CN109337666A - A kind of preparation method of low-density propping agent - Google Patents

A kind of preparation method of low-density propping agent Download PDF

Info

Publication number
CN109337666A
CN109337666A CN201811159503.8A CN201811159503A CN109337666A CN 109337666 A CN109337666 A CN 109337666A CN 201811159503 A CN201811159503 A CN 201811159503A CN 109337666 A CN109337666 A CN 109337666A
Authority
CN
China
Prior art keywords
low
density
propping agent
preparation
proppant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201811159503.8A
Other languages
Chinese (zh)
Inventor
熊帆
熊鹰
王正力
陈秋庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Changjiang Moulding Material (group) Ltd By Share Ltd
Original Assignee
Chongqing Changjiang Moulding Material (group) Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Changjiang Moulding Material (group) Ltd By Share Ltd filed Critical Chongqing Changjiang Moulding Material (group) Ltd By Share Ltd
Priority to CN201811159503.8A priority Critical patent/CN109337666A/en
Publication of CN109337666A publication Critical patent/CN109337666A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • C09K8/805Coated proppants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids

Abstract

The invention belongs to the fluid minerals production technique such as petroleum, natural gas and shale gas fields, specifically disclose a kind of preparation method of low-density propping agent, include the following steps, (1) the composite Nano bead that granularity is 20~140 mesh is chosen, composite Nano bead is heated to 60-85 DEG C, the composite Nano bead after heating is stirred mixing;(2) catalyst and resin, stirring is then added;(3) temperature is down to 50-75 DEG C, and curing agent and amines additives are added, and stirring forms coat;(4) temperature is down to 40-50 DEG C and takes the dish out of the pot, and the apparent density range for controlling low-density propping agent is 1.08-1.25g/cm3.This programme high production efficiency, low energy consumption, has saved production cost.

