CN109348694A - High-strength flexible self-supporting electromagnetic wave shield film and preparation method thereof - Google Patents

High-strength flexible self-supporting electromagnetic wave shield film and preparation method thereof Download PDF

Info

Publication number
CN109348694A
CN109348694A CN201811064886.0A CN201811064886A CN109348694A CN 109348694 A CN109348694 A CN 109348694A CN 201811064886 A CN201811064886 A CN 201811064886A CN 109348694 A CN109348694 A CN 109348694A
Authority
CN
China
Prior art keywords
cellulose
poly
nano
dopamine
nfc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811064886.0A
Other languages
Chinese (zh)
Other versions
CN109348694B (en
Inventor
苗苗
刘瑞婷
施利毅
冯欣
曹绍梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201811064886.0A priority Critical patent/CN109348694B/en
Publication of CN109348694A publication Critical patent/CN109348694A/en
Application granted granted Critical
Publication of CN109348694B publication Critical patent/CN109348694B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Textile Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

The invention discloses a kind of high-strength flexible self-supporting electromagnetic wave shield films and preparation method thereof, silver nanowires is supported on nano-cellulose by the adhesive attraction of poly-dopamine, high conductivity poly-dopamine modified lithium nano-cellulose conductive fiber is obtained, first passage conductive fiber assists special adsorption to realize to two-dimentional Ti3C2Limellar stripping, improve intercalation rate and interlamellar spacing, obtain single layer or 2-10 layers of few layer of Ti3C2MXene nanometer sheet, while one-dimensional electric fiber and two-dimensional nano piece are self-assembled into three-dimensional " brick-mud " structural conductive network by the electrostatic interaction and hydrogen bond action of positive and negative charge, finally by high pressure filter press technique one-step synthesis flexible electromagnetic shielding film.Flexible self-supporting film prepared by the present invention is significant to electromagnetic shielding effect, and has the characteristics that high mechanical strength, bending flexibility is good, synthesis technology is simple, can meet the specific requirement of flexible electronic in practical application.

