CN109346055A - Active denoising method, device, earphone and computer storage medium - Google Patents

Active denoising method, device, earphone and computer storage medium Download PDF

Info

Publication number
CN109346055A
CN109346055A CN201811407883.2A CN201811407883A CN109346055A CN 109346055 A CN109346055 A CN 109346055A CN 201811407883 A CN201811407883 A CN 201811407883A CN 109346055 A CN109346055 A CN 109346055A
Authority
CN
China
Prior art keywords
scene
audio data
noise reduction
audio
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811407883.2A
Other languages
Chinese (zh)
Inventor
李时培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anker Innovations Co Ltd
Original Assignee
Anker Innovations Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anker Innovations Co Ltd filed Critical Anker Innovations Co Ltd
Priority to CN201811407883.2A priority Critical patent/CN109346055A/en
Publication of CN109346055A publication Critical patent/CN109346055A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1783Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3035Models, e.g. of the acoustic system
    • G10K2210/30351Identification of the environment for applying appropriate model characteristics
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3048Pretraining, e.g. to identify transfer functions
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3055Transfer function of the acoustic system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/10Details of earpieces, attachments therefor, earphones or monophonic headphones covered by H04R1/10 but not provided for in any of its subgroups

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

The present invention provides a kind of active denoising method, device, earphone and computer storage mediums, which comprises obtains audio data;Scene type corresponding to the audio data is judged using trained scene classification model, and exports the classification results of scene type;Active noise reduction mode is selected according to the classification results.The present invention selects noise reduction mode according to scene type, so as to avoid noise reduction bring insecurity, and avoids the triviality of manual switching noise reduction mode.

