;
C3、将步骤C1得到的信号按照步骤C2的映射关系进行积累。C3. Accumulate the signals obtained in step C1 according to the mapping relationship in step C2.
通过散焦校正得到最终的成像结果,具体包括以下过程:The final imaging result is obtained through defocus correction, which includes the following processes:
D1、计算波前弯曲导致的相位误差;D1. Calculate the phase error caused by wavefront bending;
D2、根据步骤D1的相位误差,计算计算波前弯曲导致的二次相位误差;D2, according to the phase error of step D1, calculate and calculate the secondary phase error caused by wavefront bending;
D3、根据二次相位误差构建散焦矫正滤波器;D3. Construct a defocus correction filter according to the secondary phase error;
D4、将粗成像结果划分为若干子图像;D4. Divide the coarse imaging result into several sub-images;
D5、将个子图像乘上步骤D3构建的散焦矫正滤波器进行散焦矫正;D5. Multiply the sub-images by the defocus correction filter constructed in step D3 to perform defocus correction;
D6、将步骤D5得到的所有散焦校正后的子图像进行拼合,得到最终成像结果。D6. Combine all the sub-images after defocus correction obtained in step D5 to obtain a final imaging result.
本发明的有益效果:本发明的方法,采用KAM的方法,将平行四边形的波数谱支撑域变换到水平准矩形,使得所收集的波数谱的利用率提高了约60%;由于CZT和UMA都能够通过傅里叶变换(Fast fourier transform,FFT)、IFFT和相位相乘高效实现,故本发明提出的PFA较为高效;本发明提出的解析的散焦校正滤波器相比现有的数值滤波器更加方便和高效,且本发明的散焦校正使得PFA算法能够适用于大的成像场景。Beneficial effects of the present invention: the method of the present invention adopts the KAM method to transform the support domain of the wavenumber spectrum of the parallelogram into a horizontal quasi-rectangle, so that the utilization rate of the collected wavenumber spectrum is increased by about 60%; It can be efficiently realized through Fourier transform (Fast fourier transform, FFT), IFFT and phase multiplication, so the PFA proposed by the present invention is more efficient; the analytical defocus correction filter proposed by the present invention is compared with the existing numerical filter. It is more convenient and efficient, and the defocus correction of the present invention enables the PFA algorithm to be suitable for large imaging scenes.
附图说明Description of drawings
图1为本发明方法的成像处理流程图;Fig. 1 is the imaging processing flow chart of the method of the present invention;
图2为本发明所述机动平台双基地SAR回波录取几何模型;Fig. 2 is the geometric model of the bistatic SAR echo recording of the mobile platform according to the present invention;
图3为KAM前后的波数谱支撑域;Figure 3 shows the wavenumber spectrum support domain before and after KAM;
其中,图3(a)为KAM之前的波数谱支撑域;图3(b)为KAM之后的波数谱支撑域;Among them, Figure 3(a) is the wavenumber spectrum support domain before KAM; Figure 3(b) is the wavenumber spectrum support domain after KAM;
图4为点目标的成像结果;Fig. 4 is the imaging result of point target;
图5为图4中点目标成像结果的放大等高图;Fig. 5 is the enlarged contour map of the imaging result of the point target in Fig. 4;
图6为面目标的成像结果。Figure 6 shows the imaging results of a surface target.
具体实施方式Detailed ways
为便于本领域技术人员理解本发明的技术内容,下面结合附图对本发明内容进一步阐释。In order to facilitate those skilled in the art to understand the technical content of the present invention, the content of the present invention will be further explained below with reference to the accompanying drawings.