Description

High-strength flexible self-supporting electromagnetic wave shield film and preparation method thereof
Technical field
The present invention relates to a kind of electromagnetic wave shield films and preparation method thereof, more particularly to a kind of flexible electromagnetic shielding film And preparation method thereof, it is applied to technical field of electromagnetic shielding.
Background technique
Electromagnetic interference and electromagnetic radiation cause to seriously endanger to portable electronic, space flight and national defense safety and human health. Using metal as traditional electromagnetic shielding material of representative, due to the disadvantages of density is big, flexibility is poor, perishable, it is difficult to meet lightweight just Take the demand of electronic product development.In recent years, MXene has as a kind of novel two-dimensional layer transition metal carbon/nitride Excellent metallic conductivity (conductivity is up to 65000S/m) and ferromagnetism become a kind of ideal electromagnetic shielding material, however Existing MXene electromagnetic wave shield film limits practical application due to the disadvantages of mechanical strength is low, bending is poor.
Forming composite material by addition unclassified stores is an excellent method for solving material defect itself.Section of South Korea It learns Institute for Research and Technology Shahzad etc. and utilizes sodium alginate intercalation Ti3C2The method of MXene prepares high conductivity, high electromagnetic shielding The thin-film material of efficiency (about 92dB), but the mechanical performance of film is not provided regrettably, and the tensile strength of ultra-thin materials It is that can film put into the very important data of practical application with compression strength.The Gogotsi et al. of Univ Drexel of the U.S. Enhance Ti using polyvinyl alcohol3C2MXene, tensile break strength is enhanced by 22MPa to 91MPa, however conductivity reduces 10 Times.Beijing University of Chemical Technology Zhang Haobin etc. induces Ti using hydrazine hydrate3C2Tx MXene film foams are prepared for hydrophobic, flexible for the first time With the MXene foam film of lightweight, electromagnet shield effect by it is unexpanded when 53dB be increased to 70dB (X-band, 8.2- 12.4GHz), tensile strength falls to 4MPa by 16.5MPa.
Therefore, it chooses suitable reinforcing material, rationally design process conditions, high-intensitive, flexible, the efficient MXene of exploitation Electromagnetic wave shield film is of great significance with meeting the performance requirement under flexible device bending deformation, this becomes skill urgently to be resolved Art problem.
Summary of the invention
In order to solve prior art problem, it is an object of the present invention to overcome the deficiencies of the prior art, and to provide one kind High-strength flexible self-supporting electromagnetic wave shield film and preparation method thereof, film of the present invention is significant to electromagnetic shielding effect, and has Have the characteristics that high mechanical strength, bending flexibility are good, the specific requirement of flexible electronic in practical application can be met.
In order to achieve the above objectives, the present invention adopts the following technical scheme:
A kind of high-strength flexible self-supporting electromagnetic wave shield film, using the adhesive attraction of poly-dopamine PDA by silver nanowires AgNWs is supported on nano-cellulose NFC, obtains the poly-dopamine modified lithium conductive fiber that form is AgNWs@PDA-NFC;And lead to Conductive fiber collaboration special adsorption is crossed, blocky Ti is made3C2In lamella removed, increase Ti3C2Intercalation rate and thin layer between Away from acquisition single layer or 2-10 layers of few layer of Ti3C2MXene nanometer sheet;Make finally by the electrostatic interaction and hydrogen bond of positive and negative charge With by one-dimensional AgNWs@PDA-NFC conductive cellulose and two-dimensional Ti3C2MXene nanometer sheet constructs to form having for three-dimensional " brick-mud " structure type conductive network carries out one-step method assembling by high pressure filter press technique, forms flexible electromagnetic shielding film, mentions The mechanical strength of high electromagnetic wave shield film.
A kind of preparation method of high-strength flexible self-supporting electromagnetic wave shield film of the present invention, includes the following steps:
A. poly-dopamine (PDA) modified nanometer cellulose (NFC) is dispersed at least 50mL solvent, ultrasonic disperse obtains Poly-dopamine-nano-cellulose (PDA-NFC) suspension wherein contains poly- DOPA in poly-dopamine-nano-cellulose suspension The ratio of amine-nano-cellulose (PDA-NFC) is 0.01~0.1w/v%;Above-mentioned nano-cellulose (NFC) preferably uses nanometer At least one of cellulose fibre, nano-cellulose whisker, regeneration nano-cellulose one-dimensional material;Above-mentioned solvent preferably uses At least one of water, ethyl alcohol, isopropanol and dimethyl sulfoxide (DMSO) solvent;
B. by Ti3C2Powder is added in the poly-dopamine-nano-cellulose suspension prepared in the step a, and ultrasound is extremely Few 60min, obtains the single layer of stably dispersing or 2-10 layers of few layer of Ti3C2MXene nanometer sheet and poly-dopamine-nanofiber The mixing suspension of element, wherein contains Ti in mixing suspension3C2Ratio be 0.01~0.2w/v%;
C. silver nanowires (AgNWs) is added in the mixing suspension prepared in the step b, carries out magnetic agitation extremely Few 30min obtains being uniformly mixed Ti3C2The high conductivity poly-dopamine that MXene nanometer sheet and form are AgNWs@PDA-NFC changes Property conductive fiber final mixing suspension, wherein ratio in final mixing suspension containing AgNWs is 0.001~0.01w/ V%;
D. the final suspension prepared in the step c is poured into high-pressure pressure filter, adjusts pressure, filters pressing is to no longer There is filtrate outflow, takes out filter cake vacuum drying, obtain flexible self-supporting electromagnetic wave shield film.Pass through filter press technique, preferably control pressure By force it is 0.2~2.0MPa, carries out one-step method assembling, forms flexible electromagnetic shielding film.