Description

Active denoising method, device, earphone and computer storage medium
Technical field
The present invention relates to audio signal processing technique field, relate more specifically to a kind of active denoising method, device, earphone and meter Calculation machine storage medium.
Background technique
Ambient noise is the key factor for influencing earphone wearer sound quality sense and receiving.Earphone is worn in high-noise environment It listens audio or carries out voice communication, will lead to user listens sound quality to decline, more serious to make user's impaired hearing.Cause This, concern of the anti-acoustic capability of earphone by headset designs person and user.Currently, there are two types of modes for earphone noise reduction: passive noise reduction And active noise reduction.Passive noise reduction realized generally by the structure of earphone, design of material earphone and extraneous physical signal every From such as In-Ear design.And active noise reduction is that the method for taking analog or digital signal to handle offsets outside noise, one As be using signal reversely be superimposed eliminate principle, with Mike reception ambient noise, calculate the reverse signal of ambient noise, and utilize The reverse signal of loudspeaker launch environment noise, to offset outside noise.
Existing active noise reduction techniques have the following problems:
1, whether useful to user active noise reduction algorithm does not judge certain section of outside noise, can only receive to all Sound carries out noise reduction, therefore environment (such as when going across the road) may be because the sound that can't hear road using noise cancelling headphone outdoors And accident occurs;
2, existing active denoising method uses identical noise reduction mode in different environment mostly, and user exists more The puzzlement for wanting to hear sound can not be heard under kind complex scene, and the earphone of manual switching noise reduction mode uses cumbersome, user's body It tests bad.
Summary of the invention
Existing noise cancelling headphone carries out noise reduction for all noises, and can bring to user can not hear the tired of useful sound It disturbs, and manual switching noise reduction mode is using cumbersome.
Based on the above-mentioned problems in the prior art, one aspect of the present invention provides a kind of active denoising method, the side Method includes:
Obtain audio data;
Scene type corresponding to the audio data is judged using trained scene classification model, and exports scene class Other classification results;And
Active noise reduction mode is selected according to the classification results.
In one embodiment, the training method of the scene classification model includes:
Feature extraction is carried out to the original audio data for having marked scene type in audio database, obtains original audio Data characteristics and its corresponding type feature;
The original audio data feature and its corresponding type feature are input in deep neural network and are trained To obtain initial scene classification model.
In one embodiment, the training method of the scene classification model further include:
After obtaining the initial scene classification model, audio data is expanded in acquisition, and collects the expansion audio The associated audio data of data;
The expansion audio data and the associated audio data for expanding audio data are input to the depth nerve It is trained in network, so that study expansion is carried out to the initial scene classification model, to obtain the trained field Scape disaggregated model.
In one embodiment, the original audio data and/or the expansion audio data include: road surface sound and/ Or the sound that high frequency time repeats.
In one embodiment, the scene type includes complex scene and non-complex scene, described according to the classification As a result selection noise reduction mode includes:
When the scene type is non-complex scene, common noise reduction mode is selected, to carry out noise reduction to whole noises;
When the scene type is complex scene, the noise reduction mode under complex scene is selected.
In one embodiment, the noise reduction mode under the complex scene includes:
Distinguish the useful audio and useless audio in the audio data;
Active noise reduction processing is carried out to the useless audio, to the useful audio without active noise reduction processing.
In one embodiment, described to judge field corresponding to the audio data using trained scene classification model Scape classification, and the classification results for exporting scene type include:
Feature extraction is carried out to the audio data, to obtain audio frequency characteristics;
The audio frequency characteristics are inputted into the trained scene classification model, to obtain the classification knot of the scene type Fruit.
According to a further aspect of the invention, a kind of active noise reducing device is provided, the active noise reducing device includes:
Audio obtains module, for obtaining audio data;
Scene classification module, for judging scene corresponding to the audio data using trained scene classification model Classification, and export the classification results of scene type;And
Mode selection module, for selecting active noise reduction mode according to the classification results.
Another aspect according to the present invention, provides a kind of earphone, and the earphone includes storage device and processor, described to deposit The computer program run by the processor is stored on storage device, the computer program by the processor when being run Execute active denoising method of the invention.
In accordance with a further aspect of the present invention, a kind of computer storage medium is provided, computer program is stored thereon with, institute State the step of active denoising method according to the present invention and each example the method are realized when program is executed by processor.
Active denoising method, device, earphone and computer storage medium of the invention selects noise reduction mould according to scene type Formula so as to avoid noise reduction bring insecurity, and avoids the triviality of manual switching noise reduction mode.
Detailed description of the invention
The embodiment of the present invention is described in more detail in conjunction with the accompanying drawings, the above and other purposes of the present invention, Feature and advantage will be apparent.Attached drawing is used to provide to further understand the embodiment of the present invention, and constitutes explanation A part of book, is used to explain the present invention together with the embodiment of the present invention, is not construed as limiting the invention.In the accompanying drawings, Identical reference label typically represents same parts or step.
Fig. 1 is the schematic flow chart of active denoising method according to an embodiment of the present invention;
Fig. 2 is another schematic flow chart of active denoising method according to an embodiment of the present invention;
Fig. 3 is a kind of schematic block diagram of active noise reducing device of embodiment according to the present invention;
Fig. 4 is a kind of schematic block diagram of earphone of embodiment according to the present invention.
Specific embodiment
In order to enable the object, technical solutions and advantages of the present invention become apparent, root is described in detail below with reference to accompanying drawings According to example embodiments of the present invention.Obviously, described embodiment is only a part of the embodiments of the present invention, rather than this hair Bright whole embodiments, it should be appreciated that the present invention is not limited by example embodiment described herein.Based on described in the present invention The embodiment of the present invention, those skilled in the art's obtained all other embodiment in the case where not making the creative labor It should all fall under the scope of the present invention.
In the following description, a large amount of concrete details are given so as to provide a more thorough understanding of the present invention.So And it is obvious to the skilled person that the present invention may not need one or more of these details and be able to Implement.In other examples, in order to avoid confusion with the present invention, for some technical characteristics well known in the art not into Row description.
It should be understood that the present invention can be implemented in different forms, and should not be construed as being limited to propose here Embodiment.On the contrary, provide these embodiments will make it is open thoroughly and completely, and will fully convey the scope of the invention to Those skilled in the art.
The purpose of term as used herein is only that description specific embodiment and not as limitation of the invention.Make herein Used time, " one " of singular, "one" and " described/should " be also intended to include plural form, unless the context clearly indicates separately Outer mode.It is also to be understood that term " composition " and/or " comprising ", when being used in this specification, determines the feature, whole The presence of number, step, operations, elements, and/or components, but be not excluded for one or more other features, integer, step, operation, The presence or addition of component, assembly unit and/or group.Herein in use, term "and/or" includes any of related listed item and institute There is combination.
In order to thoroughly understand the present invention, detailed structure will be proposed in following description, to illustrate proposition of the present invention Technical solution.Alternative embodiment of the invention is described in detail as follows, however other than these detailed descriptions, the present invention can be with With other embodiments.