如图1所示为本发明的方案流程图,包括:采用波数谱支撑域仿射变换(k-setaffine mapping,KAM)的方法,将MP-BFSAR的平行四边形波数谱支撑域变换为水平准矩形,然后通过距离向chirp-z变换(Chirp-Z Transform,CZT)实现波数谱距离向极坐标到直角坐标的重采样,之后进行距离压缩和场景中心运动补偿,再在方位向上采用升采样映射积累(Upsampling mapping accumulation,UMA)的方法实现波数谱方位向极坐标到直角坐标的重采样;然后进行二维逆傅里叶变换(Inverse fast fourier transform,IFFT),得到粗成像结果;最后通过散焦校正得到最终的成像结果。As shown in FIG. 1 is the scheme flow chart of the present invention, including: adopting the method of wavenumber spectrum support domain affine transformation (k-setaffine mapping, KAM), the parallelogram wavenumber spectrum support domain of MP-BFSAR is transformed into a horizontal quasi-rectangle , and then realize the resampling of the wavenumber spectrum from polar coordinates to rectangular coordinates by distance chirp-z transform (Chirp-Z Transform, CZT), and then perform distance compression and scene center motion compensation, and then use upsampling map accumulation in the azimuth direction. Upsampling mapping accumulation (UMA) method realizes resampling of wavenumber spectrum from azimuth polar coordinates to rectangular coordinates; then performs two-dimensional inverse fast fourier transform (IFFT) to obtain coarse imaging results; finally defocusing Correction to get the final imaging result.
具体包括以下5个步骤:Specifically, it includes the following 5 steps:
1、波数谱仿射变换(KAM):1. Wavenumber Spectral Affine Transform (KAM):
A1、回波时延梯度为A1. The echo delay gradient is
其中,c表示光速,分别表示方位零时刻发射站和接收站到场景中心视线方向单位矢量,rT0=(xT,yT,zT)、rR0=(xR,yR,zR)分别表示初始时刻发射站和接收站的位置矢量,RT0=|rT0|、RR0=|rR0|分别表示发射站和接收站在方位零时刻到场景中心的距离。where c is the speed of light, Respectively represent the unit vector of the line-of-sight direction from the transmitting station and the receiving station to the center of the scene at azimuth zero time, r T0 = (x T , y T , z T ), r R0 = (x R , y R , z R ) represent the initial moment of transmission, respectively The position vectors of the station and the receiving station, R T0 =|r T0 |, R R0 =|r R0 | respectively represent the distance from the zero time azimuth of the transmitting station and the receiving station to the center of the scene.
时延梯度在地面的投影为The projection of the delay gradient on the ground is
Ggτ=PGτ G gτ =PG τ
其中,表示地面投影矩阵。in, Represents the ground projection matrix.
A2、计算多普勒梯度A2. Calculate the Doppler gradient
回波多普勒梯度为The echo Doppler gradient is
其中,λ表示载波波长,vT=(vTx,vTy,vTz)、vR=(vRx,vRy,vRz)分别表示发射站和接收站在方位零时刻的速度,I表示单位矩阵。Among them, λ represents the carrier wavelength, v T = (v Tx , v Ty , v Tz ), v R = (v Rx , v Ry , v Rz ) represent the speed of the transmitting station and the receiving station at zero azimuth time, respectively, and I represent identity matrix.
多普勒梯度在地面的投影为The projection of the Doppler gradient on the ground is
Ggd=PGd G gd =PG d
A3、计算仿射矩阵及其逆矩阵A3. Calculate affine matrix and its inverse
其中, 表示向量方向与水平轴正方向的夹角,φc=|θgd-θgτ|表示波数谱的耦合角。in, represents the angle between the vector direction and the positive direction of the horizontal axis, and φ c = |θ gd - θ gτ | represents the coupling angle of the wavenumber spectrum.
