CN109345515A - 样本标签置信度计算方法、装置、设备及模型训练方法 - Google Patents

样本标签置信度计算方法、装置、设备及模型训练方法 Download PDF

Info

Publication number
CN109345515A
CN109345515A CN201811079398.7A CN201811079398A CN109345515A CN 109345515 A CN109345515 A CN 109345515A CN 201811079398 A CN201811079398 A CN 201811079398A CN 109345515 A CN109345515 A CN 109345515A
Authority
CN
China
Prior art keywords
confidence level
label
sample
initial labels
confidence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811079398.7A
Other languages
English (en)
Other versions
CN109345515B (zh
Inventor
姜泓羊
杨康
高孟娣
代黎明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhizhen Health Technology Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201811079398.7A priority Critical patent/CN109345515B/zh
Publication of CN109345515A publication Critical patent/CN109345515A/zh
Application granted granted Critical
Publication of CN109345515B publication Critical patent/CN109345515B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30041Eye; Retina; Ophthalmic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种样本标签置信度计算方法、装置、设备及模型训练方法。其中样本标签置信度计算方法,用于对图像深度学习模型训练的样本标签置信度进行计算,包括以下步骤:根据当前样本的学习结果计算样本初始标签的初始标签置信度;判断初始标签置信度是否满足预设置信度条件,当初始标签置信度满足预设置信度条件时,保持当前样本的最终标签为初始标签不变;当初始标签置信度不满足预设置信度条件时,从所有预设类标签中选择置信度最大的标签作为当前样本的最终标签。该方法能够应用到深度学习模型中,使得深度学习模型在学习的过程中能够保留对训练样本的历史学习记忆。能够对错标样本进行纠错,从而使得模型能够得到更好的训练。