Description

A kind of preparation method of low-density propping agent
Technical field
The invention belongs to the fluid minerals production technique such as petroleum, natural gas and shale gas field, more particularly to one kind are low close Spend the preparation method of proppant.
Background technique
Hydraulic fracturing technology at home and abroad comparative maturity, petroleum fracturing propping agent is as essential in fracturing process One of article, performance superiority and inferiority will directly influence fracturing effect, and apparent density is to evaluate the important finger of proppant performance One of mark, apparent density is lower, and it is lower relative to the relative density of fracturing fluid, after proppant is mixed with pressure break carrying liquid, depending on The lower density the easier to suspend in fracturing fluid, to greatly reduce the rate of settling.It will pump farther in pumping procedure. High pumping pressure pumps fluid into well, while rock stratum of splitting is to allow hydrocarbons preferably to pass through.However, removing non-pressure It keeps, the aperture otherwise newly formed is closed.In order to open and keep path, support is injected simultaneously during pumping fluid Agent, support needed for keeping aperture with generation.When forming crack, biography when proppant passes through release hydraulic pressure in the slurry It passs, proppant forms the filling or support for staying open crack herein.
With the development that domestic petroleum fracturing propping agents produce, miscellaneous proppant emerges one after another, such as covers Film proppant.And for domestic fracturing technology mainly based on quartz sand and haydite, quartz sand is mainly used in the low closure of shallow-layer at present The fracturing work of pressure well, haydite is mainly used in middle-deep well fracturing technology, but the resistant to breakage ability of quartz sand and haydite is equal It is limited, it is difficult to adapt to hyperbaric environment.And overlay film proppant is by enhancing the intensity of proppant in aggregate surface overlay film, to improve Proppant resists broken ability.Currently, the coating film of overlay film proppant common are phenolic resin film, epoxy resin film at present With urethane resin film etc..
Present aggregate surface cladding phenolic resin film, epoxy resin film and urethane resin film etc. are primarily to improve branch The intensity of agent is supportted, so substantially to consider how that improving resin film (covers phenolic resin film, epoxy resin film and poly- ammonia at present Ester resin film etc.) intensity, but the suspendability of proppant is not improved, is applied using this kind of overlay film proppant pressure break Working hour usually requires preparing the carrying liquid with viscoelasticity, and traditional carrying liquid making method is that a large amount of increase is added in water The viscoelasticity that thick dose (substances such as guar gum) increase its own enables overlay film proppant to suspend in carrying liquid, but its disadvantage It is that will lead to that pressure break higher cost, reservoir damage are serious, pollute the environment after addition thickener, therefore be badly in need of one now The low-density propping agent that kind can suspend in clear water.
Existing proppant can be in water from there are two main classes the technology of suspension, first is that on aggregate quartz sand or haydite surface Overlay film layer of material, this material are mainly some water-soluble high-molecular materials, such as polyacrylamide, carboxymethyl cellulose, are gathered Acrylic acid, guar gum, natural plant gum etc..These materials are met water energy and are expanded rapidly, and the viscosity that can dissolve into increase water in water reaches outstanding Floating purpose.The technology for not changing suspension fundamentally from suspended prop of this technology, only thickener overlay film On aggregate, environmental issue is not solved, cost is reduced without really realizing, increases production and improves productivity.Another technology is to change The apparent density of aggregate makes the haydite or resin beads of extremely-low density.Such product is able to achieve really half to suspend in water, The rate of settling of proppant in water is reduced, but since apparent density to be greatly lowered, production cost is greatly increased, and The performance of proppant, such as broken, sour molten, water conservancy diversion performance can be substantially reduced.And the production efficiency of resin beads is low, it is at high cost etc. Defect also limits its popularization and use.
Summary of the invention
The purpose of the present invention is to provide a kind of preparation method of low-density propping agent, proppant made from this preparation method Density it is low, good from suspendability.
In order to achieve the above object, base case of the invention are as follows: a kind of preparation method of low-density propping agent, including with Lower step,
(1) the composite Nano bead that granularity is 20~140 mesh is chosen, composite Nano bead is heated to 60-85 DEG C, will be added Composite Nano bead after heat is stirred mixing;
(2) catalyst and resin, stirring is then added;
(3) temperature is down to 50-75 DEG C, and curing agent and amines additives are added, and stirring forms coat;
(4) temperature is down to 40-50 DEG C and takes the dish out of the pot, and the apparent density range for controlling low-density propping agent is 1.08-1.25g/cm3
The beneficial effect of this base case is:
1, the heating temperature of this programme composite Nano bead is 60-85 DEG C, and the usually aggregates such as haydite and quartz sand add Hot temperature is 120 DEG C or more, and heating temperature is low by comparison for this programme, few the time required to heating, thus low energy consumption, equipment It is lost low, reduces production cost.
2, this programme processing technology is few, and required time is short, has saved time cost, improves production efficiency, and then can be with Improve yield.
3, resin, catalyst, curing agent and amines additives generate resin film and are coated on composite Nano bead in this programme Surface will form nanoscale protrusion on resin film, these protrusions extend in the surface of proppant particles, and protrusion will increase support The buoyancy of agent reduces the volume density and apparent density of proppant entirety, improve proppant from suspendability.