对仿射矩阵求逆得Invert the affine matrix to get
A4、计算x坐标和y坐标方向的波数A4. Calculate the wavenumber in the x-coordinate and y-coordinate directions
ΔR(η;x,y)=Rbi(η;x,y)-Rbi(0;x,y)表示差分距离,对差分距离作一阶泰勒近似:ΔR(η; x, y)=R bi (η; x, y)-R bi (0; x, y) represents the differential distance, and a first-order Taylor approximation is made for the differential distance:
ΔR(η;x,y)=RSAG(η;x,y)-RSAG(0;x,y)≈C10x+C01y,ΔR(n; x, y) = R SAG (n; x, y) - R SAG (0; x, y) ≈ C 10 x + C 01 y,
其中in
得到波数k在x轴和y轴的投影分别为kx=kC10,ky=kC01,其中The projections of the wavenumber k on the x-axis and the y-axis are obtained as k x =kC 10 , k y =kC 01 respectively, where
k=2π(fr+fc)/ck=2π(f r +f c )/c
即,x坐标和y坐标方向的波数分别为That is, the wavenumbers in the x-coordinate and y-coordinate directions are respectively
kx=kC10 k x =kC 10
ky=kC01 k y =kC 01
Rbi(η;x,y)=RT(η;x,y)+RR(η;x,y)表示双基地距离和,η表示慢时间,R bi (n; x, y) = R T (n; x, y) + R R (n; x, y) is the bistatic distance sum, n is the slow time,
RT(η;x,y)、RR(η;x,y)分别表示发射站和接收站距离历史,aT=(aTx,aTy,aTz)、aR=(aRx,aRy,aRz)分别表示发射站和接收站的加速度,rP=(x,y,0)表示场景内任意一个点目标的位置坐标。R T (n; x, y), R R (n; x, y) represent the distance history of the transmitting station and the receiving station, respectively, a T = (a Tx , a Ty , a Tz ), a R = (a Rx , a Ry , a Rz ) represent the acceleration of the transmitting station and the receiving station respectively, and r P =(x, y, 0) represents the position coordinates of any point target in the scene.
A5、计算KAM后波数分布范围A5. The wavenumber distribution range after calculating KAM
其中,kxmin,kxmax分别表示kx的最小值和最大值,kymin,kymax分别表示ky的最小值和最大值;Among them, k xmin and k xmax represent the minimum and maximum values of k x , respectively, and k ymin and k ymax represent the minimum and maximum values of ky , respectively;
KAM后距离向波数变量kp的分布范围为[kpmin,kpmax],其中The distribution range of the range-directed wavenumber variable k p after KAM is [k pmin ,k pmax ], where
kpmin=min{kp1,kp2,kp3,kp4}k pmin =min{k p1 ,k p2 ,k p3 ,k p4 }
kpmax=max{kp1,kp2,kp3,kp4}k pmax =max{k p1 ,k p2 ,k p3 ,k p4 }
KAM后方位向波数变量kq的分布范围为[kqmin,kqmax],其中The distribution range of the azimuthal wavenumber variable k q behind the KAM is [k qmin ,k qmax ], where
kqmin=min{kq1,kq2,kq3,kq4}k qmin =min{k q1 ,k q2 ,k q3 ,k q4 }
kqmax=max{kq1,kq2,kq3,kq4}k qmax =max{k q1 ,k q2 ,k q3 ,k q4 }
A6、计算输出图像的坐标范围,具体如下:A6. Calculate the coordinate range of the output image, as follows:
其中,xmin,xmax分别表示原始场景的横坐标的最小值和最大值,ymin,ymax分别表示原始场景的纵坐标的最小值和最大值;Wherein, x min and x max represent the minimum and maximum values of the abscissa of the original scene, respectively, and y min and y max respectively represent the minimum and maximum values of the ordinate of the original scene;
输出图像的距离向坐标范围为[pmin,pmax],其中The range of distance coordinates of the output image is [p min ,p max ], where
pmin=min{p1,p2,p3,p4}p min =min{p 1 ,p 2 ,p 3 ,p 4 }
pmax=max{p1,p2,p3,p4}p max =max{p 1 ,p 2 ,p 3 ,p 4 }
输出图像的方位向坐标范围为[qmin,qmax],其中The azimuth coordinate range of the output image is [q min , q max ], where
qmin=min{q1,q2,q3,q4}q min =min{q 1 ,q 2 ,q 3 ,q 4 }
qmax=max{q1,q2,q3,q4}q max =max{q 1 ,q 2 ,q 3 ,q 4 }
2、距离向CZT:2. Distance to CZT:
B1、回波信号建模B1, echo signal modeling
距离频域方位基带回波可建模为如下形式The range-frequency-domain azimuth baseband echo can be modeled as follows
其中,Kr表示发射脉冲调频率,τ表示快时间,c表示光速,λ表示载波波长。Among them, K r represents the frequency of the emission pulse modulation, τ represents the fast time, c represents the speed of light, and λ represents the carrier wavelength.