In order to solve aforementioned technical problem, the present invention provides a kind of active denoising method, device, earphone and computer and deposits Storage media, wherein the described method includes: obtaining audio data;The audio number is judged using trained scene classification model According to corresponding scene type, and export the classification results of scene type;And active noise reduction is selected according to the classification results Mode.
Active denoising method, device, earphone and computer storage medium of the invention selects noise reduction mould according to scene type Formula so as to avoid noise reduction bring insecurity, and avoids the triviality of manual switching noise reduction mode.
Active denoising method 100 of the invention is explained in detail and is illustrated below with reference to Fig. 1.In the premise not conflicted Under, the feature of each embodiment of the application can be combined with each other.As shown in Figure 1, active denoising method 100 may include as follows Step:
In step S110, audio data is obtained;
In step S120, scene type corresponding to the audio data is judged using trained scene classification model, And export the classification results of scene type;And
In step S130, noise reduction mode is selected according to the classification results.
Illustratively, active denoising method according to an embodiment of the present invention can be in the noise reduction with memory and processor It is realized in earphone.
Active denoising method according to an embodiment of the present invention can be deployed in earphone end, can also dispersedly be deployed in service Device end (or cloud) and earphone end.For example, earphone end is by reception/acquisition delivery of audio data to server end (or cloud), Active noise reduction is carried out in server end (or cloud), server end (or cloud) will be handled by active denoising method of the invention The delivery of audio data crossed gives earphone end, and earphone end is played out according to the received processed audio data of institute.
Active denoising method according to an embodiment of the present invention can select noise reduction mode according to scene type, to avoid Noise reduction bring insecurity, and avoid the triviality of manual switching noise reduction mode.
In one embodiment, described multiple as shown in Fig. 2, the scene type includes complex scene and non-complex scene It include useful audio and useless audio in the audio data of miscellaneous scene.
Specifically, as shown in Fig. 2, active denoising method 200 can specifically include: firstly, collecting audio in step S210 Data;In step S220, audio frequency characteristics are extracted for the audio data;In step S230, trained scene classification is utilized Model is classified;And in step S240, judge whether the scene type is complex scene.Wherein, when the scene class Not Wei non-complex scene when, execute step S250, select common noise reduction mode, when the scene type be complex scene when, choosing Select the noise reduction mode under complex scene.Further, when the scene type is complex scene, step S260 is first carried out, Judge whether the complex scene is new complex scene, i.e., the noise whether being stored in audio database under the scene;If The complex scene is new complex scene, thens follow the steps S270, while the noise reduction mode being switched under complex scene, The noise in the new complex scene is acquired as audio data is expanded, is input in neural network and is trained, to scene Disaggregated model carries out study expansion;If not new complex scene, S280 is thened follow the steps, the drop being switched under complex scene It makes an uproar mode, but does not acquire expansion audio data.
According to embodiments of the present invention, in step S210, can be arranged at the neck ring of neck ring formula earphone and earphone several A sound pick-up collects audio data by the sound pick-up, and extracts the noise in the audio data being collected into.
According to embodiments of the present invention, the classification results packet using trained scene classification model output scene type It includes: feature extraction being carried out to the audio data, to obtain audio frequency characteristics;The audio frequency characteristics are inputted into the trained field Scape disaggregated model, to obtain scene type locating for the audio data.
In one embodiment, the mode for carrying out feature extraction to the audio data can include but is not limited to Fu in short-term In leaf transformation (STFT).Illustratively, carrying out the obtained audio frequency characteristics of feature extraction to the audio data may include frequency Domain amplitude and/or energy information.Illustratively, carrying out the obtained audio frequency characteristics of feature extraction to the audio data can be with Including spectral phase information.Illustratively, the obtained audio frequency characteristics of feature extraction are carried out to the audio data to be also possible to Temporal signatures.In other examples, carrying out the obtained data characteristics of feature extraction to the audio data can also include appointing What he can characterize the feature of the audio data.
In one embodiment, before carrying out feature extraction to the audio data, first it can be carried out at framing Reason, and feature extraction above-mentioned is carried out frame by frame for obtaining the audio data after framing, to effectively reduce data volume, is mentioned High treatment efficiency.
In one embodiment, in step S230, the training method of the scene classification model includes: to audio data The original audio data that scene type has been marked in library carries out feature extraction, obtains original audio data feature and its corresponding Type feature;And the original audio data feature and its corresponding type feature are input in deep neural network and carried out Training, to obtain initial scene classification model.
Illustratively, the original audio data includes the sound that road surface sound and/or high frequency time repeat.Specifically Ground, road surface sound include the audio of the reaction traffic information such as the horn for vehicle sound on different road surfaces, motor sound, brake sound, tire.It is high The sound that the frequency repeats includes calling word, common name, the talk environment etc. that high frequency time repeats.To above-mentioned audio into It is entered into audio database after row data collection, and marks its audio sample data.
Illustratively, the audio data characteristics of the original audio data in audio database are by manual or automatic mark The data characteristics for the audio data that mode marks, including and be not limited in audio volume control with obvious classification characteristic part spy Sign;The extracting method of data characteristics includes and is not limited to FFT (Fast Fourier Transformation, fast Fourier change Change), MFCC (Mel-Frequency Cepstral Coefficient, Mel frequency cepstral coefficient) etc..
Illustratively, the feature extraction of the audio data includes carrying out feature after carrying out the audio data framing to mention It takes.Illustratively, the method that the audio data characteristics extract include FFT, STFT, MFCC, one frame or multiframe time domain waveform or At least one of other features of engineer.Illustratively, it includes that time domain or frequency domain are special that the audio data characteristics, which extract, Sign.
Illustratively, the training method of the scene classification model further includes based on deep neural network, by the audio Sample data feature obtains initial scene classification model as output training as input, corresponding type feature.Initial Scene classification model is capable of the scene type of preliminary resolution audio frame.Since initial scene classification model is based on depth nerve Network training, deep neural network has Episodic Memory and learning ability in initial data data basis, can pass through It obtains expansion data and constantly carries out study expansion.
In one embodiment, the study expansion includes: the acquisition after obtaining the initial scene classification model Audio data is expanded, and collects the associated audio data for expanding audio data;By the expansion audio data and described open up The associated audio data of exhibition audio data, which is input in the deep neural network, to be trained, thus to the initial scene Disaggregated model carries out study expansion, to obtain trained scene classification model.Illustratively, when recognizing new complex scene When, acquire the related sound that the audio data in the complex scene expands audio data as expansion audio data, and described in typing Frequency evidence, to expand out a variety of possibilities for the audio being likely to occur in the complex scene, thus in the base of original audio data Study expansion is carried out on plinth.
Illustratively, the expansion audio data includes: the sound that road surface sound and/or high frequency time repeat.Specifically Ground, the road surface sound that typing first appears, and learn to expand the correlation road surface sound being likely to occur;The surname that typing frequently occurs Name, and learn to expand out corresponding pet name that may be present, English name, pseudonym etc.;High frequency in typing varying environment calls word, And learn to expand out corresponding tone color and frequency that may be present;The different exchange scene of typing, and learn to expand out corresponding Exchange scene that may be present etc..To sum up, the data under several scenes are combined together and expansion is carried out to neural network It practises, subsequent ever-increasing expansion data can constantly expand scene classification model, to promote the accurate of scene Recognition Property.
In one embodiment, the noise reduction mode under the complex scene further comprises: distinguishing having in audio data With audio and useless audio;Active noise reduction processing is carried out to useless audio, to useful audio without active noise reduction processing.It can be with Classified by trained disaggregated model to audio data, to distinguish useful audio therein and useless audio, such as road The sound that face sound and/or high frequency time repeat is useful audio.The common noise reduction mode includes: to whole noises Carry out noise reduction.