In work progress, the reserved group in the resin film of proppant surface can react rapidly a large amount of gas of generation after meeting water Body small molecule, these gas molecules or is enclosed in resin film to expand against resin membrane body stage and thicken and increases proppant The equivalent diameter of granule, or be attached to the extension of proppant surface stage or be gathered in what proppant resin film was contacted with water body The gas blanket of one layer of package proppant particles body is formed on interface, this gas blanket formation stages between proppant particles body connect Lead to and the result closed causes simple grain proppant to form more loose cotton wadding in water body to gather shape, be greatly lowered in this way The relative density of proppant in water, so as to make proppant suspend in water, realization uses clear water (certain as liquid is carried It carries liquid and is also not only limited to clear water, can also be the carrying liquid added with thickener).When proppant moves in water, proppant resin The protrusion of curved surface on film can reduce the proppant rate of settling in water;Part is settled down to the proppant of water bottom accumulation because of it The more protrusion of surface resin film reduces the degree of packing of proppant particles stack layer, the more conventional particle of intergranular water body amount Accumulation body is more, and then working as water body can more easily push its congeries to separate and move the fluidity with very little, Realize that proppant preferably suspends in water, while making the proppant in this programme meet the basic pressure break of industry to require, The thickeners such as addition guar gum are not needed in fracturing process, greatly reduce cost, have simplified fracturing unit and technique, reduction pair The pollution of environment, and huge discharge operation may be implemented using clear water as liquid is carried, improve working efficiency.
4, apparent density range is 1.08-1.25g/cm3Proppant can form practical bulk density in pure clear water and exist 0.6~1.3g/cm3Solid-liquid mixing, when such solid-liquid mixing is applied certain mechanical stirring momentum, proppant It can make the support in mixed liquor when mixed liquor reaches certain flow rate in clear water in the state for suspending or partly suspending Agent is and can reach complete compared to conventional proppants from the reservoir fracture that suspended state carries out under long distance delivery to recovery well Crack seam height distribution support, improves the rate of growth of petroleum etc..
Further, the resin is polyalcohols resin, and the curing agent is isocyanates, polyalcohols resin hydroxyl Equivalent is 60-300, and isocyanate is the 40-80% of polyalcohols resin.Applicant has found in long-term practice, more First alcohol resinoid, isocyanates control produce the performance entirely different with current material performance, firstly, more in above range First alcohol resinoid reacts the urethane resin film for generating and having micro protrusion with isocyanate groups, due to further including amine addition Agent, polyalcohols resin can play rush to reacting for isocyanate groups with amines additives in isocyanate groups reaction process Into effect, making to generate a large amount of mutually isolated bubbles inside urethane resin film, bubble is closed in inside urethane resin film, To which bubble forms a large amount of protrusion in polyurethane resin film surface, bump sizes are between 100~500nm, and protrusion is in coat Surface random distribution has the random distribution of heterogencity in the surface resin film of single particle body, converts as homogeneous distribution shape The surface of every 100 square micron has 1~40 or so protrusion under state, and apparent density and the body for reducing low-density propping agent are close Degree, improves it from suspendability.Simultaneously because the equivalent of polyalcohols resin hydroxyl is 60-300, isocyanate is at least The 40% of polyalcohols resin also remains after isocyanates and whole polyalcohols resin reaction generation urethane resin films There are part isocyanate groups not reacted, so that there is also isocyanate groups in urethane resin film at this time, works as we Remaining isocyanate groups are reacted with water and can be surrounded in the chain element of resin film when the low-density propping agent of case meets water Gas is generated in microcosmic small space body, this small quantity gas is gradually increased volume under the promotion of reaction energy and forms bubble, and It pushes resin film to increase in the radial dimension of proppant particles, reaches the dilation for coating layer surface most preferably, thus further The apparent density and volume density of proppant are reduced, while isocyanate is at most the 80% of polyalcohols resin, makes to generate The volume of bubble be unlikely to too big and bubble caused to be easy breakage etc., and make the quantity of the bubble generated will not be excessive, make It being all mutually isolated between a large amount of bubbles, causing air bubble intensity to reduce without there are problems that bubble contacts with each other.
Further, the mass fraction of raw material is respectively 100 parts of composite Nano bead, 0.1-1 parts of resin;Catalyst quality is The 1/1000-1/100 of resin quality, the amines additives quality are the 1/100-20/100 of resin quality.It is long through applicant Phase experiment discovery keeps the suspendability of manufactured low-density propping agent preferable using the raw material of aforementioned proportion.
Further, the catalyst is one or more of alkyls tin compound and/or alkyls lead compound Mixture.
Further, alkyls tin compound is one or more of dibutyl tin dilaurate, tributyl tin, alkyl Class lead compound is one or more of lead tetraethide, isooctyl acid lead.The cost performances of above-mentioned several catalyst is high, when catalysis Between it is short, effect is good.
Further, composite Nano bead apparent density is 1.05~1.35g/cm3, circularity >=0.7, sphericity >=0.7, resistant to breakage Rate≤1%, acid solubility≤0.5%.The intensity of this particle is big, and density is very low, low-density propping agent suspension meeting obtained Very well, water conservancy diversion is good.
Further, the amines additives are one or more of diethylenetriamine, triethylamine, ethamine.These types The facilitation effect of amines additives is good, is conducive to the formation of bubble.
Further, institute's isocyanates is that toluene di-isocyanate(TDI), methylenediphenyl diisocyanates, isophorone two are different One or more of cyanate, methyl diphenylene diisocyanate.Select above-mentioned several curing agent that can accelerate resin film On formation, improve working efficiency.