The present invention compared with prior art, has following obvious prominent substantive distinguishing features and remarkable advantage:
1. the present invention method modified by the pre- intercalation of nano-cellulose and surface, increases Ti3C2Intercalation rate and thin layer between Away from realization is to blocky Ti3C2Release effect, obtain the Ti of single layer or few layer3C2MXene nanometer sheet;
2. the present invention is acted on using the metal bonding of poly-dopamine surface catechol and AgNWs, AgNWs is adhered to The surface PDA-NFC obtains AgNWs@PDA-NFC conductive cellulose;The present invention chooses suitable reinforcing material, rationally designs technique Condition, high-intensitive, flexible, the efficient MXene electromagnetic wave shield film of exploitation are wanted with meeting the performance under flexible device bending deformation It asks and is of great significance;
3. the present invention is using one-dimensional AgNWs@PDA-NFC conductive fiber and two dimension Ti3C2Intert between nanoscale twins and constructs three " brick-mud " formula structure of dimension, both strengthens Ti3C2The electron-transport of nanoscale twins interlayer, but the machinery for enhancing fexible film is strong Degree improves film and reflect, absorbs and the ability of multiple internal reflection electromagnetic wave under complex deformation state, with widely actually answering Use prospect.
Detailed description of the invention
Fig. 1 is one flexible electromagnetic shielding film material object digital photograph of the embodiment of the present invention.
Fig. 2 is stretching-broken curve figure of one flexible electromagnetic shielding film of the embodiment of the present invention.
Fig. 3 is the electromagnetic shielding performance figure of one flexible electromagnetic shielding film of the embodiment of the present invention.
Specific embodiment
Above scheme is described further below in conjunction with specific implementation example, the preferred embodiment of the present invention is described in detail such as Under:
Embodiment one
In the present embodiment, referring to Fig. 1, a kind of high-strength flexible self-supporting electromagnetic wave shield film utilizes poly-dopamine PDA Adhesive attraction silver nanowires AgNWs is supported on nano-cellulose NFC, obtain form be AgNWs@PDA-NFC it is poly- more Bar amine denatured conductive fiber;And special adsorption is cooperateed with by conductive fiber, make blocky Ti3C2In lamella removed, increase Ti3C2Intercalation rate and thin layer spacing, obtain include single layer and 2-10 layers of few layer of Ti3C2MXene nanometer sheet;Finally by The electrostatic interaction and hydrogen bond action of positive and negative charge, by one-dimensional AgNWs@PDA-NFC conductive cellulose and two-dimensional Ti3C2MXene Nanometer sheet construct to be formed it is three-dimensional there is " brick-mud " structure type conductive network, pass through filter press technique, carry out one-step method assembling, shape At flexible electromagnetic shielding film.The present embodiment utilizes the metal bonding of poly-dopamine surface catechol and silver nanowires AgNWs Silver nanowires AgNWs is adhered to the surface PDA-NFC by effect, obtains the poly- DOPA of high conductivity that form is AgNWs@PDA-NFC Amine denatured conductive fiber.For the present embodiment by filter press technique, control pressure is 2.0MPa, carries out one-step method assembling, forms flexible electrical Magnetic screen film, referring to Fig. 1.20mg poly-dopamine-nano-cellulose PDA-NFC, 40mg Ti is used in the present embodiment3C2With 10g silver nanowires AgNWs forms flexible electromagnetic shielding film composite material according to component ratio.Silver nanowires is by poly- more The bonding action of bar amine surface catechol, interacts to form conductive fiber with nano-cellulose.
In the present embodiment, referring to Fig. 1, a kind of preparation side of the present embodiment high-strength flexible self-supporting electromagnetic wave shield film Method includes the following steps:
A. the nano-cellulose (NFC) uses nano-cellulose fiber, using poly-dopamine (PDA) modified nano fiber The poly-dopamine of 20mg-nano-cellulose PDA-NFC, i.e., be dispersed in 50mL deionized water, ultrasonic disperse obtains by plain (NFC) Poly-dopamine-nano-cellulose (PDA-NFC) suspension wherein contains poly- DOPA in poly-dopamine-nano-cellulose suspension The ratio of amine-nano-cellulose (PDA-NFC) is 0.04w/v%;
B. by the Ti of 40mg3C2Powder is added in the poly-dopamine-nano-cellulose suspension prepared in the step a, Ultrasonic 60min, that obtain stably dispersing includes single layer and 2-10 layers of few layer of Ti3C2MXene nanometer sheet and poly-dopamine-are received The mixing suspension of rice cellulose, wherein contains Ti in mixing suspension3C2Ratio be 0.08w/v%;
C. 10g silver nanowires (AgNWs) is added in the mixing suspension prepared in the step b, carries out magnetic force and stirs 30min is mixed, obtains being uniformly mixed Ti3C2The high conductivity poly-dopamine that MXene nanometer sheet and form are AgNWs@PDA-NFC changes Property conductive fiber final mixing suspension, wherein ratio in final mixing suspension containing AgNWs is 0.002w/v%;
D. the final suspension prepared in the step c is poured into high-pressure pressure filter, adjusting pressure is 2.0MPa, pressure Filter takes out filter cake vacuum drying, obtains flexible self-supporting electromagnetic wave shield film to there is no filtrate outflows.
Experimental test analysis:
Flexible self-supporting electromagnetic wave shield film manufactured in the present embodiment is subjected to mechanical stretch test and is electromagnetically shielded elegant energy Test, referring to figs. 2 and 3, the breaking strength of flexible self-supporting electromagnetic wave shield film manufactured in the present embodiment are 63.8MPa, X-band within the scope of 8-12.5GHz, electromagnetic shielding reach as high as 21.1dB.The present embodiment high-strength flexible self-supporting electromagnetic screen It covers film and preparation method thereof silver nanowires is supported on nano-cellulose by the adhesive attraction of poly-dopamine, obtains height and lead Electrical poly-dopamine modified lithium nano-cellulose conductive fiber assists special adsorption to realize to two-dimentional Ti by conductive fiber3C2Piece Layer removing, improves intercalation rate and interlamellar spacing, obtains the Ti of single layer and few layer mixing3C2MXene nanometer sheet, while one-dimensional electric is fine Dimension is self-assembled into three-dimensional " brick-mud " structural conductive net by the electrostatic interaction and hydrogen bond action of positive and negative charge with two-dimensional nano piece Network, finally by high pressure filter press technique one-step synthesis flexible electromagnetic shielding film.Flexible self-supporting film pair manufactured in the present embodiment Electromagnetic shielding effect is significant, and has the characteristics that high mechanical strength, bending flexibility is good, synthesis technology is simple, can meet reality The specific requirement of flexible electronic in the application of border.
Embodiment two
The present embodiment is basically the same as the first embodiment, and is particular in that:
In the present embodiment, a kind of high-strength flexible self-supporting electromagnetic wave shield film is made using the adherency of poly-dopamine PDA It is supported on nano-cellulose NFC with by silver nanowires AgNWs, obtains the poly-dopamine modified lithium that form is AgNWs@PDA-NFC Conductive fiber;And special adsorption is cooperateed with by conductive fiber, make blocky Ti3C2In lamella removed, increase Ti3C2Insert Layer rate and thin layer spacing, obtaining includes single layer and 2-10 layers of few layer of Ti3C2MXene nanometer sheet;Finally by positive and negative charge Electrostatic interaction and hydrogen bond action, by one-dimensional AgNWs@PDA-NFC conductive cellulose and two-dimensional Ti3C2MXene nanometer sheet is constructed Form three-dimensional has " brick-mud " structure type conductive network, passes through filter press technique, carries out one-step method assembling, forms flexible electromagnetism Shielded film.The present embodiment is acted on using the metal bonding of poly-dopamine surface catechol and silver nanowires AgNWs, and silver is received Rice noodles AgNWs is adhered to the surface PDA-NFC, and it is conductive to obtain the high conductivity poly-dopamine modified lithium that form is AgNWs@PDA-NFC Fiber.For the present embodiment by filter press technique, control pressure is 2.0MPa, carries out one-step method assembling, forms flexible electromagnetic shielding film. 6.67mg poly-dopamine-nano-cellulose PDA-NFC, 40mg Ti is used in the present embodiment3C2With 10g silver nanowires AgNWs, Flexible electromagnetic shielding film composite material is formed according to component ratio.
In the present embodiment, a kind of preparation method of the present embodiment high-strength flexible self-supporting electromagnetic wave shield film, including Following steps:
A. the nano-cellulose (NFC) uses nano-cellulose fiber, using poly-dopamine (PDA) modified nano fiber The poly-dopamine of 6.67mg-nano-cellulose PDA-NFC, i.e., be dispersed in 50mL deionized water, ultrasonic disperse obtains by plain (NFC) To poly-dopamine-nano-cellulose (PDA-NFC) suspension, wherein containing poly- more in poly-dopamine-nano-cellulose suspension The ratio of bar amine-nano-cellulose (PDA-NFC) is 0.013w/v%;
B. by the Ti of 40mg3C2Powder is added in the poly-dopamine-nano-cellulose suspension prepared in the step a, Ultrasonic 60min, that obtain stably dispersing includes single layer and 2-10 layers of few layer of Ti3C2MXene nanometer sheet and poly-dopamine-are received The mixing suspension of rice cellulose, wherein contains Ti in mixing suspension3C2Ratio be 0.08w/v%;
C. 10g silver nanowires (AgNWs) is added in the mixing suspension prepared in the step b, carries out magnetic force and stirs 30min is mixed, obtains being uniformly mixed Ti3C2The high conductivity poly-dopamine that MXene nanometer sheet and form are AgNWs@PDA-NFC changes Property conductive fiber final mixing suspension, wherein ratio in final mixing suspension containing AgNWs is 0.002w/v%;
D. the final suspension prepared in the step c is poured into high-pressure pressure filter, adjusting pressure is 2.0MPa, pressure Filter takes out filter cake vacuum drying, obtains flexible self-supporting electromagnetic wave shield film to there is no filtrate outflows.
Experimental test analysis:
Flexible self-supporting electromagnetic wave shield film manufactured in the present embodiment is subjected to mechanical stretch test and is electromagnetically shielded elegant energy The breaking strength of test, flexible self-supporting electromagnetic wave shield film manufactured in the present embodiment is 39.8MPa, in 8-12.5GHz range Interior X-band, electromagnetic shielding reach as high as 42.7dB.The present embodiment high-strength flexible self-supporting electromagnetic wave shield film and its preparation Silver nanowires is supported on nano-cellulose by method by the adhesive attraction of poly-dopamine, is obtained high conductivity poly-dopamine and is changed Property nano-cellulose conductive fiber, by conductive fiber assist special adsorption realize to two-dimentional Ti3C2Limellar stripping, improve insert Layer rate and interlamellar spacing obtain the Ti of single layer and few layer mixing3C2MXene nanometer sheet, while one-dimensional electric fiber and two-dimensional nano piece It is self-assembled into three-dimensional " brick-mud " structural conductive network by the electrostatic interaction and hydrogen bond action of positive and negative charge, finally by high pressure Filter press technique one-step synthesis flexible electromagnetic shielding film.Flexible self-supporting film manufactured in the present embodiment is aobvious to electromagnetic shielding effect It writes, and has the characteristics that high mechanical strength, bending flexibility is good, synthesis technology is simple, flexible electronic in practical application can be met Specific requirement.