Illustratively, active noise reduction processing includes carrying out active noise reduction processing based on trained filter.Wherein, described The training method of active noise reduction filter includes: outside measuring device to need to carry out active noise reduction region, at human ear wearing, Filter parameter is arranged according to vocal tract transfer function in the transmission function of sound channel.Equipment acquires the outside environmental sounds of device external, Sound can be obtained carrying out the inversion signal of the ambient sound in active noise reduction region by filter process, and reverse phase is sent out with loudspeaker It is shot out.The arrival of device external ambient sound need to carry out active noise reduction region, at human ear wearing, with the reverse phase sound being launched Superposition makes ambient noise remove or decay.
Active denoising method according to an embodiment of the present invention is described above exemplarily.Illustratively, according to the present invention The active denoising method of embodiment can with memory and processor unit or system in realize.
Active denoising method according to an embodiment of the present invention can be kept away by automatically switching noise reduction mode according to scene type Exempt from active noise reduction processing and offset insecurity brought by the sound of road surface, and avoids the cumbersome of manual switching noise reduction mode Property.
According to another aspect of the present invention, a kind of active noise reducing device is provided.It shows with reference to Fig. 3, Fig. 3 according to this hair A kind of schematic block diagram of active noise reducing device 300 of bright embodiment.
Active noise reducing device 300 includes that audio obtains module 310, scene classification module 320 and mode selection module 330. The modules can execute each step/function of active denoising method 100 described above respectively.Below only to master The major function of each module of dynamic denoising device 300 is described, and omits the detail content having been described above.
Audio obtains module 310, for obtaining audio data;
Scene classification module 320, for being judged corresponding to the audio data using trained scene classification model Scene type, and export the classification results of scene type;And
Mode selection module 330, for selecting active noise reduction mode according to the classification results.
It may include the neck ring that neck ring formula earphone is arranged in and several sound pick-ups at earphone that audio, which obtains module 310, Audio data is collected by the sound pick-up, and extracts the noise in the audio data being collected into.
According to embodiments of the present invention, scene classification module 320, which is configured that, carries out feature extraction to the audio data, with Obtain audio frequency characteristics;The audio frequency characteristics are inputted into the trained scene classification model, to obtain the audio data institute The scene type at place.
In one embodiment, the scene type includes complex scene and non-complex scene, the sound of the complex scene Frequency includes useful audio and useless audio in.
In one embodiment, the mode for carrying out feature extraction to the audio data can include but is not limited to Fu in short-term In leaf transformation (STFT).Illustratively, carrying out the obtained audio frequency characteristics of feature extraction to the audio data may include frequency Domain amplitude and/or energy information.Illustratively, carrying out the obtained audio frequency characteristics of feature extraction to the audio data can be with Including spectral phase information.Illustratively, the obtained audio frequency characteristics of feature extraction are carried out to the audio data to be also possible to Temporal signatures.In other examples, carrying out the obtained data characteristics of feature extraction to the audio data can also include appointing What he can characterize the feature of the audio data.
In one embodiment, before carrying out feature extraction to the audio data, first it can be carried out at framing Reason, and feature extraction above-mentioned is carried out frame by frame for obtaining the audio data after framing, to effectively reduce data volume, is mentioned High treatment efficiency.
In one embodiment, the training method of scene classification model used in scene classification module 320 includes: to sound Marked in frequency database scene type original audio data carry out feature extraction, obtain original audio data feature and its Corresponding type feature;And the original audio data feature and its corresponding type feature are input to deep neural network In be trained, to obtain initial scene classification model.
Illustratively, the original audio data includes the sound that road surface sound and/or high frequency time repeat.Specifically Ground, road surface sound include the audio of the reaction traffic information such as the horn for vehicle sound on different road surfaces, motor sound, brake sound, tire.It is high The sound that the frequency repeats includes calling word, common name, the talk environment etc. that high frequency time repeats.To above-mentioned audio into It is entered into audio database after row data collection, and marks its audio sample data.
Illustratively, the audio data characteristics of the original audio data in audio database are by manual or automatic mark The data characteristics for the audio data that mode marks, including and be not limited in audio volume control with obvious classification characteristic part spy Sign;The extracting method of data characteristics includes and is not limited to FFT (Fast Fourier Transformation, fast Fourier change Change), MFCC (Mel-Frequency Cepstral Coefficient, Mel frequency cepstral coefficient) etc..
Illustratively, the feature extraction of the audio data includes carrying out feature after carrying out the audio data framing to mention It takes.Illustratively, the method that the audio data characteristics extract include FFT, STFT, MFCC, one frame or multiframe time domain waveform or At least one of other features of engineer.Illustratively, it includes that time domain or frequency domain are special that the audio data characteristics, which extract, Sign.
Illustratively, the training method of the scene classification model further includes based on deep neural network, by the audio Sample data feature obtains initial scene classification model as output training as input, corresponding type feature.Initial Scene classification model be capable of the scene type of preliminary resolution audio frame.Since initial scene classification model is based on depth mind Through network training, deep neural network has Episodic Memory and learning ability in initial data data basis, Ke Yitong It crosses acquisition expansion data and constantly carries out study expansion.
In one embodiment, device 300 further includes Model Extension module, is configured to the initial scene point Class model carries out study expansion.Specifically, after obtaining the initial scene classification model, audio data is expanded in acquisition, And collect the associated audio data for expanding audio data;By the expansion audio data and the phase for expanding audio data Pass audio data, which is input in the deep neural network, to be trained, thus to the initial scene classification model It practises and expanding, to obtain trained scene classification model.Illustratively, when recognizing new complex scene, the complexity is acquired Audio data in scene expands the associated audio data of audio data as expansion audio data, and described in typing, to expand The a variety of possibilities for the audio being likely to occur in the complex scene out are opened up to carry out study on the basis of original audio data Exhibition.
Illustratively, the expansion audio data includes: the sound that road surface sound and/or high frequency time repeat.Specifically Ground, the road surface sound that typing first appears, and learn to expand the correlation road surface sound being likely to occur;The surname that typing frequently occurs Name, and learn to expand out corresponding pet name that may be present, English name, pseudonym etc.;High frequency in typing varying environment calls word, And learn to expand out corresponding tone color and frequency that may be present;The different exchange scene of typing, and learn to expand out corresponding Exchange scene that may be present etc..To sum up, the data under several scenes are combined together and expansion is carried out to neural network It practises, subsequent ever-increasing expansion data can constantly expand scene classification model, to promote the accurate of scene Recognition Property.
In one embodiment, when the scene type is non-complex scene, mode selection module 330 is using common drop It makes an uproar mode, when the scene type is complex scene, mode selection module 330 is using the noise reduction mode under complex scene.Tool Body, the noise reduction mode under the complex scene further comprises: distinguishing the useful audio and useless audio in audio data;It is right Useless audio carries out active noise reduction processing, to useful audio without active noise reduction processing.Trained classification mould can be passed through Type classifies to audio data, to distinguish useful audio therein and useless audio, such as road surface sound and/or high frequency time weight Existing sound of appearing again is useful audio.The common noise reduction mode includes: to carry out noise reduction to whole noises.