Further, the polyalcohols resin is the polymer one or several kinds of ethylene glycol, propylene glycol, glycerine.
Detailed description of the invention
Fig. 1 is the microscopy figure of low-density propping agent made from embodiment 1;
Fig. 2 is the electron-microscope scanning figure of low-density propping agent in embodiment 1.
Specific embodiment
Below by specific embodiment, the present invention is described in further detail:
Raw material is selected:
Composite Nano bead, apparent density are 1.05~1.35g/cm3, circularity >=0.7, sphericity >=0.7, resistant to breakage rate≤ 1% (86mpa), acid solubility≤0.5%, granularity are 20~140 mesh.Composite Nano bead selects applicant's application in embodiment Another patent in (application number: nano combined aggregate 2018104695900).
Polyalcohols resin, ethylene glycol, propylene glycol, the polymer of glycerine are one or several kinds of, polyalcohols resin hydroxyl The equivalent of base is 60-300.
Curing agent is isocyanates, preferably toluene di-isocyanate(TDI), methylenediphenyl diisocyanates, different Fo Er One or more of ketone diisocyanate, methyl diphenylene diisocyanate.
One of catalyst, including dibutyl tin dilaurate, tributyl tin, lead tetraethide, isooctyl acid lead are several The mixture of kind.
Amines additives select one of diethylenetriamine, triethylamine, ethamine, triethylene tetramine, ethylenediamine or more Kind.
Raw material including following mass fraction, 100 parts of composite Nano bead, 0.1-1 parts of polyalcohols resin, isocyanates Quality is the 40-80% of polyalcohols resin;Catalyst quality is the 1/1000-1/100 of polyalcohols resin quality, and amine adds Adding agent quality is the 1/100-20/100 of polyalcohols resin quality.
Embodiment 1
Claim 20~40 100 parts of mesh composite Nano beads, is heated to 60-85 DEG C, the composite Nano bead of heating is poured into bowl Inside type mulling pot, 0.2 part of glycerine polymer and 0.001 part of dibutyl tin dilaurate stirring is then added, temperature is down to 55-75 DEG C, 0.3 part of diethylenetriamine stirring is added, temperature is down to 50-65 DEG C, 0.08 part of toluene di-isocyanate(TDI) stirring is added, Temperature is down to 40-50 DEG C and takes the dish out of the pot.Glycerine polymer (resin), dibutyl tin dilaurate (catalyst), diethylenetriamine (amine Class additive) and toluene di-isocyanate(TDI) (curing agent) reaction generate and urethane resin film and be coated on composite Nano bead table Face, as shown in Figure 1 and Figure 2, low-density propping agent surface obtained have nanoscale protrusion.
Embodiment 2
Claim 30~50 100 parts of mesh composite Nano beads, is heated to 60-85 DEG C, the composite Nano bead of heating is poured into bowl Inside type mulling pot, 0.4 part of glycol polymers and 0.002 part of isooctyl acid lead stirring are then added, temperature is down to 55-75 DEG C, 0.3 part of ethylenediamine stirring is added, temperature is down to 50-65 DEG C, and 0.2 part of methylenediphenyl diisocyanates stirring, temperature is added 40-50 DEG C is down to take the dish out of the pot.
Embodiment 3
Claim 40~70 100 parts of mesh composite Nano beads, is heated to 60-85 DEG C, the composite Nano bead of heating is poured into bowl Inside type mulling pot, 0.7 part of ethylene glycol polymer and 0.003 part of tributyl tin stirring is then added, temperature is down to 55-75 DEG C, 0.3 part of triethylamine stirring is added, temperature is down to 50-65 DEG C, and 0.5 part of isophorone diisocyanate stirring is added, and temperature is down to 40-50 DEG C takes the dish out of the pot.
Embodiment 4
Claim 70~140 100 parts of mesh composite Nano beads, is heated to 60-85 DEG C, the composite Nano bead of heating is poured into bowl Inside type mulling pot, polymeric blends and 0.01 part of isooctyl acid lead and two laurels of 1 part of ethylene glycol and glycerine are then added The mixture of sour dibutyl tin stirs, and temperature is down to 55-75 DEG C, and 0.3 part of ethylenediamine stirring is added, and temperature is down to 50-65 DEG C, is added Enter 0.8 part of methyl diphenylene diisocyanate stirring, temperature is down to 40-50 DEG C and takes the dish out of the pot.
Comparative example 1
This comparative example and the difference of embodiment 1 are only that and do not add diethylenetriamine (amines additives).
Comparative example 2
This comparative example and the difference of embodiment 1 are only that with 1 part of epoxy resin instead of 1 part of glycerine polymer and 0.01 part Dibutyl tin dilaurate replaces 0.04 part of toluene two different with 0.1 part of modified aromatic amine curing agent (epoxy curing agent) Cyanate stirring (the proppant surface resin film obtained is epoxy resin film).
Comparative example 3
It directly selects composite Nano bead as proppant, (surface does not contain resin film) is tested for the property to it.
Comparative example 4
This comparative example is the difference from embodiment 1 is that the mass fraction of toluene di-isocyanate(TDI) is 0.07 part.
Comparative example 5
The difference of the present embodiment and embodiment 4 is only that the mass fraction of methyl diphenylene diisocyanate is 0.85 part.
Raw material parts is mass fraction in above embodiments and comparative example.
The main performance index and measuring method of above-mentioned proppant:
Examination criteria: molten about apparent density, bulk density, circle/sphericity, percentage of damage and acid in above-described embodiment and comparative example The test of Xie Du according to " SY/T 5108-2014 hydraulic fracturing and gravel packing operations proppant performance test methods " into Row test.
The proppant of above-described embodiment and comparative example is cooked to the test of mattress height, suspend ratio and suspension time simultaneously.
1. suspension ratio
It suspends than being that suspension amount in upper layer accounts for the percentage of total proppant to evaluation proppant in water.
We use the mass ratio of proppant and water to evaluate for the case where 1:4 in test.Experimental method is in 300ml Wide-mouth bottle in, with graduated cylinder measure 200ml water pour into wide-mouth bottle, precise 50g proppant pours into the wide-mouth bottle for having filled water In, it closes the lid, firmly shakes 30 times up and down, it is static firmly to shake 30 times up and down after the same method after ten minutes, it is static The proppant for filtering out upper layer suspension with filter paper afterwards, the quality that the proppant filtered out is weighed after drying is m (g), and b is compared in suspension =m/50*100%.