Embodiment three
The present embodiment is substantially the same as in the previous example, and is particular in that:
In the present embodiment, a kind of high-strength flexible self-supporting electromagnetic wave shield film is made using the adherency of poly-dopamine PDA It is supported on nano-cellulose NFC with by silver nanowires AgNWs, obtains the poly-dopamine modified lithium that form is AgNWs@PDA-NFC Conductive fiber;And special adsorption is cooperateed with by conductive fiber, make blocky Ti3C2In lamella removed, increase Ti3C2Insert Layer rate and thin layer spacing, obtaining includes single layer and 2-10 layers of few layer of Ti3C2MXene nanometer sheet;Finally by positive and negative charge Electrostatic interaction and hydrogen bond action, by one-dimensional AgNWs@PDA-NFC conductive cellulose and two-dimensional Ti3C2MXene nanometer sheet is constructed Form three-dimensional has " brick-mud " structure type conductive network, passes through filter press technique, carries out one-step method assembling, forms flexible electromagnetism Shielded film.The present embodiment is acted on using the metal bonding of poly-dopamine surface catechol and silver nanowires AgNWs, and silver is received Rice noodles AgNWs is adhered to the surface PDA-NFC, and it is conductive to obtain the high conductivity poly-dopamine modified lithium that form is AgNWs@PDA-NFC Fiber.For the present embodiment by filter press technique, control pressure is 0.2MPa, carries out one-step method assembling, forms flexible electromagnetic shielding film. 10mg poly-dopamine-nano-cellulose PDA-NFC, 5mg Ti is used in the present embodiment3C2With 10g silver nanowires AgNWs, according to Component ratio forms flexible electromagnetic shielding film composite material.
In the present embodiment, a kind of preparation method of the present embodiment high-strength flexible self-supporting electromagnetic wave shield film, including Following steps:
A. the nano-cellulose (NFC) uses nano-cellulose whisker, using poly-dopamine (PDA) modified nano fiber The poly-dopamine of 10mg-nano-cellulose PDA-NFC, i.e., be dispersed in 50mL ethyl alcohol by plain (NFC), and ultrasonic disperse obtains poly- more Bar amine-nano-cellulose (PDA-NFC) suspension is wherein received in poly-dopamine-nano-cellulose suspension containing poly-dopamine- The ratio of rice cellulose (PDA-NFC) is 0.02w/v%;
B. by the Ti of 5mg3C2Powder is added in the poly-dopamine-nano-cellulose suspension prepared in the step a, Ultrasonic 60min, that obtain stably dispersing includes single layer and 2-10 layers of few layer of Ti3C2MXene nanometer sheet and poly-dopamine-are received The mixing suspension of rice cellulose, wherein contains Ti in mixing suspension3C2Ratio be 0.01w/v%;
C. 10g silver nanowires (AgNWs) is added in the mixing suspension prepared in the step b, carries out magnetic force and stirs 30min is mixed, obtains being uniformly mixed Ti3C2The high conductivity poly-dopamine that MXene nanometer sheet and form are AgNWs@PDA-NFC changes Property conductive fiber final mixing suspension, wherein ratio in final mixing suspension containing AgNWs is 0.002w/v%;
D. the final suspension prepared in the step c is poured into high-pressure pressure filter, adjusting pressure is 2.0MPa, pressure Filter takes out filter cake vacuum drying, obtains flexible self-supporting electromagnetic wave shield film to there is no filtrate outflows.
Experimental test analysis:
Flexible self-supporting electromagnetic wave shield film manufactured in the present embodiment is subjected to mechanical stretch test and is electromagnetically shielded elegant energy The breaking strength of test, flexible self-supporting electromagnetic wave shield film manufactured in the present embodiment is 34.6MPa, in 8-12.5GHz range Interior X-band, electromagnetic shielding reach as high as 20.7dB.The present embodiment high-strength flexible self-supporting electromagnetic wave shield film and its preparation Silver nanowires is supported on nano-cellulose by method by the adhesive attraction of poly-dopamine, is obtained high conductivity poly-dopamine and is changed Property nano-cellulose conductive fiber, by conductive fiber assist special adsorption realize to two-dimentional Ti3C2Limellar stripping, improve insert Layer rate and interlamellar spacing obtain the Ti of single layer and few layer mixing3C2MXene nanometer sheet, while one-dimensional electric fiber and two-dimensional nano piece It is self-assembled into three-dimensional " brick-mud " structural conductive network by the electrostatic interaction and hydrogen bond action of positive and negative charge, finally by high pressure Filter press technique one-step synthesis flexible electromagnetic shielding film.Flexible self-supporting film manufactured in the present embodiment is aobvious to electromagnetic shielding effect It writes, and has the characteristics that high mechanical strength, bending flexibility is good, synthesis technology is simple, flexible electronic in practical application can be met Specific requirement.
Combination attached drawing of the embodiment of the present invention is illustrated above, but the present invention is not limited to the above embodiments, it can be with The purpose of innovation and creation according to the present invention makes a variety of variations, under the Spirit Essence and principle of all technical solutions according to the present invention Change, modification, substitution, combination or the simplification made, should be equivalent substitute mode, as long as meeting goal of the invention of the invention, Without departing from the technical principle and inventive concept of high-strength flexible self-supporting electromagnetic wave shield film of the present invention and preparation method thereof, Belong to protection scope of the present invention.