Illustratively, active noise reduction processing includes carrying out active noise reduction processing based on trained filter.Wherein, described The training method of active noise reduction filter includes: outside measuring device to need to carry out active noise reduction region, at human ear wearing, Filter parameter is arranged according to vocal tract transfer function in the transmission function of sound channel.Equipment acquires the outside environmental sounds of device external, Sound can be obtained carrying out the inversion signal of the ambient sound in active noise reduction region by filter process, and reverse phase is sent out with loudspeaker It is shot out.The arrival of device external ambient sound need to carry out active noise reduction region, at human ear wearing, with the reverse phase sound being launched Superposition makes ambient noise remove or decay.
Active noise reducing device according to an embodiment of the present invention can be kept away by automatically switching noise reduction mode according to scene type Exempt from active noise reduction processing and offset insecurity brought by the sound of road surface, and avoids the cumbersome of manual switching noise reduction mode Property.
According to another aspect of the present invention, a kind of earphone 400 is provided.Show according to the present invention with reference to Fig. 4, Fig. 4 The schematic block diagram of the earphone 400 of embodiment.Earphone 400 can be the wireless headset of such as bluetooth, WIFI earphone, or Wired earphone.
Earphone 400 includes storage device 410 and processor 420.Wherein, the storage of storage device 410 is for realizing basis The program of corresponding steps in the active denoising method of the embodiment of the present invention;Processor 420 in Running storage device 410 for depositing The program of storage, to execute the corresponding steps of active denoising method according to an embodiment of the present invention, and for realizing according to this hair Corresponding module in the active noise reducing device of bright embodiment.
According to another aspect of the present invention, a kind of storage medium is additionally provided, stores program on said storage Instruction, when described program instruction is run by computer or processor for executing the active denoising method of the embodiment of the present invention Corresponding steps, and for realizing the corresponding module in active noise reducing device according to an embodiment of the present invention.The storage medium It such as may include the storage card of smart phone, the storage unit of tablet computer, the hard disk of personal computer, read-only memory (ROM), Erasable Programmable Read Only Memory EPROM (EPROM), portable compact disc read-only memory (CD-ROM), USB storage, Or any combination of above-mentioned storage medium.The computer readable storage medium can be one or more computer-readable deposit Any combination of storage media.
In one embodiment, the computer program instructions may be implemented real according to the present invention when being run by computer Each functional module of the active noise reducing device of example is applied, and/or active noise reduction according to an embodiment of the present invention can be executed Method.
Each module in active noise reducing device according to an embodiment of the present invention can pass through master according to an embodiment of the present invention Computer program instructions that the processor operation of the electronic equipment of dynamic noise reduction stores in memory realize, or can be in root The computer instruction stored in computer readable storage medium according to the computer program product of the embodiment of the present invention is by computer It is realized when operation.
To sum up, active denoising method provided by the invention, device, earphone and computer storage medium are selected according to scene type Noise reduction mode is selected, so as to avoid noise reduction bring insecurity, and avoids the triviality of manual switching noise reduction mode.
Although describing example embodiment by reference to attached drawing here, it should be understood that above example embodiment are only exemplary , and be not intended to limit the scope of the invention to this.Those of ordinary skill in the art can carry out various changes wherein And modification, it is made without departing from the scope of the present invention and spiritual.All such changes and modifications are intended to be included in appended claims Within required the scope of the present invention.
Those of ordinary skill in the art may be aware that list described in conjunction with the examples disclosed in the embodiments of the present disclosure Member and algorithm steps can be realized with the combination of electronic hardware or computer software and electronic hardware.These functions are actually It is implemented in hardware or software, the specific application and design constraint depending on technical solution.Professional technician Each specific application can be used different methods to achieve the described function, but this realization is it is not considered that exceed The scope of the present invention.
In several embodiments provided herein, it should be understood that disclosed device and method can pass through it Its mode is realized.For example, apparatus embodiments described above are merely indicative, for example, the division of the unit, only Only a kind of logical function partition, there may be another division manner in actual implementation, such as multiple units or components can be tied Another equipment is closed or is desirably integrated into, or some features can be ignored or not executed.
In the instructions provided here, numerous specific details are set forth.It is to be appreciated, however, that implementation of the invention Example can be practiced without these specific details.In some instances, well known method, structure is not been shown in detail And technology, so as not to obscure the understanding of this specification.
Similarly, it should be understood that in order to simplify the present invention and help to understand one or more of the various inventive aspects, To in the description of exemplary embodiment of the present invention, each feature of the invention be grouped together into sometimes single embodiment, figure, Or in descriptions thereof.However, the method for the invention should not be construed to reflect an intention that i.e. claimed The present invention claims features more more than feature expressly recited in each claim.More precisely, as corresponding As claims reflect, inventive point is that all features less than some disclosed single embodiment can be used Feature solves corresponding technical problem.Therefore, it then follows thus claims of specific embodiment are expressly incorporated in the tool Body embodiment, wherein each, the claims themselves are regarded as separate embodiments of the invention.
It will be understood to those skilled in the art that any combination pair can be used other than mutually exclusive between feature All features disclosed in this specification (including adjoint claim, abstract and attached drawing) and so disclosed any method Or all process or units of equipment are combined.Unless expressly stated otherwise, this specification (is wanted including adjoint right Ask, make a summary and attached drawing) disclosed in each feature can be replaced with an alternative feature that provides the same, equivalent, or similar purpose.
In addition, it will be appreciated by those of skill in the art that although some embodiments described herein include other embodiments In included certain features rather than other feature, but the combination of the feature of different embodiments mean it is of the invention Within the scope of and form different embodiments.For example, in detail in the claims, embodiment claimed it is one of any Can in any combination mode come using.
Various component embodiments of the invention can be implemented in hardware, or to run on one or more processors Software module realize, or be implemented in a combination thereof.It will be understood by those of skill in the art that can be used in practice Microprocessor or digital signal processor (DSP) realize some moulds in article analytical equipment according to an embodiment of the present invention The some or all functions of block.The present invention is also implemented as a part or complete for executing method as described herein The program of device (for example, computer program and computer program product) in portion.It is such to realize that program of the invention can store On a computer-readable medium, it or may be in the form of one or more signals.Such signal can be from internet Downloading obtains on website, is perhaps provided on the carrier signal or is provided in any other form.
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and ability Field technique personnel can be designed alternative embodiment without departing from the scope of the appended claims.In the claims, Any reference symbol between parentheses should not be configured to limitations on claims.Word "comprising" does not exclude the presence of not Element or step listed in the claims.Word "a" or "an" located in front of the element does not exclude the presence of multiple such Element.The present invention can be by means of including the hardware of several different elements and being come by means of properly programmed computer real It is existing.In the unit claims listing several devices, several in these devices can be through the same hardware branch To embody.The use of word first, second, and third does not indicate any sequence.These words can be explained and be run after fame Claim.
The above description is merely a specific embodiment or to the explanation of specific embodiment, protection of the invention Range is not limited thereto, and anyone skilled in the art in the technical scope disclosed by the present invention, can be easily Expect change or replacement, should be covered by the protection scope of the present invention.Protection scope of the present invention should be with claim Subject to protection scope.