B2、距离向CZTB2, distance to CZT
对回波信号通过距离向CZT求回波在复平面单位圆如下位置的频谱For the echo signal, find the spectrum of the echo at the following position on the complex plane unit circle from the CZT through the distance
zi=exp{j(φ0+iΔφ)},i=0,1,2,...,Np z i =exp{j(φ 0 +iΔφ)},i=0,1,2,...,N p
其中,in,
其中,Fs为快时间t的采样率,表示中心波数大小,kpmin、kpmax分别表示kp的最大值和最小值,Np为输出图像的距离向采样点数,其取值必须满足如下条件:where F s is the sampling rate of fast time t, Represents the size of the central wave number, k pmin and k pmax represent the maximum and minimum values of k p , respectively, and N p is the number of sampling points in the distance direction of the output image, which must satisfy the following conditions:
距离向CZT后信号可表示为The signal after distance to CZT can be expressed as
其中,kp表示KAM后的距离向波数变量。Among them, k p represents the distance wavenumber variable after KAM.
3、匹配滤波(MF,Match filter)和场景中心运动补偿(MoCo to SC),即对距离向CZT后所得结果乘上如下相位函数:3. Match filter (MF, Match filter) and scene center motion compensation (MoCo to SC), that is, multiply the result obtained by the distance CZT by the following phase function:
MF和MoCo to SC之后的信号可近似表示为The signal after MF and MoCo to SC can be approximated as
其中,p,q分别表示输出图像的距离向和方位向坐标变量。Among them, p and q represent the range and azimuth coordinate variables of the output image, respectively.
4、方位向升采样映射积累:4. Azimuth upsampling mapping accumulation:
C1、将步骤3所得信号方位向升采样Nu倍,记所得信号为S3(kp,η(m);p,q),其中m表示升采样后η的采样序号C1, upsampling Nu times the azimuth direction of the signal obtained in step 3, and record the obtained signal as S 3 (k p ,n(m); p,q), where m represents the sampling sequence number of n after the upsampling
其中,Na表示升采样前η的采样点数,Nu一般取值为4或8;Wherein, Na represents the number of sampling points of n before upsampling , and Nu generally takes the value of 4 or 8;
C2、计算从η轴到kq轴的映射关系:C2. Calculate the mapping relationship from the η axis to the k q axis:
其中,round{·}表示四舍五入运算,表示kq轴的采样间隔;Among them, round{·} represents the rounding operation, Represents the sampling interval of the k and q axes;
C3、方位向信号积累C3, azimuth signal accumulation
将C1所得的信号在方位向按C2所得的映射关系进行积累:Accumulate the signal obtained by C1 in the azimuth direction according to the mapping relationship obtained by C2:
其中,n、Nq分别表示信号在kq轴的采样点序号和采样点数。Among them, n and N q respectively represent the sampling point number and sampling point number of the signal on the k q axis.
至此,得到了在(kp,kq)域的信号,其可近似表示为So far, the signal in the (k p ,k q ) domain is obtained, which can be approximately expressed as
S4(kp,kq;p,q)≈exp{-j(kpp+kqq)}S 4 (k p ,k q ; p,q)≈exp{-j(k p p+k q q)}
C4、对C3所得信号进行二维逆傅里叶变换(IFFT),即可得到粗成像结果。C4. Perform a two-dimensional inverse Fourier transform (IFFT) on the signal obtained by C3 to obtain a rough imaging result.