Description

样本标签置信度计算方法、装置、设备及模型训练方法
技术领域
本发明涉及,尤其涉及一种样本标签置信度计算方法、装置、设备及模型训练方法。
背景技术
深度学习网络模型在医学领域已经取得了突出的成果,在图像分类、图像分割以及目标检测等领域均已打败传统图像处理技术。在图像分类方面,深度学习的研究者们针对性地提出了多种经典模型,如VggNet、GoogleNet以及ResNet等。目前,研究者们已经将这些经典模型应用于医学图像分类中。与传统的自然图像不同,医学图像强依赖于医学的领域知识,在实现某一特定医学影像的疾病分类时,研究者们需要专业的医生对医学图像进行标注,并且标注的精确度越高,深度学习模型的性能会越好。然而,由于医生的专业水平不同,对于医学影像的理解和判断也会有出入,收集的医学影像数据很难保证较高的纯度。此外,医生在标注过程中也会由于各种因素,如疲倦、疏忽,而导致误标的情况。对于学习资料不纯的情况,目前并没有针对性的处理方法,大多是通过发现一例错误样本纠错一例的方法进行样本集的沉淀。此外,算法模型的一些防止过拟合的方法也一定程度上抵御了数据纯度低的风险,如参数正则化、dropout处理等。还有一种特殊的网络结构teacher-student network,这类网络首先通过teacher网络学习样本集,然后student网络基于teacher网络学到的参数进行学习。Teacher网络能够在学习阶段降低错误样本的权重,student网络在学习时受到错误样本的影响会相对小些。
但是,从根本上将,深度学习模型是以数据驱动的算法,数据的纯度能够影响模型在真实应用场景的最终性能。虽然无监督模型和半监督模型的发展能够一定程度上控制数据纯度低所带来的风险,但其应用场景远比有监督模型要少。目前,有监督深度学习模型通过拓展模型宽度和深度,能够高效地学习训练样本的特征,当然也包括训练样本中的一些噪音特征。随着深度学习模型的学习能力不断加强,医学影像学习资料中的错误会以过拟合的形式被模型学习到,这会让模型的能力大打折扣。深度学习模型是人工智能领域最先进的代表算法,但相比真正的智能仍存在很多不足,其中之一表现在对训练数据的学习方面。目前的深度学习模型不会对输入的训练数据有自己的判断,而是一味地按照所给的标签,机械式地通过梯度下降等优化算法进行学习。即使模型对某一正确标签样本学习了100次,当将该样本的标签人为地标错,并输入模型进行学习时,模型不会记得前100次的正确学习,而是以百分之百的置信度去学习错误标签样本。在训练样本中存在较多错标数据时,这样的学习方式显然是不合适的,尤其是在医学影像的学习方面。
发明内容
基于此,有必要针对上述样本标签不准确的问题,提供一种能够对样本标签进行修正的样本标签置信度计算方法。
本发明提供的一种样本标签置信度计算方法,用于对图像深度学习模型训练的样本标签置信度进行计算,包括一下步骤:
根据当前样本的学习结果计算样本初始标签的初始标签置信度;
判断所述初始标签置信度是否满足预设置信度条件,并得到判断结果;
根据所述判断结果,当所述初始标签置信度满足预设置信度条件时,保持所述当前样本的最终标签为所述初始标签不变;
根据所述判断结果,当所述初始标签置信度不满足预设置信度条件时,从所有预设类标签中选择置信度最大的标签作为所述当前样本的最终标签;
其中,包含所述初始标签的所有预设标签的数量两个以上。
其中一个实施例的样本标签置信度计算方法中,所述初始标签置信度包括基础置信度和调整置信度两部分。
其中一个实施例的样本标签置信度计算方法中,对于所述初始标签的初始标签置信度在最初预设学习次数内初始标签置信度为100%。
其中一个实施例的样本标签置信度计算方法中,所述根据当前样本的学习结果计算样本初始标签的初始标签置信度,包括:
计算当前样本初始标签的基础置信度,其计算公式如下:
其中,nstart最初预设学习次数,n表示当前学习的次数,k表示输入样本的标签权重衰减度,b表示标签的滑动平均系数;
计算当前样本历史学习结果的调整置信度,其计算公式如下:
其中p(n) m表示在第n次学习中,第m类标签的置信度;p(0) m表示第m类标签的置信度初始值;函数I(m=i)表示的是当标签类别为i时输出1,否则输出0;N表示标签的类别数目;,b表示标签的滑动平均系数;
计算样本总的初始标签置信度,计算公式如下:
其中一个实施例的样本标签置信度计算方法中,所述初始标签置信度的预设置信度条件为初始标签置信度大于等于1。
基于同一发明,还提供一种图像深度学习模型训练的样本标签置信度计算的装置,包括:
初始标签置信度计算模块,用于根据当前样本的学习结果计算样本初始标签的初始标签置信度;
结果判断模块,用于判断所述初始标签置信度是否满足预设置信度条件,并得到判断结果;
第一处理模块,用于根据所述判断结果,当所述初始标签置信度满足预设置信度条件时,保持所述当前样本的最终标签为所述初始标签不变;
第二处理模块,用于根据所述判断结果,当所述初始标签置信度不满足预设置信度条件时,从所有的预设类标签中选择置信度最大的标签作为所述当前样本的最终标签;
其中,包含所述初始标签的所有预设标签的数量两个以上。
还提供一种用于图像深度学习模型训练的样本标签置信度计算的设备,包括:至少一个处理器、至少一个存储器以及存储在所述存储器中的计算机程序指令,当所述计算机程序指令被所述处理器执行时实现前述任一实施例的样本标签置信度计算方法。
还提供一种计算机可读存储介质,其上存储有计算机程序指令,当所述计算机程序指令被处理器执行时实现前述任一实施例的样本标签置信度计算方法。
还提供一种图像深度学习模型训练的方法,包括:
接收输入的样本图像,并获取每个输入样本图像的标签数据;
使用前述任一实施例所述的样本标签置信度计算方法计算输入样本的置信度;
图像分类网络模型前向传播;
输出前向传播结果;
模型训练;
图像分类网络模型反向传播;
调整图像分类网络模型参数。
还提供一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,当所述计算机程序指令被处理器执行时实现前述图像深度学习模型训练的方法。
本发明的有益效果包括:本发明提供的一种样本标签置信度计算方法,用于对图像深度学习模型训练的样本标签置信度进行计算,该方法能够应用到深度学习模型中,使得深度学习模型在学习的过程中能够保留对训练样本的历史学习记忆。输入的带有标签的样本以一定概率会被当作相反标签的样本进行学习,然而我们不必担心正确标注的样本会被错误地学习,该方法的主要目的是对错标样本进行纠错,从而使得模型能够得到更好的训练。当模型对每一个样本进行学习时,模型会结合该样本的历史学习结果来给出该样本的标签置信度,基于样本的标签置信度,模型以样本置信度为指标选择置信度最大的标签作为样本的标签进行学习。
附图说明
图1为本发明一种样本标签置信度计算的方法的一具体实施例的流程图;
图2为眼底图像出血与否深度学习模型loss下降曲线对比示意图;
图3为本发明一种图像深度学习模型训练的样本标签置信度计算的装置的结构示意图;
图4为本发明一种图像深度学习模型训练方法一个实施例的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图对本发明的样本标签置信度计算方法,对应的装置、设备,以及图像深度学习模型训练的方法的具体实施方式进行说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,本发明的样本标签置信度计算的方法,用于对图像深度学习模型训练的样本标签置信度进行计算。其中一个具体实施例如图1所示,具体包括以下步骤:
S100,根据当前样本的学习结果计算样本初始标签的初始标签置信度。
在本方法中,每个样本引入中到图像深度学习模型中时,都会初始标记一个标签,如对于眼底图像,输入的图像标签包括合格图像、过曝光图像,欠曝光图像,或者根据病变类型分为青光眼图像,正常眼底图像等。本方法执行过程中涉及每个样本均是每次学习时对初始标签的初始标签置信度进行一次计算。当然在一个深度学习模型中,包含初始标签在内,样本可能标记的预设标签的数量会在两个以上
S200,判断初始标签置信度是否满足预设置信度条件,并得到判断结果。
本方法的目的在于引用对样本初始标签置信度的概念,对样本标签进行修正。因此,可预先设置对初始标签置信度计算的公式以及评价标准,本步骤判断对当前标签初始标签置信度计算后是否满足预先设置的条件,并根据判断结果决定下一步要执行的操作。
S300,根据判断结果,当初始标签置信度满足预设置信度条件时,保持当前样本的最终标签为初始标签不变。即样本初始标签标记在本次学习验证中没有发现问题,因此当前的样本图像保持原有的样本标签不变。