Claims (10)

1. a kind of active denoising method, which is characterized in that the described method includes:
Obtain audio data;
Scene type corresponding to the audio data is judged using trained scene classification model, and exports scene type Classification results;And
Active noise reduction mode is selected according to the classification results.
2. active denoising method as described in claim 1, which is characterized in that the training method packet of the scene classification model It includes:
Feature extraction is carried out to the original audio data for having marked scene type in audio database, obtains original audio data Feature and its corresponding type feature;
The original audio data feature and its corresponding type feature are input in deep neural network and are trained to obtain To initial scene classification model.
3. active denoising method as claimed in claim 2, which is characterized in that the training method of the scene classification model is also wrapped It includes:
After obtaining the initial scene classification model, audio data is expanded in acquisition, and collects the expansion audio data Associated audio data;
The expansion audio data and the associated audio data for expanding audio data are input to the deep neural network In be trained, to carry out study expansion to the initial scene classification model, to obtain the trained scene point Class model.
4. active denoising method as claimed in claim 3, which is characterized in that the original audio data and/or the expansion Audio data includes: the sound that road surface sound and/or high frequency time repeat.
5. active denoising method as described in claim 1, which is characterized in that the scene type includes complex scene and non-multiple Miscellaneous scene, it is described to include: according to classification results selection noise reduction mode
When the scene type is non-complex scene, common noise reduction mode is selected, to carry out noise reduction to whole noises;
When the scene type is complex scene, the noise reduction mode under complex scene is selected.
6. active denoising method as claimed in claim 5, which is characterized in that the noise reduction mode under the complex scene includes:
Distinguish the useful audio and useless audio in the audio data;
Active noise reduction processing is carried out to the useless audio, to the useful audio without active noise reduction processing.
7. active denoising method as described in claim 1, which is characterized in that described to be sentenced using trained scene classification model Break scene type corresponding to the audio data, and the classification results for exporting scene type include:
Feature extraction is carried out to the audio data, to obtain audio frequency characteristics;
The audio frequency characteristics are inputted into the trained scene classification model, to obtain the classification results of the scene type.
8. a kind of active noise reducing device characterized by comprising
Audio obtains module, for obtaining audio data;
Scene classification module, for judging scene class corresponding to the audio data using trained scene classification model Not, and the classification results of scene type are exported;And
Mode selection module, for selecting active noise reduction mode according to the classification results.
9. a kind of earphone, including memory, processor and the meter for being stored on the memory and running on the processor Calculation machine program, which is characterized in that the processor realizes any one of claims 1 to 7 the method when executing described program The step of.
10. a kind of computer storage medium, is stored thereon with computer program, which is characterized in that described program is held by processor The step of any one of claims 1 to 7 the method is realized when row.
CN201811407883.2A 2018-11-23 2018-11-23 Active denoising method, device, earphone and computer storage medium Pending CN109346055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811407883.2A CN109346055A (en) 2018-11-23 2018-11-23 Active denoising method, device, earphone and computer storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811407883.2A CN109346055A (en) 2018-11-23 2018-11-23 Active denoising method, device, earphone and computer storage medium