5、对于场景较大的情况,波前弯曲导致的边缘目标散焦效应不可忽略,需要对粗成像结果进行散焦校正:5. For large scenes, the defocus effect of edge targets caused by wavefront bending cannot be ignored, and defocus correction needs to be performed on the coarse imaging results:
D1、计算波前弯曲导致的相位误差,具体如下:D1. Calculate the phase error caused by wavefront bending, as follows:
波前弯曲导致的相位误差为The phase error due to wavefront bending is
ΦWC(k,η;x,y)=-kΔR(η;x,y)+kxx+kyyΦ WC (k, η; x, y)=-kΔR(η; x, y)+k x x+k y y
D2、计算波前弯曲导致的二次相位误差D2. Calculate the quadratic phase error caused by wavefront bending
由隐函数定理和复合函数求导法则计算波前弯曲导致的二次相位误差为The quadratic phase error caused by wavefront bending is calculated by the implicit function theorem and the composite function derivation rule as
D3、构建散焦校正滤波器D3. Build a defocus correction filter
D4、子图像划分D4, sub-image division
将粗成像结果沿q轴划分为Nsub个子图像,再将每一个子图像通过关于q的傅里叶变换(Fast fourier transform,FFT)变换到(p,kq)域,其中Nsub为满足下式的一个正整数Divide the coarse imaging result into N sub sub-images along the q-axis, and then transform each sub-image into the (p,k q ) domain through the Fourier transform (Fast fourier transform, FFT) about q, where N sub is satisfying a positive integer of the formula
其中qm由下面的方程解得where q m is solved by the following equation
D5、子图像散焦校正D5, sub-image defocus correction
把每一个子图像乘上如下散焦校正滤波器Multiply each sub-image by the following defocus correction filter
HRF(kq;p,qc)=exp{-jk2D(p,qc)}H RF (k q ; p,q c )=exp{-jk 2 D(p,q c )}
其中,qc为子图像中心的q轴坐标,然后进行关于kq的IFFT,得到(p,q)域上的散焦校正后的子图像。Among them, q c is the q-axis coordinate of the center of the sub-image, and then IFFT about k q is performed to obtain the sub-image after defocus correction in the (p, q) domain.
D6、子图像拼合D6, sub-image stitching
将D5所得的所有散焦校正后的子图像组合在一起,得到最终成像结果。Combine all the defocus corrected sub-images from D5 to get the final imaging result.
以下结合具体数据,对本发明的技术效果进行阐述。The technical effects of the present invention will be described below in conjunction with specific data.
如表1所示为本实施例采用的系统参数,图2为本实施方式机动双基地SAR几何配置示意图,本实施方式中假定地面上有49个均匀分布的点目标,其x轴和y轴之上各个点目标之间的距离均为800米。Table 1 shows the system parameters used in this embodiment, and Fig. 2 is a schematic diagram of the geometric configuration of the mobile bistatic SAR in this embodiment. In this embodiment, it is assumed that there are 49 uniformly distributed point targets on the ground, and the x-axis and y-axis are The distances between the above point targets are all 800 meters.
表1系统参数Table 1 System parameters
基于表1的系统参数取值进行各项计算,具体为:Various calculations are performed based on the system parameter values in Table 1, specifically:
回波时延梯度计算结果为: The echo delay gradient calculation result is:
时延梯度在地面的投影为:Ggτ=PGτ=1.0×10-8[-0.2711,0.2634]T The projection of the delay gradient on the ground is: G gτ =PG τ =1.0×10 -8 [-0.2711,0.2634] T
回波多普勒梯度计算结果为:The echo Doppler gradient calculation result is:
多普勒梯度在地面的投影为:Ggd=PGd=[-0.0001,0.0458]T The projection of the Doppler gradient on the ground is: G gd =PG d =[-0.0001,0.0458] T
耦合角计算结果为:The calculation result of the coupling angle is:
φc=|θgτ-θgd|=45.7°φ c =|θ gτ -θ gd |=45.7°
仿射矩阵为:The affine matrix is:
对仿射矩阵求逆,得到:Inverting the affine matrix, we get:
对波数谱进行如下仿射变换Perform the following affine transformation on the wavenumber spectrum
中心波数大小 The size of the central wave number
kp的最大值和最小值计算结果分别为:The maximum and minimum calculation results of k p are:
kpmin=28.38rad/m、kpmax=30.99rad/m,k pmin =28.38rad/m, k pmax =30.99rad/m,
输出图像的距离向采样点数为:Np=3328。The number of sampling points in the distance direction of the output image is: N p =3328.