Claims (7)

1. a kind of high-strength flexible self-supporting electromagnetic wave shield film, it is characterised in that: will using the adhesive attraction of poly-dopamine PDA Silver nanowires AgNWs is supported on nano-cellulose NFC, and it is conductive to obtain the poly-dopamine modified lithium that form is AgNWs@PDA-NFC Fiber;And special adsorption is cooperateed with by conductive fiber, make blocky Ti3C2In lamella removed, increase Ti3C2Intercalation rate With thin layer spacing, single layer or 2-10 layers of few layer of Ti are obtained3C2MXene nanometer sheet;Finally by the electrostatic interaction of positive and negative charge And hydrogen bond action, by one-dimensional AgNWs@PDA-NFC conductive cellulose and two-dimensional Ti3C2MXene nanometer sheet constructs to form three-dimensional Have " brick-mud " structure type conductive network, pass through filter press technique, carry out one-step method assembling, formed flexible electromagnetic shielding film.
2. high-strength flexible self-supporting electromagnetic wave shield film according to claim 1, it is characterised in that: utilize poly-dopamine table The metal bonding of face catechol and silver nanowires AgNWs act on, and silver nanowires AgNWs is adhered to the surface PDA-NFC, obtain Form is the high conductivity poly-dopamine modified lithium conductive fiber of AgNWs@PDA-NFC.
3. high-strength flexible self-supporting electromagnetic wave shield film according to claim 1, it is characterised in that: pass through filter press technique, control Pressure processed is 0.2~2.0MPa, carries out one-step method assembling, forms flexible electromagnetic shielding film.
4. the preparation method of high-strength flexible self-supporting electromagnetic wave shield film described in a kind of claim 1, which is characterized in that including Following steps:
A. poly-dopamine (PDA) modified nanometer cellulose (NFC) is dispersed at least 50mL solvent, ultrasonic disperse obtains poly- more Bar amine-nano-cellulose (PDA-NFC) suspension is wherein received in poly-dopamine-nano-cellulose suspension containing poly-dopamine- The ratio of rice cellulose (PDA-NFC) is 0.01~0.1w/v%;
B. by Ti3C2Powder is added in the poly-dopamine-nano-cellulose suspension prepared in the step a, and ultrasound is at least 60min obtains the single layer of stably dispersing or 2-10 layers of few layer of Ti3C2MXene nanometer sheet and poly-dopamine-nano-cellulose Mixing suspension, wherein contain Ti in mixing suspension3C2Ratio be 0.01~0.2w/v%;
C. silver nanowires (AgNWs) is added in the mixing suspension prepared in the step b, carries out magnetic agitation at least 30min obtains being uniformly mixed Ti3C2The high conductivity poly-dopamine modified lithium that MXene nanometer sheet and form are AgNWs@PDA-NFC The final mixing suspension of conductive fiber, wherein the ratio in final mixing suspension containing AgNWs is 0.001~0.01w/ V%;
D. the final suspension prepared in the step c is poured into high-pressure pressure filter, adjusts pressure, filters pressing is to there is no filters Liquid stream goes out, and takes out filter cake vacuum drying, obtains flexible self-supporting electromagnetic wave shield film.
5. the preparation method of high-strength flexible self-supporting electromagnetic wave shield film according to claim 4, it is characterised in that: in institute It states in a, the nano-cellulose (NFC) is using in nano-cellulose fiber, nano-cellulose whisker, regeneration nano-cellulose At least one one-dimensional material.
6. the preparation method of high-strength flexible self-supporting electromagnetic wave shield film according to claim 4, it is characterised in that: in institute It states in a, the solvent is using at least one of water, ethyl alcohol, isopropanol and dimethyl sulfoxide (DMSO) solvent.
7. the preparation method of high-strength flexible self-supporting electromagnetic wave shield film according to claim 4, it is characterised in that: in institute It states in d, by filter press technique, control pressure is 0.2~2.0MPa, carries out one-step method assembling, forms flexible electromagnetic shielding film.
CN201811064886.0A 2018-09-13 2018-09-13 High-strength flexible self-supporting electromagnetic shielding film and preparation method thereof Expired - Fee Related CN109348694B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811064886.0A CN109348694B (en) 2018-09-13 2018-09-13 High-strength flexible self-supporting electromagnetic shielding film and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811064886.0A CN109348694B (en) 2018-09-13 2018-09-13 High-strength flexible self-supporting electromagnetic shielding film and preparation method thereof