Publications (1)

Publication Number Publication Date
CN109346055A true CN109346055A (en) 2019-02-15

Family

ID=65317350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811407883.2A Pending CN109346055A (en) 2018-11-23 2018-11-23 Active denoising method, device, earphone and computer storage medium

Country Status (1)

Country Link
CN (1) CN109346055A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110191388A (en) * 2019-05-31 2019-08-30 深圳市荣盛智能装备有限公司 Bone conduction earphone noise-reduction method, device, electronic equipment and storage medium
CN110809211A (en) * 2020-01-08 2020-02-18 恒玄科技(北京)有限公司 Method for actively reducing noise of earphone, active noise reduction system and earphone
CN110972014A (en) * 2019-12-11 2020-04-07 歌尔智能科技有限公司 Parameter adjustment method and device for active noise reduction earphone and wireless earphone
CN111833895A (en) * 2019-04-23 2020-10-27 北京京东尚科信息技术有限公司 Audio signal processing method, apparatus, computer device and medium
US10834494B1 (en) 2019-12-13 2020-11-10 Bestechnic (Shanghai) Co., Ltd. Active noise control headphones
CN112767908A (en) * 2020-12-29 2021-05-07 安克创新科技股份有限公司 Active noise reduction method based on key sound recognition, electronic equipment and storage medium
CN112767965A (en) * 2019-11-01 2021-05-07 上海博泰悦臻电子设备制造有限公司 Method, system, medium, and service/terminal for generating/applying noise recognition model
WO2021114514A1 (en) * 2019-12-13 2021-06-17 Bestechnic (Shanghai) Co., Ltd. Active noise control headphones
CN113160789A (en) * 2021-03-05 2021-07-23 南京每深智能科技有限责任公司 Active noise reduction device and method
CN113259824A (en) * 2021-05-14 2021-08-13 谷芯(广州)技术有限公司 Real-time multi-channel digital hearing aid noise reduction method and system
CN113810814A (en) * 2021-08-17 2021-12-17 百度在线网络技术(北京)有限公司 Earphone mode switching control method and device, electronic equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104616662A (en) * 2015-01-27 2015-05-13 中国科学院理化技术研究所 Active noise reduction method and device
CN106205609A (en) * 2016-07-05 2016-12-07 山东师范大学 A kind of based on audio event and the audio scene recognition method of topic model and device
CN106572411A (en) * 2016-09-29 2017-04-19 乐视控股(北京)有限公司 Noise cancelling control method and relevant device
US20180254033A1 (en) * 2016-11-01 2018-09-06 Davi Audio Smart Noise Reduction System and Method for Reducing Noise
CN108764304A (en) * 2018-05-11 2018-11-06 Oppo广东移动通信有限公司 scene recognition method, device, storage medium and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104616662A (en) * 2015-01-27 2015-05-13 中国科学院理化技术研究所 Active noise reduction method and device
CN106205609A (en) * 2016-07-05 2016-12-07 山东师范大学 A kind of based on audio event and the audio scene recognition method of topic model and device
CN106572411A (en) * 2016-09-29 2017-04-19 乐视控股(北京)有限公司 Noise cancelling control method and relevant device
US20180254033A1 (en) * 2016-11-01 2018-09-06 Davi Audio Smart Noise Reduction System and Method for Reducing Noise
CN108764304A (en) * 2018-05-11 2018-11-06 Oppo广东移动通信有限公司 scene recognition method, device, storage medium and electronic equipment