S400,根据判断结果,当初始标签置信度不满足预设置信度条件时,从所有预设类标签中选择置信度最大的标签作为当前样本的最终标签。另外还需要说明的是,本方法是在图像深度学习模型训练的时候用的,在训练过程中每个循环对样本图像进行一次标签置信度的计算,可以根据多次循环的结果综合对样本置信度做出最终的判断,具体的循环学习的次数可以更具具体情况进行设定。
本实施例的样本标签置信度计算方法,用于对图像深度学习模型训练的样本标签置信度进行计算,该方法能够应用到深度学习模型中,使得深度学习模型在学习的过程中能够保留对训练样本的历史学习记忆。输入的带有标签的样本以一定概率会被当作相反标签的样本进行学习,然而我们不必担心正确标注的样本会被错误地学习,该方法的主要目的是对错标样本进行纠错,从而使得模型能够得到更好的训练。当模型对每一个样本进行学习时,模型会结合该样本的历史学习结果来给出该样本的标签置信度,基于样本的标签置信度,模型以样本置信度为指标选择置信度最大的标签作为样本的最终标签进行学习。
在一具体实施例中,将初始标签置信度包括基础置信度和调整置信度两部分。
步骤S100,根据当前样本的学习结果计算样本初始标签的初始标签置信度,包括:
S101,计算当前样本初始标签的基础置信度,其计算公式如下:
其中,nstart最初预设学习次数,n表示当前学习的次数,k表示输入样本的标签权重衰减度;其模拟退火算法,即输入的带有标签的样本以一定概率会被当作相反标签的样本进行学习,采用e为底的指数衰减,n表示epoch的次数,当n小于nstart时,pori值始终为1;当n大于nstart时,随着n值越来越大,pori值越来越小对于初始标签的初始标签置信度在最初预设学习次数内初始标签置信度为100%,也即置信度为1。
S102,计算当前样本历史学习结果的调整置信度,其计算公式如下:
其中p(n) m表示在第n次学习中,第m类标签的置信度;p(0) m表示第m类标签的置信度初始值;函数I(m=i)表示的是当标签类别为i时输出1,否则输出0;N表示标签的类别数目;,b表示标签的滑动平均系数,这里通过指数滑动平均得出第n次epoch中的样本的每一类标签的置信度;函数I(m=i)表示的是当标签类别为i时输出1,否则输出0;N表示标签的类别数目。
S103,计算样本总的初始标签置信度,计算公式如下:
最终得到由两部分综合得到的图像样本的初始标签置信度。该实施例中能够综合多次学习的结果对样本初始标签置信度进行计算。
当所述初始标签置信度不满足预设置信度条件时,也即初始标签置信度小于1时,从所有预设类标签中选择置信度最大的标签作为所述当前样本的最终标签,先计算其他预设类标签的置信度,计算公式如下:
此时,模型将以样本标签类别的置信度为指标选择性地接受某一标签作为该样本的最终标签进行学习。如可以选择置信度最大的标签作为当前样本的最终标签。从而实现对图像深度学习模型训练的样本标签进行修正,使模型能够更准确的对需要判断的图像进行判断。
本发明在深度学习模型中加入了样本标签置信度计算模块,样本标签的置信度计算包括两个部分,第一个部分是样本初始标签的置信度pori,第二个部分是样本历史学习结果的初始标签置信度pjudge-ori,两部分相加构成了样本标签的总体置信度ptotal-ori。pori值随着训练epoch的增加越来越小,即其在总体置信度中的比重会越来越小,最终趋于0;pjudge-ori值不受epoch的影响,但会随着pori值比重的减小而逐渐起到主导作用。最终使用ptotal-ori值对输入训练样本的标签做控制,或者接受初始标签,或者根据置信度ptotal-ori的值选择更适合的标签。
还需要说明的是,本发明的方法通过计算软件执行,在执行操作之前,需要首先初始化样本置信度参数nstart、k、b。
下面以一个具体实例对本发明的方法进行详细说明。
以训练眼底图像出血与否的二分类模型为例,收集正常眼底图像11000张,出血眼底图像11000张,其中各取1000张作为验证集。本发明使用GoogleNet进行训练,其主要参数设置为:batch size=16,学习率lr=0.01,学习率衰减指数garmma=0.96,衰减周期为4个epoch,此外优化方法采用的是adam算法。将样本置信度计算模块添加至网络进行学习,其样本标签置信度计算模块在模型训练过程中的详细计算如下所示:
由于眼底图像出血特征相对比较明显,因此我们设置置信度计算模块的超参数为nstart=10,k=50,b=0.9。即,从第11次epoch启动置信度计算模块,并在第50次epoch时pori下降至e-1,指数滑动平均系数为0.9,其具体的计算公式如下:
由于ptotal-ori∈[0,1],我们以ptotal-ori为概率对输入的眼底图标签进行重新选择。在训练的前10个epoch里,模型以ptotal-ori=100%的概率接受眼底图像的初始标签;从第11个epoch开始,ptotal-ori的值将会出现小于100%,甚至出现接近0的情况,当趋近于0时,模型将以很大概率摒弃初始样本标签,同时以大概率接受模型认为正确的标签。
每次完成一个epoch,模型将计算出样本对于每个类别的标签置信度指数滑动平均值p(n) m。通过多次epoch的训练,模型对于训练样本的认知情况将会趋于稳定,这里设定epoch的最大次数为500次。
由于在训练初的前几个epoch里模型就像“新生儿”一样对输入的数据没有自己的认知,我们应该让模型100%接受训练样本的初始标签,因此本发明设置了在前10个epoch中模型并没有使用样本置信度计算模块,并且此参数可以基于不同的训练数据进行调整。
本发明分别做了两次实验进行对比,第一个实验是采用传统的训练方法对Googlenet进行训练;第二个实验是在第一个实验的基础上增加了样本置信度计算模块对Googlenet再次进行训练。两次实验中的Googlenet模型超参数设置相同,并且学习策略和优化方法也相同。两次实验在验证集上的loss曲线如图2所示。从图中可以看出加入样本置信度计算模块可以加快loss的下降,提高模型的训练效率和性能。
本发明还提供一种图像深度学习模型训练的样本标签置信度计算的装置,由于此装置解决问题的原理与前述一种样本标签置信度计算方法相似,因此,该系统的实施可以按照前述方法的具体步骤实现,重复之处不再赘述。
如图3所示,其中一个实施例的图像深度学习模型训练的样本标签置信度计算的装置包括初始标签置信度计算模块100,结果判断模块200,第一处理模块300及第二处理模块400。其中,所述初始标签置信度计算模块100,用于根据当前样本的学习结果计算样本初始标签的初始标签置信度;所述结果判断模块200,用于判断初始标签置信度是否满足预设置信度条件,并得到判断结果;所述第一处理模块300,用于根据判断结果,当初始标签置信度满足预设置信度条件时,保持当前样本的最终标签为初始标签不变;所述第二处理模块400,用于根据判断结果,当初始标签置信度不满足预设置信度条件时,从所有预设类标签中选择置信度最大的标签作为当前样本的最终标签;且包含初始标签的所有预设标签的数量两个以上。
同时提供的一种用于图像深度学习模型训练的样本标签置信度计算的设备,包括:至少一个处理器、至少一个存储器以及存储在存储器中的计算机程序指令,当计算机程序指令被处理器执行时实现前述任一实施例的样本标签置信度计算的方法。
同时还提供一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,当计算机程序指令被处理器执行时实现前述任一实施例的样本标签置信度计算的方法。
同时,本发明还提供一种图像深度学习模型训练方法,如图4所示,包括以下步骤:
S001,接收输入的样本图像,并获取每个输入样本图像的标签数据;
S002,使用前述的样本标签置信度计算方法计算输入样本的置信度;
S003,图像分类网络模型前向传播;
S004,输出前向传播结果;
S005,模型训练;
S006,图像分类网络模型反向传播;
S006,调整图像分类网络模型参数。
样本标签置信度计算机标签调整渗透到模型深度学习的整个循环周期,对样本标签进行纠正。
同时还提供一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,当计算机程序指令被处理器执行时实现上述的图像深度学习模型训练方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random AccessMemory,RAM)等。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种样本标签置信度计算方法,用于对图像深度学习模型训练的样本标签置信度进行计算,其特征在于,包括:
根据当前样本的学习结果计算样本初始标签的初始标签置信度;
判断所述初始标签置信度是否满足预设置信度条件,并得到判断结果;
根据所述判断结果,当所述初始标签置信度满足预设置信度条件时,保持所述当前样本的最终标签为所述初始标签不变;
根据所述判断结果,当所述初始标签置信度不满足预设置信度条件时,从所有预设类标签中选择置信度最大的标签作为所述当前样本的最终标签;
其中,包含所述初始标签的所有预设标签的数量两个以上。
2.根据权利要求1所述的样本标签置信度计算方法,其特征在于,所述初始标签置信度包括基础置信度和调整置信度两部分。
3.根据权利要求1所述的样本标签置信度计算方法,其特征在于,对于所述初始标签的初始标签置信度在最初预设学习次数内初始标签置信度为100%。
4.根据权利要求3所述的样本标签置信度计算方法,其特征在于,所述根据当前样本的学习结果计算样本初始标签的初始标签置信度,包括:
计算当前样本初始标签的基础置信度,其计算公式如下:
其中,nstart最初预设学习次数,n表示当前学习的次数,k表示输入样本的标签权重衰减度;
计算当前样本历史学习结果的调整置信度,其计算公式如下:
其中p(n) m表示在第n次学习中,第m类标签的置信度;p(0) m表示第m类标签的置信度初始值;函数I(m=i)表示的是当标签类别为i时输出1,否则输出0;N表示标签的类别数目;b表示标签的滑动平均系数;
计算样本总的初始标签置信度,计算公式如下:
当所述初始标签置信度不满足预设置信度条件时,从样本所有预设类标签中选择置信度最大的标签作为所述当前样本的最终标签,先计算其他预设类标签的置信度,计算公式如下:
再选择置信度最大的标签作为当前样本的最终标签。
5.根据权利要求4所述的样本标签置信度计算方法,其特征在于,所述初始标签置信度的预设置信度条件为初始标签置信度大于等于1。
6.一种图像深度学习模型训练的样本标签置信度计算的装置,其特征在于,包括:
初始标签置信度计算模块,用于根据当前样本的学习结果计算样本初始标签的初始标签置信度;
结果判断模块,用于判断所述初始标签置信度是否满足预设置信度条件,并得到判断结果;
第一处理模块,用于根据所述判断结果,当所述初始标签置信度满足预设置信度条件时,保持所述当前样本的最终标签为所述初始标签不变;
第二处理模块,用于根据所述判断结果,当所述初始标签置信度不满足预设置信度条件时,所有预设类标签中选择置信度最大的标签作为所述当前样本的最终标签;
其中,包含所述初始标签的所有预设标签的数量两个以上。
7.一种用于图像深度学习模型训练的样本标签置信度计算的设备,其特征在于,包括:至少一个处理器、至少一个存储器以及存储在所述存储器中的计算机程序指令,当所述计算机程序指令被所述处理器执行时实现如权利要求1-5中任一项所述的方法。
8.一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,当所述计算机程序指令被处理器执行时实现如权利要求1-5中任一项所述的方法。
9.一种图像深度学习模型训练方法,其特征在于,包括:
接收输入的样本图像,并获取每个输入样本图像的标签数据;
使用权利要求1至5任一项所述的样本标签置信度计算方法计算输入样本的置信度;
图像分类网络模型前向传播;
输出前向传播结果;
模型训练;
图像分类网络模型反向传播;
调整图像分类网络模型参数。
10.一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,当所述计算机程序指令被处理器执行时实现如权利要求9所述的方法。
CN201811079398.7A 2018-09-17 2018-09-17 样本标签置信度计算方法、装置、设备及模型训练方法 Active CN109345515B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811079398.7A CN109345515B (zh) 2018-09-17 2018-09-17 样本标签置信度计算方法、装置、设备及模型训练方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811079398.7A CN109345515B (zh) 2018-09-17 2018-09-17 样本标签置信度计算方法、装置、设备及模型训练方法

Publications (2)

Publication Number Publication Date
CN109345515A true CN109345515A (zh) 2019-02-15
CN109345515B CN109345515B (zh) 2021-08-17

Family

ID=65305136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811079398.7A Active CN109345515B (zh) 2018-09-17 2018-09-17 样本标签置信度计算方法、装置、设备及模型训练方法

Country Status (1)

Country Link
CN (1) CN109345515B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110135508A (zh) * 2019-05-21 2019-08-16 腾讯科技(深圳)有限公司 模型训练方法、装置、电子设备及计算机可读存储介质
CN111353549A (zh) * 2020-03-10 2020-06-30 创新奇智(重庆)科技有限公司 图像标签的核验方法及装置、电子设备、存储介质
CN111612023A (zh) * 2019-02-25 2020-09-01 北京嘀嘀无限科技发展有限公司 一种分类模型构建方法及装置
CN111724867A (zh) * 2020-06-24 2020-09-29 中国科学技术大学 分子属性测定方法、装置、电子设备及存储介质
CN112131415A (zh) * 2020-09-18 2020-12-25 北京影谱科技股份有限公司 基于深度学习提高数据采集质量的方法和装置
CN112287898A (zh) * 2020-11-26 2021-01-29 深源恒际科技有限公司 一种图像的文本检测质量评价方法及系统
CN112801114A (zh) * 2021-01-20 2021-05-14 杭州依图医疗技术有限公司 确定乳腺图像的投照位信息的方法及装置
CN113239950A (zh) * 2021-01-13 2021-08-10 深延科技(北京)有限公司 标注方法、装置、电子设备及存储介质
CN113469205A (zh) * 2020-03-31 2021-10-01 阿里巴巴集团控股有限公司 数据处理方法及系统、网络模型及其训练方法、电子设备
CN114972725A (zh) * 2021-12-30 2022-08-30 华为技术有限公司 模型训练方法、可读介质和电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1559051A (zh) * 2001-09-28 2004-12-29 �ʼҷ����ֵ��ӹɷ����޹�˾ 使用部分学习模型的面部识别的系统和方法
CN102193946A (zh) * 2010-03-18 2011-09-21 株式会社理光 为媒体文件添加标签方法和使用该方法的系统
CN103632666A (zh) * 2013-11-14 2014-03-12 华为技术有限公司 语音识别方法、语音识别设备和电子设备
CN106997473A (zh) * 2016-09-08 2017-08-01 汪润春 一种基于神经网络的图像识别方法
CN107742130A (zh) * 2017-10-25 2018-02-27 西南交通大学 基于深度学习的高铁接触网支持装置紧固件故障诊断方法
WO2018138564A1 (en) * 2017-01-27 2018-08-02 Sigtuple Technologies Private Limited Method and system for detecting disorders in retinal images
CN108416382A (zh) * 2018-03-01 2018-08-17 南开大学 一种基于迭代采样和一对多标签修正的Web图像训练卷积神经网络方法
CN108431801A (zh) * 2015-12-28 2018-08-21 谷歌有限责任公司 为与用户关联的图像生成标签

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1559051A (zh) * 2001-09-28 2004-12-29 �ʼҷ����ֵ��ӹɷ����޹�˾ 使用部分学习模型的面部识别的系统和方法
CN102193946A (zh) * 2010-03-18 2011-09-21 株式会社理光 为媒体文件添加标签方法和使用该方法的系统
CN103632666A (zh) * 2013-11-14 2014-03-12 华为技术有限公司 语音识别方法、语音识别设备和电子设备
CN108431801A (zh) * 2015-12-28 2018-08-21 谷歌有限责任公司 为与用户关联的图像生成标签
CN106997473A (zh) * 2016-09-08 2017-08-01 汪润春 一种基于神经网络的图像识别方法
WO2018138564A1 (en) * 2017-01-27 2018-08-02 Sigtuple Technologies Private Limited Method and system for detecting disorders in retinal images
CN107742130A (zh) * 2017-10-25 2018-02-27 西南交通大学 基于深度学习的高铁接触网支持装置紧固件故障诊断方法
CN108416382A (zh) * 2018-03-01 2018-08-17 南开大学 一种基于迭代采样和一对多标签修正的Web图像训练卷积神经网络方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111612023A (zh) * 2019-02-25 2020-09-01 北京嘀嘀无限科技发展有限公司 一种分类模型构建方法及装置
CN110135508A (zh) * 2019-05-21 2019-08-16 腾讯科技(深圳)有限公司 模型训练方法、装置、电子设备及计算机可读存储介质
CN110135508B (zh) * 2019-05-21 2022-11-29 腾讯科技(深圳)有限公司 模型训练方法、装置、电子设备及计算机可读存储介质
CN111353549A (zh) * 2020-03-10 2020-06-30 创新奇智(重庆)科技有限公司 图像标签的核验方法及装置、电子设备、存储介质
CN111353549B (zh) * 2020-03-10 2023-01-31 创新奇智(重庆)科技有限公司 图像标签的核验方法及装置、电子设备、存储介质
CN113469205A (zh) * 2020-03-31 2021-10-01 阿里巴巴集团控股有限公司 数据处理方法及系统、网络模型及其训练方法、电子设备
CN111724867B (zh) * 2020-06-24 2022-09-09 中国科学技术大学 分子属性测定方法、装置、电子设备及存储介质
CN111724867A (zh) * 2020-06-24 2020-09-29 中国科学技术大学 分子属性测定方法、装置、电子设备及存储介质
CN112131415A (zh) * 2020-09-18 2020-12-25 北京影谱科技股份有限公司 基于深度学习提高数据采集质量的方法和装置
CN112131415B (zh) * 2020-09-18 2024-05-10 北京影谱科技股份有限公司 基于深度学习提高数据采集质量的方法和装置
CN112287898A (zh) * 2020-11-26 2021-01-29 深源恒际科技有限公司 一种图像的文本检测质量评价方法及系统
CN113239950A (zh) * 2021-01-13 2021-08-10 深延科技(北京)有限公司 标注方法、装置、电子设备及存储介质
CN112801114A (zh) * 2021-01-20 2021-05-14 杭州依图医疗技术有限公司 确定乳腺图像的投照位信息的方法及装置
CN112801114B (zh) * 2021-01-20 2024-03-08 杭州依图医疗技术有限公司 确定乳腺图像的投照位信息的方法及装置
CN114972725A (zh) * 2021-12-30 2022-08-30 华为技术有限公司 模型训练方法、可读介质和电子设备
CN114972725B (zh) * 2021-12-30 2023-05-23 华为技术有限公司 模型训练方法、可读介质和电子设备