Nu=8,升采样后η的采样序号为:Nu = 8, the sampling sequence number of n after up - sampling is:
脉冲重复间隔为:PRI=1/PRF=4ms,The pulse repetition interval is: PRI=1/PRF=4ms,
信号在kq轴的采样点数为:Nq=2224,The number of sampling points of the signal on the k q axis is: N q =2224,
另外,由kqmax=-0.9044rad/m,kqmax=0.8413rad/m,得到kq轴的采样间隔为In addition, from k qmax =-0.9044rad/m, k qmax =0.8413rad/m, the sampling interval of k q axis is obtained as
信号在kq轴的采样序号为:The sampling number of the signal on the k and q axis is:
将粗聚焦图沿q轴划分为Nsub=8个子图像,并将每一个子图像通过关于q的FFT变换到(p,kq)域;Divide the coarse focus map into N sub =8 sub-images along the q-axis, and transform each sub-image into the (p,k q ) domain by FFT on q;
散焦校正滤波器为: The defocus correction filters are:
其中,D(p,qc)=7.31×10-6p2+1.02×10-5pqc+1.03×10-5q2,Wherein, D(p,q c )=7.31×10 -6 p 2 +1.02×10 -5 pq c +1.03×10 -5 q 2 ,
p∈[-4.0020×103,3.9996×103]m;qc为各个子图像中心对应的q轴坐标,其取值集合为[-3500,-2500,-1500,-500,500,1500,2500,3500]m;p∈[-4.0020×10 3 ,3.9996×10 3 ]m; q c is the q-axis coordinate corresponding to the center of each sub-image, and its value set is [-3500,-2500,-1500,-500,500,1500,2500 ,3500]m;
根据以上计算结果得到如图3、图4、图5、图6所示的仿真图像;KAM前后的波数谱支撑域仿真结果如图3所示,KAM之后,点目标的波数谱支撑域的利用效率由33%增加到了98%,由此可以看出,本发明所提出的方法可以有效提高波数谱的利用效率。本发明的点目标成像结果如图4所示;相应的点目标成像结果放大等高图如图5所示,可以看出点目标成像结果的等高图均匀规则分布,其峰值旁瓣比(PSLR)、积分旁瓣比(ISLR)与理论值-13.26dB、-9.96dB非常接近,说明本发明提出的算法对点目标回波的聚焦成像效果良好;面目标成像结果如图6所示,图6中可以看出面目标清晰可辨,说明本发明提出的算法对面目标回波的聚焦成像效果良好。综合图4、图5和图6可以看出,本发明所提出的方法可以有效地对机动平台双基地前视SAR目标回波进行聚焦成像。According to the above calculation results, the simulation images shown in Figure 3, Figure 4, Figure 5, and Figure 6 are obtained; the simulation results of the wavenumber spectrum support domain before and after KAM are shown in Figure 3. After KAM, the use of the wavenumber spectrum support domain of the point target The efficiency is increased from 33% to 98%. It can be seen from this that the method proposed in the present invention can effectively improve the utilization efficiency of the wavenumber spectrum. The imaging result of the point target of the present invention is shown in Figure 4; the corresponding enlarged contour map of the imaging result of the point target is shown in Figure 5. It can be seen that the contour map of the imaging result of the point target is evenly and regularly distributed, and its peak sidelobe ratio ( PSLR) and integral side lobe ratio (ISLR) are very close to the theoretical values of -13.26dB and -9.96dB, indicating that the algorithm proposed in the present invention has a good focusing imaging effect on the point target echo; the imaging result of the surface target is shown in Figure 6, It can be seen in FIG. 6 that the surface target is clearly distinguishable, which indicates that the algorithm proposed in the present invention has a good focusing imaging effect of the echo of the surface target. 4, 5 and 6, it can be seen that the method proposed in the present invention can effectively focus and image the echoes of the bistatic forward-looking SAR target on the mobile platform.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。Those of ordinary skill in the art will appreciate that the embodiments described herein are intended to assist readers in understanding the principles of the present invention, and it should be understood that the scope of protection of the present invention is not limited to such specific statements and embodiments. Various modifications and variations of the present invention are possible for those skilled in the art. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the scope of the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811310156.4A CN109358328B (en) | 2018-11-06 | 2018-11-06 | Polar coordinate format imaging method of bistatic forward-looking SAR (synthetic aperture radar) of maneuvering platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811310156.4A CN109358328B (en) | 2018-11-06 | 2018-11-06 | Polar coordinate format imaging method of bistatic forward-looking SAR (synthetic aperture radar) of maneuvering platform |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109358328A true CN109358328A (en) | 2019-02-19 |