2. mattress height
Mattress height is lower layer height of the 20g proppant in the 100ml graduated cylinder equipped with 100ml clear water.
Since laboratory can only do static suspension test, so the mattress height of lower layer is also evaluate suspendability one Item important indicator.
The amount of plastic wound packages 100ml water of 100ml is used in experiment, precise 20g proppant pours into the graduated cylinder for having filled water, Tightly cover graduated cylinder mouth with the right hand, left hand is picked up graduated cylinder and is gently reversed 10 times up and down, it is static after ten minutes, after the same method on It is lower to reverse 10 times, there is vernier caliper to measure the bed height of lower layer support agent after static.
3. suspension time
Suspension time refers to the maximum duration that can freely suspend in water.
We use the mass ratio of proppant and water to evaluate for the case where 1:4 in test.Experimental method is in 300ml Wide-mouth bottle in, with graduated cylinder measure 200ml water pour into wide-mouth bottle, precise 50g proppant pours into the wide-mouth bottle for having filled water In, close the lid, up and down firmly shake 30 times, it is static after ten minutes, after the same method up and down firmly shake 30 times, then By the static placement of wide-mouth bottle, the maximum duration that timing measuring proppant freely suspends in water.
Embodiment 1- embodiment 4, the Example Test Data of comparative example 1- comparative example 5 are as follows:
" certainly outstanding composite index " is the overall target for evaluating proppant suspendability in clear water in upper table, by mattress height Ratio codetermines with suspending, and engineering significance is practical bulk density of the proppant in clear water, and value is smaller to be equivalent in water In relative density with regard to smaller, then the suspension of proppant is better, suspension time is longer.
(b is suspension ratio, h is mattress height)
Embodiment 1 is only in resin film compared with comparative example 1 containing diethylenetriamine (amines additives), according to upper table, Conclude that bulk density and apparent density are remarkably decreased proppant made from comparative example 1 compared with Example 1, suspension time Ratio is significantly increased with suspending, i.e. proppant is significantly improved from suspendability, illustrates the tool of proppant surface made from embodiment 1 There are more protrusions, can release amines additives has preferable catalytic action for the formation of proppant surface protrusion, leads to Crossing amines additives makes greatly improving from suspendability for proppant.
It is epoxy resin film that the embodiment 1 of comparative example 2, which is comparably proppant surface resin film, does not have polyurethane resin Film.According to upper table, it was therefore concluded that: comparative example 2 compare the bulk density and apparent density of proppant for embodiment 1 it is significant on It rises, suspension time and suspending is significantly reduced than, i.e. proppant is substantially reduced from suspendability, illustrates urethane resin film phase Compared with can be improved for epoxy resin film proppant from suspendability.
According to upper table, embodiment 1 bulk density and apparent density compared with comparative example 3 are remarkably decreased, suspension time and outstanding Floating ratio is significantly increased, i.e., this programme greatly improves for the composite Nano bead of not overlay film from suspendability.
Comparative example 4 is distinguished compared with Example 1 and is that the mass fraction of toluene di-isocyanate(TDI) is 0.07 part, at this time first Phenylene diisocyanate (isocyanates) and the quality accounting of glycerine polymer (polyalcohols resin) areThe accounting of isocyanates and polyalcohols resin is in embodiment 1Comparison The quality of 4 isocyanates of example is less than the 40% of polyalcohols resin quality, according to upper table, it can be deduced that 4 proppant of comparative example Suspension time is decreased obviously with suspension than, is significantly improved from outstanding composite index, i.e., comparative example 4 is compared and hanged certainly for embodiment 1 Buoyancy can substantially reduce, and when illustrating that the quality of isocyanates is less than the 40% of polyalcohols resin quality, proppant suspends certainly Performance is substantially reduced.
Comparative example 5 is distinguished compared with Example 4 and is only that the mass fraction of methyl diphenylene diisocyanate is 1 part, Polymeric blends (the polyalcohols tree of methyl diphenylene diisocyanate (isocyanates) and ethylene glycol and glycerine at this time Rouge) quality accounting beThe accounting of isocyanates and polyalcohols resin is in embodiment 4The quality of isocyanates is greater than the 80% of polyalcohols resin quality in comparative example 5, can according to upper table It is decreased obviously, is significantly improved from outstanding composite index, i.e. comparative example than with obtaining the suspension time of 5 proppant of comparative example and suspending 5 for embodiment 4 from suspendability compared to substantially reducing, and illustrates that the quality of isocyanates is greater than polyalcohols resin quality When 80%, proppant is substantially reduced from suspendability.
To sum up, the quality of isocyanates is controlled in the range of polyalcohols resin quality 40%-80% in this programme When, proppant all has preferably from suspendability, meets proppant in clear water from the requirement to suspend.And when isocyanates Lower than polyalcohols resin quality less than 40% or when being greater than 80%, proppant is decreased obviously quality from suspendability, difficult To meet the requirement to suspend in clear water.
What has been described above is only an embodiment of the present invention, and the common sense such as well known specific structure and characteristic are not made herein in scheme Excessive description.It, without departing from the structure of the invention, can be with it should be pointed out that for those skilled in the art Several modifications and improvements are made, these also should be considered as protection scope of the present invention, these all will not influence what the present invention was implemented Effect and patent practicability.The scope of protection required by this application should be based on the content of the claims, in specification The records such as specific embodiment can be used for explaining the content of claim.