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111833895B (en) * 2019-04-23 2023-12-05 北京京东尚科信息技术有限公司 Audio signal processing method, device, computer equipment and medium
CN111833895A (en) * 2019-04-23 2020-10-27 北京京东尚科信息技术有限公司 Audio signal processing method, apparatus, computer device and medium
CN110191388A (en) * 2019-05-31 2019-08-30 深圳市荣盛智能装备有限公司 Bone conduction earphone noise-reduction method, device, electronic equipment and storage medium
CN112767965A (en) * 2019-11-01 2021-05-07 上海博泰悦臻电子设备制造有限公司 Method, system, medium, and service/terminal for generating/applying noise recognition model
CN110972014A (en) * 2019-12-11 2020-04-07 歌尔智能科技有限公司 Parameter adjustment method and device for active noise reduction earphone and wireless earphone
CN110972014B (en) * 2019-12-11 2022-03-01 歌尔智能科技有限公司 Parameter adjustment method and device for active noise reduction earphone and wireless earphone
US11595748B2 (en) 2019-12-13 2023-02-28 Bestechnic (Shanghai) Co., Ltd. Active noise control headphones
US11653141B2 (en) 2019-12-13 2023-05-16 Bestechnic (Shanghai) Co., Ltd. Active noise control headphones
WO2021114514A1 (en) * 2019-12-13 2021-06-17 Bestechnic (Shanghai) Co., Ltd. Active noise control headphones
US11330359B2 (en) 2019-12-13 2022-05-10 Bestechnic (Shanghai) Co., Ltd. Active noise control headphones
US11317192B2 (en) 2019-12-13 2022-04-26 Bestechnic (Shanghai) Co., Ltd. Active noise control headphones
US10834494B1 (en) 2019-12-13 2020-11-10 Bestechnic (Shanghai) Co., Ltd. Active noise control headphones
CN111541971A (en) * 2020-01-08 2020-08-14 恒玄科技(北京)有限公司 Method for actively reducing noise of earphone, active noise reduction system and earphone
CN110809211A (en) * 2020-01-08 2020-02-18 恒玄科技(北京)有限公司 Method for actively reducing noise of earphone, active noise reduction system and earphone
CN112767908A (en) * 2020-12-29 2021-05-07 安克创新科技股份有限公司 Active noise reduction method based on key sound recognition, electronic equipment and storage medium
CN112767908B (en) * 2020-12-29 2024-05-21 安克创新科技股份有限公司 Active noise reduction method based on key voice recognition, electronic equipment and storage medium
CN113160789A (en) * 2021-03-05 2021-07-23 南京每深智能科技有限责任公司 Active noise reduction device and method
CN113259824A (en) * 2021-05-14 2021-08-13 谷芯(广州)技术有限公司 Real-time multi-channel digital hearing aid noise reduction method and system
CN113810814A (en) * 2021-08-17 2021-12-17 百度在线网络技术(北京)有限公司 Earphone mode switching control method and device, electronic equipment and storage medium
CN113810814B (en) * 2021-08-17 2023-12-01 百度在线网络技术(北京)有限公司 Earphone mode switching control method and device, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
CN109346055A (en) Active denoising method, device, earphone and computer storage medium
Mesaros et al. A multi-device dataset for urban acoustic scene classification
CN106504768B (en) Phone testing audio frequency classification method and device based on artificial intelligence
CN110246490A (en) Voice keyword detection method and relevant apparatus
CN108597498A (en) Multi-microphone voice acquisition method and device
CN107360387A (en) Video recording method and device and terminal equipment
CN111640411B (en) Audio synthesis method, device and computer readable storage medium
CN106486130A (en) Noise elimination, audio recognition method and device
CN109935226A (en) A kind of far field speech recognition enhancing system and method based on deep neural network
CN111868823B (en) Sound source separation method, device and equipment
CN111385688A (en) Active noise reduction method, device and system based on deep learning
CN112382300A (en) Voiceprint identification method, model training method, device, equipment and storage medium
CN107293305A (en) It is a kind of to improve the method and its device of recording quality based on blind source separation algorithm
CN108847221A (en) Audio recognition method, device, storage medium and electronic equipment
CN110910876A (en) Article sound searching device and control method, and voice control setting method and system
CN110232909A (en) A kind of audio-frequency processing method, device, equipment and readable storage medium storing program for executing
CN109308900A (en) Headphone device, speech processing system and method for speech processing
CN111142066A (en) Direction-of-arrival estimation method, server, and computer-readable storage medium
CN112382302A (en) Baby cry identification method and terminal equipment
CN110718229A (en) Detection method for record playback attack and training method corresponding to detection model
Diaconita et al. Do you hear what i hear? using acoustic probing to detect smartphone locations
US20230276165A1 (en) Audio signal processing method, terminal device and storage medium
CN113327631A (en) Emotion recognition model training method, emotion recognition method and emotion recognition device
CN109686359A (en) Speech output method, terminal and computer readable storage medium
CN110556114B (en) Speaker identification method and device based on attention mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190215