CN109358328B CN109358328B (en) | 2020-06-30 |
Family
ID=65344090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811310156.4A Active CN109358328B (en) | 2018-11-06 | 2018-11-06 | Polar coordinate format imaging method of bistatic forward-looking SAR (synthetic aperture radar) of maneuvering platform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109358328B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109917361A (en) * | 2019-04-02 | 2019-06-21 | 电子科技大学 | A 3D Unknown Scene Imaging Method Based on Bistatic Radar |
US10495719B1 (en) * | 2013-09-24 | 2019-12-03 | Charles Alphonse Uzes | System for receiving communications |
CN114167394A (en) * | 2021-12-03 | 2022-03-11 | 东南大学 | Line spectral feature enhancement method and system based on phase gradient error estimation technology |
CN114185047A (en) * | 2021-12-09 | 2022-03-15 | 电子科技大学 | Bistatic SAR moving target refocusing method based on optimal polar coordinate transformation |
CN114236543A (en) * | 2021-12-16 | 2022-03-25 | 电子科技大学 | Method for designing bistatic forward-looking SAR (synthetic aperture radar) track of motorized platform |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105223572A (en) * | 2015-09-14 | 2016-01-06 | 北京航空航天大学 | A kind of positive forward sight Bistatic SAR image processing method based on PFA algorithm |
CN106990397A (en) * | 2017-06-07 | 2017-07-28 | 电子科技大学 | Bistatic Forward-looking SAR nonsystematic range migration correction method |
CN107589421A (en) * | 2017-10-31 | 2018-01-16 | 西安电子科技大学 | A kind of array Forward-looking SAR imaging method |
CN108318880A (en) * | 2018-01-26 | 2018-07-24 | 西安电子科技大学 | A kind of polar coordinates SAR imaging methods of kinematic error parametrization |
-
2018
- 2018-11-06 CN CN201811310156.4A patent/CN109358328B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105223572A (en) * | 2015-09-14 | 2016-01-06 | 北京航空航天大学 | A kind of positive forward sight Bistatic SAR image processing method based on PFA algorithm |
CN106990397A (en) * | 2017-06-07 | 2017-07-28 | 电子科技大学 | Bistatic Forward-looking SAR nonsystematic range migration correction method |
CN107589421A (en) * | 2017-10-31 | 2018-01-16 | 西安电子科技大学 | A kind of array Forward-looking SAR imaging method |
CN108318880A (en) * | 2018-01-26 | 2018-07-24 | 西安电子科技大学 | A kind of polar coordinates SAR imaging methods of kinematic error parametrization |
Non-Patent Citations (2)
Title |
---|
JIN-PING SUN ET AL.: ""The Polar Imaging Algorithm for Forward-looking Bistatic SAR"", 《7TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR》 * |
吴玉峰: ""多模式SAR成像及参数估计方法研究"", 《中国博士学位论文全文数据库 信息科技辑》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10495719B1 (en) * | 2013-09-24 | 2019-12-03 | Charles Alphonse Uzes | System for receiving communications |
CN109917361A (en) * | 2019-04-02 | 2019-06-21 | 电子科技大学 | A 3D Unknown Scene Imaging Method Based on Bistatic Radar |
CN109917361B (en) * | 2019-04-02 | 2023-04-25 | 电子科技大学 | A 3D Unknown Scene Imaging Method Based on Bistatic Radar |