Publications (2)

Publication Number Publication Date
CN109348694A true CN109348694A (en) 2019-02-15
CN109348694B CN109348694B (en) 2020-04-03

Family

ID=65305024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811064886.0A Expired - Fee Related CN109348694B (en) 2018-09-13 2018-09-13 High-strength flexible self-supporting electromagnetic shielding film and preparation method thereof

Country Status (1)

Country Link
CN (1) CN109348694B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110090603A (en) * 2019-04-12 2019-08-06 湖北大学 A kind of MXene and graphene oxide composite aerogel and its preparation method and application
CN110223800A (en) * 2019-06-25 2019-09-10 武汉工程大学 A kind of preparation method of biodegradable flexible transparent conductive film
CN111132533A (en) * 2019-12-31 2020-05-08 浙江工业大学 MXene/silver nanowire composite electromagnetic shielding film
CN112930100A (en) * 2021-01-20 2021-06-08 中国电子科技集团公司第三十三研究所 Metal transparentized electromagnetic shielding material and preparation method thereof
CN113004556A (en) * 2021-02-22 2021-06-22 西安理工大学 Preparation method of CNF/MXene-silver nanowire composite film
CN113133299A (en) * 2021-04-28 2021-07-16 南京邮电大学 Adjustable multistage shielding method for improving electromagnetic shielding efficiency
CN113265908A (en) * 2021-04-14 2021-08-17 上海大学 Flexible composite electromagnetic shielding film constructed by conductive nanofiber and preparation method thereof
CN113382621A (en) * 2021-05-18 2021-09-10 浙江工业大学 Preparation method of high-conductivity MXene/silver nanowire composite electromagnetic shielding film
CN113817230A (en) * 2021-09-30 2021-12-21 南京林业大学 CNF-MXene-PEI high-strength high-conductivity material and preparation method and application thereof
CN113839016A (en) * 2021-08-23 2021-12-24 惠州锂威新能源科技有限公司 Negative electrode material and preparation method thereof
CN114150496A (en) * 2021-11-15 2022-03-08 吉林大学 Flexible nanofiber membrane with electromagnetic shielding and piezoresistive sensing performances and preparation method thereof
CN115944772A (en) * 2023-01-13 2023-04-11 石河子大学 Bacterial cellulose-polydopamine-MXene @ AgNPs antibacterial hemostatic sponge and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219066A (en) * 2012-01-19 2013-07-24 中国科学院上海硅酸盐研究所 Flexible conductive thin film compositing two-dimensional graphene and one-dimensional nanowire and preparation method thereof
US20170088429A1 (en) * 2015-09-24 2017-03-30 Samsung Electronics Co., Ltd. Mxene nanosheet and manufacturing method thereof
CN107099054A (en) * 2017-05-12 2017-08-29 深圳大学 Ti3C2The preparation method of MXene/ polymer composite wave-suction materials
CN108264885A (en) * 2018-01-18 2018-07-10 北京林业大学 A kind of electromagnetic shielding film of mechanics enhancing and preparation method thereof
CN108409286A (en) * 2018-03-14 2018-08-17 南开大学 Composite colloid material based on inorganic nanowires and preparation method thereof and 3D printing application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219066A (en) * 2012-01-19 2013-07-24 中国科学院上海硅酸盐研究所 Flexible conductive thin film compositing two-dimensional graphene and one-dimensional nanowire and preparation method thereof
US20170088429A1 (en) * 2015-09-24 2017-03-30 Samsung Electronics Co., Ltd. Mxene nanosheet and manufacturing method thereof
CN107099054A (en) * 2017-05-12 2017-08-29 深圳大学 Ti3C2The preparation method of MXene/ polymer composite wave-suction materials
CN108264885A (en) * 2018-01-18 2018-07-10 北京林业大学 A kind of electromagnetic shielding film of mechanics enhancing and preparation method thereof
CN108409286A (en) * 2018-03-14 2018-08-17 南开大学 Composite colloid material based on inorganic nanowires and preparation method thereof and 3D printing application

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110090603A (en) * 2019-04-12 2019-08-06 湖北大学 A kind of MXene and graphene oxide composite aerogel and its preparation method and application
CN110223800A (en) * 2019-06-25 2019-09-10 武汉工程大学 A kind of preparation method of biodegradable flexible transparent conductive film
CN111132533A (en) * 2019-12-31 2020-05-08 浙江工业大学 MXene/silver nanowire composite electromagnetic shielding film
CN111132533B (en) * 2019-12-31 2021-07-13 浙江工业大学 MXene/silver nanowire composite electromagnetic shielding film
CN112930100A (en) * 2021-01-20 2021-06-08 中国电子科技集团公司第三十三研究所 Metal transparentized electromagnetic shielding material and preparation method thereof
CN113004556A (en) * 2021-02-22 2021-06-22 西安理工大学 Preparation method of CNF/MXene-silver nanowire composite film
CN113004556B (en) * 2021-02-22 2023-06-27 深圳市群智科技有限公司 Preparation method of CNF/MXene-silver nanowire composite film
CN113265908A (en) * 2021-04-14 2021-08-17 上海大学 Flexible composite electromagnetic shielding film constructed by conductive nanofiber and preparation method thereof
CN113133299B (en) * 2021-04-28 2022-04-15 南京邮电大学 Adjustable multistage shielding method for improving electromagnetic shielding efficiency
CN113133299A (en) * 2021-04-28 2021-07-16 南京邮电大学 Adjustable multistage shielding method for improving electromagnetic shielding efficiency
CN113382621A (en) * 2021-05-18 2021-09-10 浙江工业大学 Preparation method of high-conductivity MXene/silver nanowire composite electromagnetic shielding film
CN113839016A (en) * 2021-08-23 2021-12-24 惠州锂威新能源科技有限公司 Negative electrode material and preparation method thereof
CN113839016B (en) * 2021-08-23 2023-08-01 惠州锂威新能源科技有限公司 Negative electrode material and preparation method thereof
CN113817230A (en) * 2021-09-30 2021-12-21 南京林业大学 CNF-MXene-PEI high-strength high-conductivity material and preparation method and application thereof
CN114150496A (en) * 2021-11-15 2022-03-08 吉林大学 Flexible nanofiber membrane with electromagnetic shielding and piezoresistive sensing performances and preparation method thereof
CN114150496B (en) * 2021-11-15 2023-07-28 吉林大学 Flexible nanofiber membrane with electromagnetic shielding and piezoresistive sensing performances and preparation method thereof
CN115944772A (en) * 2023-01-13 2023-04-11 石河子大学 Bacterial cellulose-polydopamine-MXene @ AgNPs antibacterial hemostatic sponge and preparation method and application thereof

Also Published As

Publication number Publication date
CN109348694B (en) 2020-04-03

Similar Documents

Publication Publication Date Title
CN109348694A (en) High-strength flexible self-supporting electromagnetic wave shield film and preparation method thereof
Zhu et al. Ultralight, compressible, and anisotropic MXene@ Wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions
Zhou et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers
Verma et al. A review on MXene and its’ composites for electromagnetic interference (EMI) shielding applications
Lou et al. Synthesis of magnetic wood with excellent and tunable electromagnetic wave-absorbing properties by a facile vacuum/pressure impregnation method
Yuan et al. Electromagnetic asymmetric films comprise metal organic frameworks derived porous carbon for absorption-dominated electromagnetic interference shielding
Zhan et al. Recent advances and perspectives on silver-based polymer composites for electromagnetic interference shielding
CN106183136B (en) A kind of electromagnetic shielding composite material material and its preparation and application
CN108264885A (en) A kind of electromagnetic shielding film of mechanics enhancing and preparation method thereof
Li et al. In situ fabrication of magnetic and hierarchically porous carbon films for efficient electromagnetic wave shielding and absorption
CN113004556B (en) Preparation method of CNF/MXene-silver nanowire composite film
Yang et al. Electrospun bifunctional MXene-based electronic skins with high performance electromagnetic shielding and pressure sensing
Sun et al. Biomass-derived carbon decorated with Ni0. 5Co0. 5Fe2O4 particles towards excellent microwave absorption performance
CN105038055B (en) A kind of preparation method for carbon fiber and graphite alkenyl shell layered bionic electromagnetic shielding film of classifying
CN113265908B (en) Flexible composite electromagnetic shielding film constructed by conductive nanofibers and preparation method thereof
CN113462357B (en) Wave-absorbing particles and preparation method and application of composite material thereof
Song et al. Carbon fibers embedded with aligned magnetic particles for efficient electromagnetic energy absorption and conversion
CN113293655B (en) Preparation method of MXene composite film with controllable thickness and novel structure
Wu et al. Hydrogen bonded interface self-assembled ZnFe2O4@ PDA@ Ti3C2TX MXene composites with three-dimensional core/shell/shell structure for ultrathin high-performance electromagnetic wave absorbers
Yi et al. Enhanced electromagnetic wave absorption of magnetite-spinach derived carbon composite
Feng et al. Flexible spiral-like multilayer composite with Fe3O4@ rGO/waterborne polyurethane-Ni@ polyimide for enhancing electromagnetic shielding
JP7093539B2 (en) Composite surface, its manufacturing method, and the members on which it is formed
CN109843029B (en) Wave-absorbing composite material and preparation method thereof
CN114150496A (en) Flexible nanofiber membrane with electromagnetic shielding and piezoresistive sensing performances and preparation method thereof
CN107454815B (en) Cu2O/MWCNTs composite material, preparation method and electromagnetic wave absorption application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200403