Also Published As

Publication number Publication date
CN109345515B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
CN109345515A (zh) 样本标签置信度计算方法、装置、设备及模型训练方法
CN108021916B (zh) 基于注意力机制的深度学习糖尿病视网膜病变分类方法
CN110197493A (zh) 眼底图像血管分割方法
CN107392255A (zh) 少数类图片样本的生成方法、装置、计算设备及存储介质
CN109635862A (zh) 早产儿视网膜病plus病变分类方法
CN106295476A (zh) 人脸关键点定位方法和装置
CN110110600A (zh) 眼部oct图像病灶识别方法、装置及存储介质
CN109961098A (zh) 一种机器学习的训练数据选择方法
la Cour et al. Simulators in the training of surgeons: is it worth the investment in money and time? 2018 Jules Gonin lecture of the Retina Research Foundation
WO2020125404A1 (zh) 构建神经网络的方法、装置和计算机可读介质
CN107527070A (zh) 维度数据和指标数据的识别方法、存储介质及服务器
CN109464120A (zh) 一种糖尿病视网膜病变筛查方法、装置及存储介质
CN112580580A (zh) 一种基于数据增强与模型融合的病理性近视识别方法
CN109658385A (zh) 眼底图像判断方法及设备
CN110706203A (zh) 基于深度学习的头颅侧位片关键点自动侦测方法及系统
CN107633196A (zh) 一种基于卷积神经网络的眼球移动预测方案
CN111882066A (zh) 基于深度表征学习的反事实推理设备
Gholson et al. Problem solving, recall, and isomorphic transfer among third-grade and sixth-grade children
CN109298783A (zh) 基于表情识别的标注监控方法、装置及电子设备
CN111783852B (zh) 一种基于深度强化学习自适应式生成图像描述的方法
CN106407991A (zh) 图像属性识别方法和系统以及相关网络训练方法和系统
Hochberg et al. Decision style in a clinical reasoning corpus
CN110503072A (zh) 基于多支路cnn架构的人脸年龄估计方法
CN112614034A (zh) 一种试题推荐方法、装置、电子设备和可读存储介质
CN117173491B (zh) 医学图像的标注方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231223

Address after: Room 707, Unit 1, Building 1, Courtyard 1, Longyu Middle Street, Huilongguan Town, Changping District, Beijing, 100085

Patentee after: Beijing Zhizhen Health Technology Co.,Ltd.

Address before: 100085 room 1210, Building 29, yard 9, anningzhuang West Road, Haidian District, Beijing

Patentee before: Dai Liming

TR01 Transfer of patent right