Claims (9)

1. a kind of preparation method of low-density propping agent, it is characterised in that: include the following steps,
(1) the composite Nano bead that granularity is 20~140 mesh is chosen, composite Nano bead is heated to 60-85 DEG C, after heating Composite Nano bead be stirred mixing;
(2) catalyst and resin, stirring is then added;
(3) temperature is down to 50-75 DEG C, and curing agent and amines additives are added, and stirring forms coat;
(4) temperature is down to 40-50 DEG C and takes the dish out of the pot, and the apparent density range for controlling low-density propping agent is 1.08-1.25g/cm3
2. a kind of preparation method of low-density propping agent according to claim 1, it is characterised in that: the resin is polynary Alcohol resinoid, the curing agent are isocyanates, and the equivalent of polyalcohols resin hydroxyl is 60-300, and isocyanate is more The 40-80% of first alcohol resinoid.
3. a kind of preparation method of low-density propping agent according to claim 1, it is characterised in that: the mass fraction of raw material Respectively 100 parts of composite Nano bead, 0.1-1 parts of resin;Catalyst quality is the 1/1000-1/100 of resin quality, the amine Class additive quality is the 1/100-20/100 of resin quality.
4. a kind of preparation method of low-density propping agent according to claim 1, it is characterised in that: the catalyst is alkane The mixture of one or more of base class tin compound and/or alkyls lead compound.
5. a kind of preparation method of low-density propping agent according to claim 4, it is characterised in that: alkyls tin compound For one or more of dibutyl tin dilaurate, tributyl tin, alkyls lead compound is lead tetraethide, isooctyl acid lead One or more of.
6. a kind of preparation method of low-density propping agent according to claim 1, it is characterised in that: composite Nano bead view Density is 1.05~1.35g/cm3, circularity >=0.7, sphericity >=0.7, resistant to breakage rate≤1%, acid solubility≤0.5%.
7. a kind of preparation method of low-density propping agent according to claim 1, it is characterised in that: the amines additives For one or more of diethylenetriamine, triethylamine, ethamine.
8. a kind of preparation method of low-density propping agent according to claim 2, it is characterised in that: institute's isocyanates is first Phenylene diisocyanate, methylenediphenyl diisocyanates, isophorone diisocyanate, in methyl diphenylene diisocyanate One or more.
9. a kind of preparation method of low-density propping agent according to claim 2, it is characterised in that: the polyalcohols tree Rouge is the polymer one or several kinds of ethylene glycol, propylene glycol, glycerine.
CN201811159503.8A 2018-09-30 2018-09-30 A kind of preparation method of low-density propping agent Withdrawn CN109337666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811159503.8A CN109337666A (en) 2018-09-30 2018-09-30 A kind of preparation method of low-density propping agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811159503.8A CN109337666A (en) 2018-09-30 2018-09-30 A kind of preparation method of low-density propping agent

Publications (1)

Publication Number Publication Date
CN109337666A true CN109337666A (en) 2019-02-15

Family

ID=65308006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811159503.8A Withdrawn CN109337666A (en) 2018-09-30 2018-09-30 A kind of preparation method of low-density propping agent

Country Status (1)

Country Link
CN (1) CN109337666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003880A (en) * 2019-05-22 2019-07-12 天津市擎华能源技术有限责任公司 A kind of pressure break drag reducer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104797681A (en) * 2012-09-25 2015-07-22 优选技术有限责任公司 Coated and cured proppants
US20160333259A1 (en) * 2015-05-13 2016-11-17 Preferred Technology, Llc High performance proppants
US20170058190A1 (en) * 2009-10-20 2017-03-02 Self-Suspending Proppant Llc Proppants for hydraulic fracturing technologies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170058190A1 (en) * 2009-10-20 2017-03-02 Self-Suspending Proppant Llc Proppants for hydraulic fracturing technologies
CN104797681A (en) * 2012-09-25 2015-07-22 优选技术有限责任公司 Coated and cured proppants
US20160333259A1 (en) * 2015-05-13 2016-11-17 Preferred Technology, Llc High performance proppants

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003880A (en) * 2019-05-22 2019-07-12 天津市擎华能源技术有限责任公司 A kind of pressure break drag reducer

Similar Documents

Publication Publication Date Title
CN109111911A (en) A kind of preparation process from suspension overlay film backing material
CN106350043B (en) Complex Temporary Blocking agent and Complex Temporary Blocking method for temporarily blocking up in turnaround fracture
CN103764948B (en) For certainly-suspended prop of hydraulic fracture
CN109135721A (en) A kind of preparation process from suspension covering material
CN109337666A (en) A kind of preparation method of low-density propping agent
CN109233791A (en) A kind of preparation method of riverfrac treatment proppant
CN109135720A (en) A kind of low-density propping agent
CN108949140A (en) One kind is from suspension type support agent
CN109575906A (en) The polymer composite proppant particles and its preparation method of resin film cladding and application
CN109233794A (en) One kind is from suspension riverfrac treatment proppant production method
CN105154058B (en) Purposes and preparation method thereof of the multi-arm star copolymer as pressure break diversion agent
CN109233789A (en) One kind is from suspension overlay film backing material
CN109181676A (en) A kind of overlay film backing material
CN109054802A (en) A kind of overlay film proppant
CN109321228A (en) A kind of covering material
CN110305644B (en) Preparation and application of leakage-reducing flexible colloidal particle well-flushing fluid
CN109233796A (en) A kind of certainly outstanding proppant
CN109385261A (en) A kind of preparation method from outstanding proppant
CN109021960A (en) From suspended prop
CN109181675A (en) A kind of preparation method of overlay film backing material
CN106281298A (en) A kind of new method prepared from suspension haydite
CN114933893B (en) Self-suspending sand suspension agent for clean water fracturing propping agent, and preparation method and application thereof
CN109337668A (en) One kind is from suspension covering material
CN109294552A (en) The preparation method of overlay film proppant
CN109281645A (en) Using the construction method from suspension riverfrac treatment proppant

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190215