CN114167394A (en) * | 2021-12-03 | 2022-03-11 | 东南大学 | Line spectral feature enhancement method and system based on phase gradient error estimation technology |
CN114185047A (en) * | 2021-12-09 | 2022-03-15 | 电子科技大学 | Bistatic SAR moving target refocusing method based on optimal polar coordinate transformation |
CN114185047B (en) * | 2021-12-09 | 2023-06-27 | 电子科技大学 | Double-base SAR moving target refocusing method based on optimal polar coordinate transformation |
CN114236543A (en) * | 2021-12-16 | 2022-03-25 | 电子科技大学 | Method for designing bistatic forward-looking SAR (synthetic aperture radar) track of motorized platform |
CN114236543B (en) * | 2021-12-16 | 2023-03-21 | 电子科技大学 | A bistatic forward-looking SAR trajectory design method for maneuvering platforms |
Also Published As
Publication number | Publication date |
---|---|
CN109358328B (en) | 2020-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109358328B (en) | Polar coordinate format imaging method of bistatic forward-looking SAR (synthetic aperture radar) of maneuvering platform | |
CN102176016B (en) | Large squint sliding spotlight SAR (synthetic aperture radar) imaging processing method | |
CN106249237B (en) | Big Squint SAR frequency domain imaging method under a kind of curvilinear path | |
CN108459321B (en) | Large-squint high-resolution SAR imaging method based on range-azimuth circle model | |
CN104391297A (en) | Sub-aperture partition PFA (Polar Format Algorithm) radar imaging method | |
CN106324597B (en) | The translational compensation and imaging method of big corner ISAR radar based on PFA | |
CN104749570B (en) | It is a kind of to move constant airborne biradical synthetic aperture radar target localization method | |
CN104777479B (en) | Front side based on multi-core DSP regards SAR realtime imaging methods | |
CN109143237B (en) | PFA wavefront curvature correction method for bistatic spotlight SAR suitable for arbitrary platform trajectories | |
CN113640797B (en) | A Forward Squint Altimetry Method for Reference Strip Mode InSAR | |
CN105844580A (en) | Missile-borne SAR imaging system architecture design based on single-chip FPGA | |
CN109270528A (en) | The fixed dual station SAR imaging method in a station based on complete solution analysis distance model | |
CN108427115A (en) | Method for quick estimating of the synthetic aperture radar to moving target parameter | |
CN110244303A (en) | SBL-ADMM-based sparse aperture ISAR imaging method | |
CN104698457A (en) | InSAR imaging and altitude estimation method based on iterative surface prediction | |
CN109444882B (en) | Double-station SAR imaging method based on variable squint elliptical beam synchronous model | |
CN110673144A (en) | Sub-aperture large squint SAR imaging processing method based on time-varying labels | |
CN115015920A (en) | A Fast Back Projection Imaging Method Based on Range Spatial Variation Spectral Correction | |
CN108008387B (en) | An airborne array antenna down-view three-dimensional imaging method | |
CN104931965B (en) | ST-BSSAR imaging method | |
CN114325704A (en) | A Fast Time Domain Imaging Method for Synthetic Aperture Radar Based on Wavenumber Spectrum Splicing | |
CN103728617B (en) | Double-base synthetic aperture radar time domain fast imaging method | |
CN103792534A (en) | SAR two-dimension autofocus method based on prior phase structure knowledge | |
CN114185047B (en) | Double-base SAR moving target refocusing method based on optimal polar coordinate transformation | |
CN102890277A (en) | Range migration imaging method of shift invariant bi-static synthetic aperture radar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |