CN109328382A - 用于将数字音频信号从第一频域变换到第二频域的音频解码器及方法 - Google Patents

用于将数字音频信号从第一频域变换到第二频域的音频解码器及方法 Download PDF

Info

Publication number
CN109328382A
CN109328382A CN201780038374.4A CN201780038374A CN109328382A CN 109328382 A CN109328382 A CN 109328382A CN 201780038374 A CN201780038374 A CN 201780038374A CN 109328382 A CN109328382 A CN 109328382A
Authority
CN
China
Prior art keywords
frequency
frame
domain
video signals
digital audio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780038374.4A
Other languages
English (en)
Other versions
CN109328382B (zh
Inventor
P·埃克斯特兰德
R·特辛
L·维尔蒙斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dolby International AB
Original Assignee
Dolby International AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dolby International AB filed Critical Dolby International AB
Publication of CN109328382A publication Critical patent/CN109328382A/zh
Application granted granted Critical
Publication of CN109328382B publication Critical patent/CN109328382B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • G10L21/0388Details of processing therefor

Abstract

本发明提供一种音频解码器及在所述音频解码器中用于将数字音频信号从第一频域变换到第二频域的方法。针对所述数字音频信号的每一所接收帧,所述方法识别频率范围的上限,且如果所述频率范围的所述上限比所述数字音频信号的所述帧的尼奎斯特频率低超过阈值量,那么通过移除所述数字音频信号的所述帧的高于所述频率范围的所述经识别上限的频谱带而将所述数字音频信号的所述帧的所述尼奎斯特频率从其原始值降低到经减小值。此后,经由中间时域将所述数字音频信号的所述帧从所述第一频域变换到所述第二频域。

Description

用于将数字音频信号从第一频域变换到第二频域的音频解码 器及方法
技术领域
本发明涉及音频编码领域。特定来说,本发明涉及在音频解码器中将数字音频信号从第一频域变换到第二频域。
背景技术
在音频编码系统中,针对不同编码及解码步骤利用不同性质的不同滤波器组是常见的。举例来说,经修改离散余弦变换(MDCT)可用于在将数字音频信号从编码器发射到解码器之前对数字音频信号的波形进行编码,且正交镜像滤波器(QMF)组可用于在解码器中对数字音频信号进行高频率及空间合成。在此情形中,必须将数字音频信号从与第一滤波器组相关联的第一频域变换,或变换到与第二滤波器组相关联的第二域,或者在解码器中变换。
存在结合将数字音频信号从一个频域变换到另一频域而对数字音频信号进行子取样以便减小变换的大小的系统。这对于带受限的数字音频信号是可能的,且减小计算复杂性。举例来说,高效高级音频编码(HE-AAC)编解码器以双速率模式操作,其中以2的因子对变换进行子取样。US2016035329A1中给出另一实例,其中使用数字音频信号的子取样来降低计算复杂性。在这些系统中,对变换进行子取样的因子是恒定的,且因此不适于数字音频信号的变化。因此存在改善空间。
附图说明
在以下内容中,将更详细地且参考所附图式描述实例性实施例,在所附图式上:
图1图解说明根据实施例的音频解码器。
图2是根据实施例的用于将数字音频信号从第一频域变换到第二频域的方法的流程图。
图3图解说明在图2的方法的不同步骤期间数字音频信号的频谱。
图4图解说明第一与第二滤波器组的窗口之间的不对准。
图5图解说明数字音频信号的帧序列。
图6也图解说明数字音频信号的帧序列。
图7图解说明根据一实施例的时序及缓冲器实例。
具体实施方式
鉴于上文,本发明的目的是提供高效地且适应性地将数字音频信号从第一频域变换到第二频域的方法及音频解码器。
I.概述
根据第一方面,此目标通过在音频解码器中用于将数字音频信号从第一频域变换到第二频域的方法而实现,所述方法包括:
接收在第一频域中表示的数字音频信号的后续帧,所述数字音频信号具有为所述数字音频信号的原始取样速率的一半的尼奎斯特频率,
针对所述数字音频信号的每一帧:
通过分析所述数字音频信号的频谱内容而识别所述数字音频信号的频率范围,
如果所述频率范围比所述尼奎斯特频率低超过阈值量,那么通过移除所述数字音频信号的高于所述经识别频率范围的频谱带而将所述数字音频信号的所述尼奎斯特频率从其原始值降低到经减小值,
经由中间时域将所述数字音频信号从所述第一频域变换到第二频域,其中所述数字音频信号在所述中间时域中具有相对于所述原始取样速率以子取样因子减小的取样速率,所述子取样因子由所述尼奎斯特频率的所述原始值与所述尼奎斯特频率的所述经减小值之间的比率定义,及
将高于所述尼奎斯特频率的所述经减小值的频谱带附加到所述第二频域中的所述数字音频信号,以便将所述尼奎斯特频率恢复到其原始值。
在此布置的情况下,在逐帧基础上做出关于是否应减小尼奎斯特频率的决策。针对每一帧,基于所述帧中的数字音频信号的频率范围而做出所述决策。如果频率范围比尼奎斯特频率低超过阈值量(即,如果发现在所述帧中数字音频信号是带受限的),那么做出减小尼奎斯特频率的决策。以此方式,所述方法可适于数字音频信号的每一帧中的频率内容。
如果做出在帧中减小尼奎斯特频率的决策,那么通过移除高于相对于所述帧识别的频率范围的频谱带而将尼奎斯特频率从其原始值减小到经减小值。因此,计算复杂性得以减小,因为在经由中间时域将数字音频信号从第一频域变换到第二频域的过程中省略所移除频谱带。换句话说,变换的大小可以子取样因子减小,借此使变换在计算上需求较小。此外,由于频率范围可在帧之间变化且尼奎斯特频率的经减小值取决于频率范围,因此所述方法允许不同帧中尼奎斯特频率的不同经减小值。以此方式,所述方法可进一步适于帧之间频率内容的变化。
在频域中减小尼奎斯特频率对应于在时域中对数字音频信号进行子取样。尼奎斯特频率的减小因此具有在被变换到时域时将对数字音频信号进行子取样的效应。特定来说,在时域中对数字音频信号进行子取样的因子由尼奎斯特频率的原始值与尼奎斯特频率的经减小值之间的比率给出。
第一频域可通常与第一时间/频率变换相关联。第二频域可通常与第二时间/频率变换相关联。第一频率变换可与第一滤波器组相关联且第二频域可与第二滤波器组相关联。
数字音频信号与取样速率相关联。尼奎斯特频率是数字音频信号的取样速率的一半。这是可以其数字版本表示的原始音频信号的最高频率。尼奎斯特频率因此是用于在第一频域中表示数字音频信号的频率标度上的最高频率。
数字音频信号可在解码器处以帧接收。数字音频信号的帧表示数字音频信号的预定义持续时间的时间部分。
频率范围通常意指数字音频信号的具有非零频谱内容的带宽或最高频率。
频谱内容通常意指数字音频信号的频域表示中针对不同频谱带的数字音频信号的值或系数。
频谱带意指数字音频信号的频域表示中的频率间隔。
频域表示通常意指构成时域/频域变换或滤波器组的输出的系数或子带样本。术语变换或滤波器组在本发明中可互换地使用。
如上文所论述,尼奎斯特频率的经减小值可在帧之间变化。这意味着所述方法可在从一个帧进行到下一帧时从尼奎斯特频率的一个经减小值切换到尼奎斯特频率的另一经减小值。特定来说,可依据前一帧的尼奎斯特频率的经减小值与当前帧的频率范围的关系而设定当前帧的尼奎斯特频率的经减小值。举例来说,依据当前帧的频率范围是高于还是低于前一帧中的尼奎斯特频率的经减小值,可分别增加或降低尼奎斯特频率的经减小值。这允许以顺序方式做出关于如何调整尼奎斯特频率的经减小值的决策。
根据实例性实施例,如果当前帧的频率范围比前一帧的尼奎斯特频率的经减小值超出超过阈值量,那么将当前帧的尼奎斯特频率的经减小值设定为大于前一帧的尼奎斯特频率的经减小值(即,增加尼奎斯特频率)。在这些情况下增加尼奎斯特频率的经减小值是优选的,以便防止例如混叠及带宽截短等伪像。通常,将阈值量设定为零,使得如果带宽增加超出来自前一帧的尼奎斯特频率的经减小值,那么总是增加尼奎斯特频率的经减小值。频率范围超出尼奎斯特频率的经减小值意指频率范围中的最高频率超出尼奎斯特频率的经减小值。
当前帧的频率范围的最高频率类似于前一帧的尼奎斯特频率的经减小值的情形也可如此。在所述情形中,所述方法可决定维持来自前一帧的尼奎斯特频率的经减小值,因为就计算复杂性来说通过调整尼奎斯特频率的经减小值将不引入(或引入很少)伪像及/或将获得很少增益。(事实上,在此情况下,切换到尼奎斯特频率的另一经减小值可在最坏情形中导致计算复杂性的增加,因为将需要在时域中对数字音频信号进行重新取样,如下文将进一步解释)。更详细地说,如果当前帧的频率范围的最高频率与前一帧的尼奎斯特频率的经减小值相差不超过阈值量,那么将当前帧的尼奎斯特频率的经减小值设定为等于前一帧的尼奎斯特频率的经减小值。
在当前帧的频率范围显著低于(如由阈值量定义)前一帧的尼奎斯特频率的经减小值的情形中,出于计算复杂性的原因在从前一帧进行到当前帧时降低尼奎斯特频率的经减小值(即,进一步降低尼奎斯特频率)可为有益的。特定来说,如果当前帧的频率范围比前一帧的尼奎斯特频率的经减小值低超过阈值量,那么可将当前帧的尼奎斯特频率的经减小值设定为低于前一帧的尼奎斯特频率的经减小值。举例来说,阈值量可对应于前一帧的尼奎斯特频率的经减小值的20%。
然而,如果尼奎斯特频率的经减小值在帧之间太频繁地改变可为不合意的。依据下文所描述的子取样的特定实施方案,这将导致不合意地高的计算复杂性及/或可听伪像。优选地,如果下一帧的频率范围比前一帧的尼奎斯特的经减小值超出超过阈值量,那么所述方法总是从前一帧到当前帧增加尼奎斯特频率的经减小值。这是出于避免可听伪像(例如限制频谱内容)的原因。
然而,当从前一帧到当前帧降低尼奎斯特频率的经减小值时,还可考虑到预定义数目个先前帧的频率范围。出于此目的,可进一步依据预定义数目个先前帧的频率范围而设定当前帧的尼奎斯特频率的经减小值。以此方式,可避免其中在每一帧中不必要地调整尼奎斯特频率的经减小值的情况。
举例来说,可存在遍及一定数目个帧频率范围保持基本上相同的需要。因此,如果另外当前帧的频率范围与预定义数目个先前帧中的每一者的频率范围之间的差的绝对值各自不超过阈值量,那么可将当前帧的尼奎斯特频率的经减小值设定为低于前一帧的尼奎斯特频率的经减小值。
替代地或另外,可存在一定数目个先前帧的频率范围保持低于在当前帧之前的帧的尼奎斯特频率的经减小值的需要。更详细地说,如果另外预定义数目个先前帧中的每一者的频率范围比前一帧的尼奎斯特频率的经减小值低超过阈值量,那么可将当前帧的尼奎斯特频率的经减小值设定为低于前一帧的尼奎斯特频率的经减小值。
这些需要可因此导致帧之间尼奎斯特频率的经减小值的较平稳转变。
上文所提及的阈值量可全部是不同的且通常在解码器中预定义。
从帧到帧调适尼奎斯特频率的经减小值(及因此子取样比率)对依赖于来自先前帧的时域样本的变换提出挑战。特定来说,如果将数字音频信号从第一频域变换到中间时域或从中间时域变换到第二频域除来自当前帧的数字音频信号的中间时域样本外还需要来自前一帧的数字音频信号的中间时域样本,那么情形会如此。
变换大小的改变导致从当前帧解码的中间时域样本的取样速率的改变。这些不匹配来自先前帧的中间时域样本的取样速率,所述中间时域样本仍存储于系统中且需要与当前帧的中间时域样本组合以用于进一步结合处理。
根据实例性实施例,此问题通过对来自先前帧的时域样本进行重新取样而得以解决。具体来说,所述方法可包括:检查在当前帧与前一帧中尼奎斯特频率的经减小值是否为不同的,以便识别在当前帧与前一帧中数字音频信号的中间时域样本是否具有不同取样速率,且如果如此,那么对前一帧的中间时域样本进行重新取样,使得在当前帧与前一帧中中间时域样本具有相同取样速率。
重新取样仅发生在过渡帧(即,针对与尼奎斯特频率的不同经减小值(即,不同子取样比率)相关联的邻近帧)中。当到尼奎斯特频率的新的经减小值的切换已完成时,重新取样不再必要。
变换的经子取样操作可在系统中引入时间延迟。更详细地说,在经子取样操作处(当尼奎斯特频率已被减小时)解码器的输出信号可相对于解码器在以原始取样速率操作时的输出信号有延迟。这是不合意的,因为最优地,无论变换是以原始取样速率还是以经减小取样速率操作(即,无论尼奎斯特频率是具有其原始值还是经减小值),将期望解码器的输出信号相同。否则,可存在可听伪像。时间延迟是由于用于将数字音频信号从第一频域变换到中间时域的第一组滤波器中的滤波器(本文中有时称为窗口)与用于将数字音频信号从中间时域变换到第二频域的第二组滤波器中的滤波器的时间不对准导致。举例来说,将存在偶对称逆MDCT窗口与奇对称QMF窗口的不对准。对前一帧的中间时域样本进行重新取样可包括补偿此时间延迟。如果不执行此补偿,那么在解码器的音频输出中可存在可听伪像。
一般来说,可通过在重新取样时将前一帧的时域样本在时间上移位延迟值而补偿时间延迟。在对前一帧的中间时域样本进行重新取样时补偿的时间延迟由值dfract,1给出,根据以下方程式,所述值dfract,1取决于分别地当前帧与前一帧的子取样因子之间的比率q1
dfract,1=(q1-1)/2。
可以不同方式执行对先前帧的中间时域样本的重新取样。如果高质量的重新取样是合意的,那么可使用内插及有限脉冲响应(FIR)滤波后续接着抽取。替代方案是使用例如线性内插或三次样条内插等内插对前一帧的中间时域样本进行重新取样。这导致较低质量但具有非常低的计算复杂性。在此上下文中,质量意指在变换的经子取样操作处解码器的输出信号类似于在变换以原始取样速率操作时解码器的输出信号。
一般来说,第一频域可与具有第一预定长度的第一组合成滤波器相关联,且第二频域与具有第二预定长度的第二组分析滤波器相关联。第一滤波器组与等于第一滤波器组中滤波器的数目的第一变换大小相关联,所述滤波器数目又对应于对应变换的频带或信道的数目。类似地,第二滤波器组与等于第二滤波器组中滤波器的数目的第二变换大小相关联,所述滤波器数目又对应于对应变换的频带或信道的数目。第一滤波器组及第二滤波器组打算以原始取样速率工作。即,第一及第二滤波器组经设计以经由中间时域将数字音频信号从第一频域变换到第二频域,其中中间时域中的取样速率是原始取样速率。变换大小及滤波器的预定长度以此方式与数字音频信号的原始取样速率(及尼奎斯特频率的原始值)相关联。然而,当尼奎斯特频率被减小时,取样速率被以子取样因子减小。因此,需要以经减小取样速率操作的变换或滤波器组。与原始取样频率相关联的第一及第二滤波器组可被视为用于提供以经减小取样速率操作的变换或滤波器组的开始点。
作为开始,通过移除频谱带而减小尼奎斯特频率意味着可以子取样因子减小第一及第二滤波器组的频谱带或频率信道的大小(即,数目)。这是可能的,因为可在经由中间时域将数字音频信号从第一频域变换到第二频域的过程中可省略所移除频谱带。
此外,由于尼奎斯特频率的减小导致取样速率的减小,因此第一及第二滤波器组中的滤波器的长度可被减小以匹配经减小取样速率。因此,经由中间时域将数字音频信号从第一频域变换到第二频域的步骤可包括:以子取样因子减小第一组的合成滤波器的长度,及在将数字音频信号从第一频域变换到中间时域时使用经减小长度的合成滤波器,及/或以子取样因子减小第二组的分析滤波器的长度及在将数字音频信号从中间时域变换到第二频域时使用经减小长度的分析滤波器。以此方式,分别地第一及第二组的合成滤波器及分析滤波器可适于对应于尼奎斯特频率的经减小值的经减小取样速率。
第一及第二组可为经调制滤波器组。在所述情形中,第一滤波器组可与可从其衍生出第一组的合成滤波器的第一原型滤波器相关联。此外,第二滤波器组可与可从其衍生出第二组的分析滤波器的第二原型滤波器相关联。在经调制滤波器组的情形中,可通过首先减小相应原型滤波器的长度且然后从经减小长度的原型滤波器衍生出合成及分析滤波器而减小合成滤波器及分析滤波器的长度。
存在减小分别地第一及第二组的合成滤波器及分析滤波器的长度的不同方式。举例来说,如果闭型表达式是可用的,那么这些可用于重新计算具有经减小长度的滤波器。替代地,或如果闭型表达式是不可用的,那么可对滤波器进行减少取样以便减小其长度。特定来说,可通过以减少取样因子进行减少取样或通过从描述第一组的合成滤波器的闭型表达式重新计算合成滤波器而减小第一组的合成滤波器的长度。此外,可通过以减少取样因子进行减少取样或通过从描述第二组的分析滤波器的闭型表达式重新计算分析滤波器而减小第二组的分析滤波器的长度。
在经调制滤波器组的情形中,可通过减少取样或通过从闭型表达式重新计算而以减少取样因子减小原型滤波器的长度。
为了防止可听伪像,对第一组的合成滤波器及/或第二组的分析滤波器进行减少取样可包括补偿由于第一组的合成滤波器与第二滤波器组的分析滤波器的时间不对准导致的时间延迟,如上文所描述。此时间不对准导致第一及第二组的经子取样网格相对于待补偿的原始取样网格之间的不匹配。一般来说,可通过在减少取样时将合成或分析滤波器(或其原型)在适当的情况下在时间上移位延迟值而补偿时间延迟。
作为在对滤波器进行减少取样时补偿时间延迟的替代方案,可在将数字音频信号变换到第二频域之后补偿时间延迟。更详细地说,所述方法可包括在经由中间时域将数字音频信号从第一频域变换到第二频域的步骤之后将相移施加到数字音频信号,其中相移取决于由于第一组的合成滤波器与第二滤波器组的分析滤波器的时间不对准导致的时间延迟。此延迟补偿在解码器的音频输出中引入不可听但小的相位误差。
在对第一组的合成滤波器及/或第二组的分析滤波器进行减少取样时或在将相移添加到第二频域中的数字音频信号时补偿的时间延迟由值dfract,2给出,根据dfract,2=(q2-1)/2,所述值dfract,2取决于子取样因子,其中q2是所述子取样因子(帧的子取样因子)。
出于节省计算复杂性的原因,可使用线性内插或三次样条内插对第一组中的合成滤波器及/或第二组中的分析滤波器进行减少取样。
根据示范性实施例,第一频域可为经修改离散余弦变换(MDCT)域,且第二频域可为正交镜像滤波器(QMF)域。
通常将数字音频信号的频率范围(或确切地说,其上限)(即,带宽)确定为在第一频域中表示的数字音频信号的频谱中具有非零频谱内容的最高频率。然而,根据实例性实施例,所述方法可进一步包括接收与数字音频信号相关的参数,其中进一步基于所述参数而识别频率范围。举例来说,所述参数可与频率阈值相关,高于所述频率阈值,数字音频信号的频谱内容将基于低于所述频率阈值的频谱内容来重建(例如,使用高频率重建技术,例如频谱带复制)。然后可将频率范围(或确切地说,频率范围的上限)设定为频率阈值。
可将尼奎斯特频率的经减小值选择为等于经识别频率范围的最高频率。在此些实施例中,将数字音频信号的尼奎斯特频率从其原始值降低到经减小值的步骤包括移除数字音频信号的高于经识别频率范围的所有频谱带。
然而,为了高效实施方案起见,仅可支持子取样因子的有限集(及因此尼奎斯特频率的经减小值的有限集)。子取样因子的此有限集通常经设计使得子取样因子产生可高效地实施的变换大小(例如,二次幂大小的FFT)。优选地,存在对应于集中的子取样因子的经预编程变换或滤波器组。以此方式,可避免在从尼奎斯特频率的一个经减小值切换到另一经减小值后必须进行减少取样或重新计算滤波器。
详细地说,降低数字音频信号的尼奎斯特频率的步骤可因此包括:从值的预定义集选择尼奎斯特频率的经减小值作为预定义集中高于经识别频率范围的最低值,及移除数字音频信号的高于尼奎斯特频率的选定经减小值的频谱带。
在其中数字音频信号是多信道信号(即,包括多个音频信道)的情形中,在信道基础上做出关于是否及如何降低尼奎斯特频率的决策。具体来说,针对每一音频信道执行识别数字音频信号的频率范围及降低尼奎斯特频率的步骤,借此允许不同音频信道在相同帧中具有尼奎斯特频率的不同经减小值。
根据第二方面,提供一种计算机程序产品,其包括上面存储有计算机代码指令的(非暂时性)计算机可读媒体,所述计算机代码指令用于在由具有处理能力的装置执行时执行根据前述技术方案中任一技术方案所述的方法。
根据第三方面,提供一种用于将数字音频信号从第一频域变换到第二频域的音频解码器,其包括:
接收组件,其经配置以接收在第一频域中表示的数字音频信号的后续帧,所述数字音频信号具有为所述数字音频信号的原始取样速率的一半的尼奎斯特频率,及
变换组件,其经配置以针对所述数字音频信号的每一帧:
通过分析所述数字音频信号的频谱内容而识别所述数字音频信号的频率范围,
如果所述频率范围比所述尼奎斯特频率低超过阈值量,那么通过移除所述数字音频信号的高于所述经识别频率范围的频谱带而将所述数字音频信号的所述尼奎斯特频率从其原始值降低到经减小值,
经由中间时域将所述数字音频信号从所述第一频域变换到第二频域,其中所述数字音频信号在所述中间时域中具有相对于所述原始取样速率以子取样因子减小的取样速率,所述子取样因子由所述尼奎斯特频率的所述原始值与所述尼奎斯特频率的所述经减小值之间的比率定义,及
将高于所述尼奎斯特频率的所述经减小值的频谱带附加到所述第二频域中的所述数字音频信号,以便将所述尼奎斯特频率恢复到其原始值。
所述第二方面及所述第三方面可大体具有与所述第一方面相同的特征及优点。
II.实例性实施例
图1示意性地图解说明音频解码器100。音频解码器100包括接收组件110、第一变换组件120、信号处理组件130及第二变换组件140。
当在使用中时,接收组件110接收(经编码)数字音频信号102。数字音频信号102是在时间上后续的帧中接收。在接收组件110处接收的数字音频信号102与本文中称为原始取样速率的取样速率相关联。原始取样速率是数字音频信号102的后续时间样本之间的时间距离的倒数。
数字音频信号102可包括不同音频信道。应理解,本文中所描述的方法可单独地或以任何组合适用于数字音频信号102的音频信道中的每一者。举例来说,一些音频信道可以参数方式编码,使得频谱内容通过在第二频域中操作的参数工具添加到较高频率。当此些参数工具在使用中时,在第一频域中表示的音频信道的带宽通常限于尼奎斯特频率的一半或更低,这允许以2或更大的因子切割变换大小。作为另一实例,低频率效应(LFE)音频信道按定义带受限于几百Hz,这允许以8或甚至16的因子进行的甚至更具攻侵性的子取样。不同音频信道可因此具有不同带宽性质。通过单独地处理音频信道,不同音频信道可经受以不同因子进行的子取样,以便实现计算复杂性的最大减小。
在解码器100处接收的数字音频信号102通常不在时域中而是在频域中表示。举例来说,出于从编码器到解码器的高效发射的原因,数字音频信号102可在编码器处已通过应用分析滤波器的滤波器组(例如MDCT或发现适于用于所述目的的另一滤波器组)而变换到第一频域。因此,在接收后,数字音频信号102即刻在第一频域中表示,即,作为描述针对不同频带数字音频信号102的频谱内容的频域样本的集合。根据基本数字信号处理,第一频域中的数字音频信号102的表示的最大频率由尼奎斯特频率给出,尼奎斯特频率是数字音频信号102的原始取样速率的一半。
数字音频信号102然后被传递到第一变换组件120,第一变换组件120经配置以将数字音频信号102从第一频域表示变换到第二频域表示。从一个频域表示变换到另一频域表示的原因是不同频域表示可与不同优点相关联。举例来说,第一频域表示可优选地用于将数字音频信号102的波形编码且将其从编码器发送到解码器100,而第二频域表示可优选地用于在解码器100中例如出于参数重建的目的而处理及合成数字音频信号102。第二频域可为QMF域。
数字音频信号102然后从第一变换组件120被传递到信号处理组件130,在信号处理组件130处在第二频域中执行对数字音频信号102的各种处理。举例来说,信号处理组件130可执行参数重建,包含本技术领域中已知的高频率重建。
从信号处理组件130产生的信号然后由第二变换组件140从第二频域变换到时域以便产生输出信号104以用于后续播放。
音频解码器100的一般结构类似于现有技术解码器的一般结构。然而,音频解码器100与现有技术解码器的不同之处在于第一变换组件120的功能性。为了减小计算复杂性,第一变换组件120实施适应性地(即,在逐帧基础上)允许变换(从第一频域到时域,及从时域到第二频域)的大小变化的方法。这通过使每一帧中的尼奎斯特频率适于所述帧中的数字音频信号102的带宽(通过省略数字音频信号102的高于所述带宽的(通常是空的)频谱带)而实现。从时域角度,这对应于对数字音频信号102进行子取样及在逐帧基础上的变换。
下文将参考图1及3以及图2的流程图更详细地描述第一变换组件120的操作。
在图2的步骤S02中,变换组件120从解码器100的接收组件110接收在第一频域中表示的数字音频信号102的帧。根据实例性实施例,第一数字音频信号102是以MDCT频谱的形式给出。接收组件110又从编码器接收数字音频信号102的帧。
在步骤S04中,变换组件120识别数字音频信号102的频率范围。通过分析数字音频信号102的频谱内容而识别频率范围。这进一步图解说明于图3a中,图3a图解说明在第一频域中表示的数字音频信号102的帧。虚线频格对应于具有非零频谱内容的频谱带。所表示的最高频率是尼奎斯特频率fN,其是数字音频信号102的原始取样速率fs的一半,即,fN=fs/2。变换组件120可通常将频率范围确定为数字音频信号102的带宽B,即,作为频谱中具有非零频谱内容的最高频率。然而,存在其中进一步基于与数字音频信号102相关的所接收参数而确定频率范围的实例性实施例。举例来说,所述参数可与频率阈值相关,高于所述频率阈值,数字音频信号的频谱内容将由信号处理组件130基于低于所述频率阈值的频谱内容来重建(例如,使用高频率重建技术,例如频谱带复制)。在此些情形中,可将频率范围(或确切地说,频率范围的上限)设定为频率阈值。根据另一实例,所述参数可与频率阈值相关,高于所述频率阈值,数字音频信号102的一个音频信道的频谱内容将由信号处理组件130基于来自数字音频信号的另一音频信道的频谱内容来重建。在此些情形中,可将频率范围(或确切地说,频率范围的上限)设定为所述频率阈值。
接下来,在步骤S06中,变换组件120检查频率范围是否比尼奎斯特频率fN低超过预定义量。
如果否,那么发现在不限制带宽或引入混叠伪像的情况下对数字音频信号102进行子取样将是不可能的。变换组件120因此进行到步骤S14,在不减小尼奎斯特频率的情况下对数字音频信号102进行变换。换句话说,变换组件120将作为现有技术系统(即,以原始取样速率)操作。为了如此做,变换组件120可首先通过使用第一组合成滤波器(例如逆MDCT滤波器组)将音频信号102从第一频域表示变换到中间时域表示。第一滤波器组与对应于所述组中的滤波器的数目(其是变换的频率子带或信道的数目)的第一(预定)变换大小相关联。此外,第一组滤波器(有时称为窗口)具有预定长度。在使用第一滤波器组的变换之后,数字音频信号102在中间时域中表示且具有其原始取样速率。
这然后接着使用第二组分析滤波器(例如QMF滤波器组)将音频信号102从中间时域表示变换到第二频域表示。第二滤波器组与对应于所述组中的滤波器的数目(其是变换的频率子带或信道的数目)的第二(预定)变换大小相关联。此外,第二组滤波器(有时称为窗口)具有预定长度。第一及第二滤波器组以及其中的滤波器因此打算以原始取样频率操作。举例来说,第一组可对应于滤波器长度为4096的大小2048的MDCT变换,且第二组可对应于滤波器长度为640的大小64的QMF组。
优选地,第一及第二滤波器组是经调制滤波器组。经调制滤波器组具有原型滤波器,从所述原型滤波器可衍生出所述滤波器组中的滤波器。
在已完成步骤S14之后,变换组件120返回到步骤S02,其中接收数字音频信号的后一帧。
如果替代地在步骤S06中发现频率范围比尼奎斯特频率fN低预定义量,那么变换组件进行到步骤S08。
在步骤S08中,变换组件120设定尼奎斯特频率的经减小值fN,red。为了避免混叠或减小带宽,尼奎斯特频率的经减小值应等于或高于频率范围中的最高频率。举例来说,可将尼奎斯特频率的经减小值选择为等于经识别频率范围的最高频率,所述经识别频率范围在图3a的实例中是带宽B。
然而,为了高效实施方案起见,可仅支持尼奎斯特频率的经减小值的有限集,其中经减小值的有限集是例如依据原始尼奎斯特频率除以子取样因子集给出。以实例的方式,子取样因子集可包括子取样因子1、4/3、2、4、8及16。变换组件120可因此从子取样因子集选择最大可能子取样因子,所述最大子取样因子仍给出高于数字音频信号102的经识别频率范围的尼奎斯特频率的经减小值。替代地,变换组件120可选择超出数字音频信号102的经识别频率范围的尼奎斯特频率的经减小值的有限集的最低值。
一般来说,变换组件120可通过移除数字音频信号102的高于经识别频率范围的频谱带而将尼奎斯特频率的值从其原始值fN降低到经减小值fN,red。这进一步图解说明于图3b中,其中移除高于频率范围的频谱带,使得频谱中的最高频率变为尼奎斯特频率的经减小值fN,red。从时域角度,这对应于以子取样因子(即,以fN/fN,red)对数字音频信号102进行子取样。
在已将尼奎斯特频率降低到经减小值的情况下,变换进行到经由中间时域将数字音频信号102从第一频域(例如,其是MDCT域)变换到第二频域(例如,其是QMF域)。这进一步图解说明于图3c中,图3c图解说明在第二(经子取样)频域中表示的数字音频信号102。由于已降低尼奎斯特频率,因此变换组件120可以经减小变换大小工作。特定来说,与处于原始取样速率的操作相比,变换大小可被以子取样因子减小。以此方式,计算复杂性得以减小。因此,替代使用以原始取样速率操作的第一及第二滤波器组(如上文结合步骤S14所描述),变换组件120可将经减小变换大小的第一滤波器组用于从第一频域到中间时域的变换,且将经减小变换大小的第二滤波器组用于从中间时域到第二频域的变换。
出于此目的,变换组件120可计算且存储打算以不同取样速率(即,以子取样因子的不同值)操作的滤波器组。每当选择不同子取样因子时,可重新使用这些滤波器组。以此方式,计算复杂性可得以减小。优选地,变换组件120仅支持子取样因子的有限集。以此方式,通过将滤波器系数或窗口预存储于非易失性存储器中而最小化或完全消除用于计算不同大小的滤波器或变换窗口的计算努力。
为了计算对应于特定子取样因子的经减小变换大小的第一及第二滤波器组,变换组件120可采取以原始取样速率操作的第一及第二滤波器组作为开始点。
第一,需要减小变换大小,这意味着以子取样因子减小全大小的第一滤波器组中的合成滤波器的数目,及以子取样因子减小全大小的第二滤波器组中的分析滤波器的数目。通过从第一及第二滤波器组移除对应于在步骤S08中从数字音频信号102移除的频谱带的滤波器而实现变换大小减小。
第二,需要鉴于经减小取样速率调整第一及第二组中的滤波器的长度。变换组件120可因此以子取样因子减小第一组的合成滤波器的长度及第二组的分析滤波器的长度。
这可以不同方式进行。在存在描述第一组的合成滤波器的闭型表达式及/或描述第二组的分析滤波器的闭型表达式的情形中,可使用这些闭型表达式来重新计算经减小长度的滤波器。
替代地,或如果闭型表达式不可用,那么可通过以子取样因子进行减少取样而减小滤波器的长度。举例来说,可使用内插(例如线性内插或三次样条内插)对滤波器进行减少取样。
在使用经调制滤波器组的情形中促进对应于子取样因子的第一及第二滤波器组的计算。在所述情形中,全大小的第一及第二滤波器组的原型滤波器可在修改之后分别用于衍生出用于经子取样操作的对应第一及第二滤波器组。出于此目的,变换组件120可首先通过以子取样因子进行减少取样或通过从如上文所描述的闭型表达式重新计算经减小长度的合成原型滤波器而以子取样因子减小全大小的第一滤波器组的合成原型滤波器的长度。然后,可使用经减小长度的合成原型滤波器来衍生出对应于子取样因子的经减小变换大小的第一滤波器组。相同方法结合衍生出经减小变换大小的第二滤波器组适用于第二滤波器组的分析原型滤波器。
依据使用哪些频率表示,变换的经子取样操作(即,使用经减小大小的变换,例如上文所描述的经减少取样滤波器)可引入时间延迟。举例来说,如果第一频域表示是MDCT且第二频域表示是QMF,那么可存在偶对称逆MDCT窗口与奇对称QMF窗口之间的不对准。这进一步图解说明于图4中。更具体来说,存在待补偿以便维持与信号链的其它分支同步的经子取样域中的分数个样本的延迟差。发生此情况的原因是MDCT的取样点位于相对于窗口的中心移位的网格上,而QMF组的情形可并非如此。图4中针对q2=2的情形图解说明此情况。
图4a指示取样点相对于处于原始取样速率的MDCT窗口的位置。图4b展示QMF窗口的对应情况。在连续时间轴上,这表示MDCT合成后续接着QMF分析的全带应用的相对时序情境的实例。期望经子取样操作符合相同相对时序。然而,图4c指示取样点相对于处于经减小取样速率(减小2的子取样因子)的MDCT窗口的位置。QMF分析窗口的最优连续时间位置未改变且由图4d中的虚线窗口形状描绘。但是,由于可用的按比例缩减的QMF分析采取在窗口上居中的取样点,因此离散时间分析窗口的最佳可能位置如由图4d的实线窗口形状描绘。这引入处于低取样速率的四分之一样本的额外延迟。在一般情形中,所产生的时序误差(本文中称为时间延迟)将为处于原始取样速率的dfract,2=(q2-1)/2个样本。幸运的是,由于QMF窗口的典型外观,误差可在很大程度上通过以下工具中的一者或组合得以补偿:
·在QMF分析之后的频率变化的相位增益因子。举例来说,可将相移施加到QMF子带样本,如exp(-i*pi/La*dfract,2*(k+0.5)),其中La是分析QMF组的当前大小且k=0...La-1。此延迟补偿风格在QMF重建中引入不可听但小的相位误差。
·考虑到时间延迟的经减少取样QMF分析窗口。这对应于使用图4d的虚线窗口。
将QMF窗口对准于与MDCT窗口相同的时间网格的直截了当的方式是对QMF原型滤波器进行线性减少取样以便使滤波器不对称。这可根据以下方程式进行:
其中N是原始原型滤波器f的长度,q2是子取样因子,u=n·q2+dfract,2是有理数,且是整数(是下取整操作符(floor operator),即,向下四舍五入的最大整数)。经内插原型滤波器g现在具有经一般化滤波器阶次其中of是原始滤波器f的滤波器阶次。QMF分析/合成链的重建准确性通过此操作维持。减少取样的结果是原型滤波器阶次的改变(例如,从整数值of改变为有理数og)。这必须在变换核心中反映出,但也可通过在变换域中应用频率相依单位增益相位因子而得以补偿。
经减小尼奎斯特频率(或等效地,子取样比率)从帧到帧的调适对依赖于来自先前帧的时域样本的变换提出挑战。举例来说,MDCT变换及QMF组的情形如此,MDCT变换及QMF组可分别用作第一及第二频域中的频域表示。尼奎斯特频率的减小导致从当前帧解码的中间时域样本的不同取样速率。这些不匹配来自先前帧的中间时域样本的取样速率,所述中间时域样本仍存储于系统中且需要与当前帧的中间时域样本组合以用于进一步结合处理。
如果情形如此,那么变换组件120可对来自先前帧的时域样本进行重新取样。更详细地说,变换组件120可跟踪在每一帧中使用的尼奎斯特频率的可能经减小的值。特定来说,变换组件120可检查当前帧与先前帧的尼奎斯特频率的值(尼奎斯特频率的经减小值或原始值,这取决于帧中是否已发生减小)是否为不同的。以此方式,变换组件120可识别当前帧与先前帧是否具有不同取样速率。在变换需要来自多个先前帧的时域样本的情形中,变换组件120可以类似方式检查在当前帧中与在多个先前帧中的任一者中尼奎斯特频率的值是否为不同的。
如果变换组件120发现当前帧与先前帧(或多个先前帧中的任一者)具有尼奎斯特频率的不同值,那么其可进行到对先前的中间时域样本(或具有尼奎斯特频率的不同值的先前帧的那些中间时域样本)进行重新取样。重新取样经执行使得当前帧与先前帧的中间时域样本具有相同取样速率。
可以不同方式实现此重新取样。举例来说,为了具有高质量的重新取样,可使用传统重新取样,传统重新取样使用内插后续接着通过有限脉冲响应(FIR)滤波器进行的低通滤波,低通滤波又后续接着抽取。此方法是可能的,只要所述重新取样涉及以有理因子(如果系统的子取样因子被限制为整数或有理数的有限集(如上文所示范),那么情形通常如此)进行的重新取样即可。如果需要以I/J的因子进行的子取样,那么变换组件120可首先以J的因子进行内插,后续接着FIR滤波,且然后以I的因子进行抽取。
作为替代方案,可使用不具有后续滤波的线性内插或三次样条内插。这可导致较低质量(例如,可存在混叠问题),但具有非常低的计算复杂性的优点。
可存在在当前帧的中间时域样本相对于先前帧的中间时域样本之间引入的相对时间延迟,这归因于第一滤波器组的窗口(即,滤波器)与第二滤波器组的窗口(即,滤波器)之间的不对准。
如果第一滤波器组是MDCT滤波器组且第二滤波器组是使用奇对称原型滤波器的QMF组,那么当前帧的中间时域样本相对于先前帧的中间时域样本之间的时间延迟和当前帧与先前帧的子取样因子之间的比率q1相关。更详细地说,相对时间延迟由值dfract,1=(q1-1)/2给出。更一般来说,如果第一滤波器组具有一半样本对称性且第二滤波器组具有整数样本对称性(如分别在图4a及图4b中图解说明),那么情形将如此。
在对先前帧进行重新取样时例如通过使先前帧的中间时域样本在时间上移位对应于时间延迟的量而补偿相对时间延迟是优选的。
在已将数字音频信号102从第一频域变换到第二频域的情况下,变换组件120可在步骤S12中进行到在帧中将尼奎斯特频率从其经减小值恢复到原始值。这可通过将高于尼奎斯特频率的经减小值fN,red的(空)频谱带附加到第二频域中的数字音频信号而实现。这进一步图解说明于图3d中,其中空频谱带已被添加到第二频域中的数字音频信号102的频率表示,使得所表示的最高频率再次由尼奎斯特频率的原始值fN给出。
参考图2的流程图所描述的方法因此允许不同帧具有尼奎斯特频率的不同经减小值,借此使尼奎斯特频率适应每一帧的频谱内容。换句话说,变换组件120可决定在从先前帧进行到当前帧时切换经减小尼奎斯特频率的值。此决策可仅基于当前帧的频谱内容做出。然而,其可导致尼奎斯特频率的经减小值的跳跃行为,即,其可趋向于非常频繁地改变值。由于尼奎斯特频率的经减小值的切换可能将需要对滤波器进行减少取样及/或对中间时域样本进行重新取样,因此具有尼奎斯特频率的经减小值的较稀疏转变可为合意的。
出于所述原因,变换组件120可当在步骤S08中设定当前帧的尼奎斯特频率的经减小值时,还考虑到先前帧的尼奎斯特频率的经减小值与当前帧的频率范围的关系。这进一步图解说明于图5及6中。
图5图解说明七个连续帧501a、501b、501c、501d、501e、501f、501g。每一帧501a到g具有频率范围502a到g(频率标度的虚线图案指示非零频谱带)。帧501a与尼奎斯特频率503a的经减小值(由fN,red标示)相关联。当变换组件120接收到下一帧501b时,将帧501b的频率范围502b与前一帧501a的尼奎斯特频率的经减小值fN,red进行比较。在此情形中,频率范围502b比前一帧501a的尼奎斯特频率503a的经减小值超出超过阈值量T1。为了避免混叠问题及截短的带宽,将帧501b的尼奎斯特频率503b的经减小值设定为大于帧501a的尼奎斯特频率503a的经减小值。特定来说,将尼奎斯特频率503b的经减小值设定为高于帧501b的频率范围502b的值。
当变换组件120接收到后一帧501c时,其将帧501c的频率范围502c与帧501b的尼奎斯特频率503b的经减小值进行比较。在此实例中,其将发现,频率范围502c与尼奎斯特频率503b的经减小值相差不超过阈值量T2。因此其将决定也在帧501c中维持帧501b的尼奎斯特频率503b的经减小值。阈值量T2通常大于阈值量T1,这意味着相比于降低尼奎斯特频率的经减小值(这可有益于减小计算复杂性),变换组件120更倾向于增加尼奎斯特频率的经减小值(以便避免混叠及截短的带宽)。
在接收到下一帧帧501d后,变换组件120即刻将频率范围502d与尼奎斯特频率503b的经减小值进行比较。然后其将发现,频率范围502d比尼奎斯特频率503b的经减小值低超过阈值量T2,这意味着切换到尼奎斯特频率的较低经减小值可为有益的。
根据一些实施例,变换组件120将因此在帧501d中切换到尼奎斯特频率的较低经减小值。然而,在所图解说明的实施例中,变换组件120在设定帧501d中的尼奎斯特频率的经减小值时也将考虑到一定数目个先前帧的频率范围。在所图解说明的实例中,变换组件120在设定尼奎斯特频率的经减小值时考虑到三个先前帧的频率范围。一般来说,先前帧的数目是可在系统中预定义或输入到系统的参数。先前帧的数目可通常在2到6个帧的范围内。换句话说,变换组件120将检查先前帧501c、501b、501a的频率范围502c、502b、502a中的每一者是否比尼奎斯特频率503b的经减小值低超过阈值量T2。由于在当前实例中未满足此条件,因此变换组件120决定在帧501d中也维持尼奎斯特频率503b的经减小值。
变换组件120然后针对帧501e及501f重复此过程,其结果与帧501d相同,且在帧501e及501f中也维持尼奎斯特频率503b的经减小值。
然而,当处理帧501g时,变换组件120将得到不同结论。更详细来说,变换组件120将发现,帧501g的频率范围502g比尼奎斯特频率503b的经减小值低超过阈值量T2,且另外,三个先前帧501f、501e、501d的频率范围502f、502e、502d中的每一者也比尼奎斯特频率503b的经减小值低超过阈值量T2。因此,变换组件120决定切换到尼奎斯特频率503c的新的较低经减小值。以此方式,可避免太频繁地切换尼奎斯特频率的经减小值。举例来说,否则,尼奎斯特频率的经减小值将首先在帧501d中被降低且然后在下一帧501e中再次被增加。
图6图解说明可作为图5的实施例的替代方案使用或除图5的实施例外还可使用的变体。图6的实施例与图5的实施例的不同之处在于变换组件120在切换到尼奎斯特频率的较低经减小值时使用另一决策准则。图5与6的实施例中对帧501a、501b及501c的处理因此相同。然而,针对帧501d、501e、501f及501g的情形并非如此。
在接收到帧501d后,变换组件即刻发现频率范围502d比前一帧的尼奎斯特频率503b的经减小值低超过阈值量T2。然而,在决定切换到尼奎斯特频率的另一较低经减小值之前,变换组件将查看一定数目个先前帧(在此情形中三个先前帧)的频率范围。特定来说,变换组件120检查三个先前帧的频率范围502c、502b、502a中的每一者是否与当前帧501d的频率范围502d相差不超过阈值量T3(其通常小于T2)。在所图解说明的实例中,情形并非如此,且变换组件120因此决定维持前一帧501c的尼奎斯特频率503b的经减小值。
变换组件120也针对后续帧501e及501f重复这些检查,其结果相同,即在帧501e及501f中也维持尼奎斯特频率503b的经减小值。然而,当处理帧501g时,变换组件120将得出另一结论。第一,其将发现,频率范围502g比尼奎斯特频率503b的经减小值低超过阈值量T2。第二,其将发现,三个先前帧501f、501e、501d的频率范围502f、502e、502d中的每一者与当前帧501g的频率范围502g相差不超过阈值量T3。因此,变换组件120决定切换到尼奎斯特频率503c的新的较低经减小值。
现在将联合图7揭示变换组件120如何操作的实际实例。图7展示在从子取样因子1(无子取样)切换到以因子4进行子取样且然后上升到以因子4/3进行子取样的时序及缓冲器视图。图的底部处的条的高度指示子取样的量且因此指示经子取样系统的带宽。注意,此实例不包含附加高于当前尼奎斯特频率的额外(空)QMF带以便恢复原始带宽的步骤。窗口的减少取样及时域(PCM)缓冲器由虚线(较高程度的子取样具有较低“点距”)表示。其全部表示相同绝对持续时间,仅取样速率及因此带宽是不同的。
在帧n-1及n中,使用全大小变换。来自IMDCT帧n的时域输出被馈送到PCM线中且PCM帧被馈送到分析QMF组(以实线绘制)。在此星座中,处理四个QMF块(四个实线窗口h(n))。全带宽QMF输出被展示为图的底部处的四个实线条。在帧n+1中,信号的带宽低得多,且因此1/4大小的变换足以在无伪像或截短的带宽的情况下对MDCT系数进行变换。为了使来自帧n的时域数据适应帧n+1的经子取样数据,需要对帧n的实线缓冲器块重新取样。因此,以因子4对QMF qmfBuffer(N-L个样本)的历史缓冲器及IMDCT重叠相加缓冲器mdctBuffer进行减少取样。结果存储于虚线块中且在帧n+1中由IMDCT重叠相加过程及分析QMF(M/4个信道)使用。在重新取样之后,变换可运行新的子取样速率直到在帧n+4中需要增加带宽为止。在所述例子中,以因子3对来自帧n+3的时域缓冲器(右边的虚线块)进行增加取样。结果存储于虚线块中且在帧n+4中在IMDCT重叠相加过程中及在使用3/4大小的滤波器组的分析QMF组中使用。再次,所得QMF样本被展示为图的底部处的虚线条。
分析QMF组的历史缓冲器及逆MDCT的重叠相加缓冲器等缓冲器的重新取样可在一个步骤中进行,因为其等是连续的。高质量的重新取样可通过涉及内插及FIR滤波、后续接着抽取的传统重新取样进行。替代方案是使用线性或较高阶次内插,其产生较低质量的重新取样但具有非常低的计算复杂性。作为一实例,使用线性内插对缓冲器进行重新取样。第一,缓冲器级联为
其中N是QMF原型滤波器的当前长度,L是QMF信道的当前数目,且frameLength是当前帧长度(及MDCT大小)。级联缓冲器h随后内插为:
其中W=N-L+frameLength,q1是相对子取样因子,u=n·q1+dfract,1是有理数,且是整数(是下取整操作符,即,向下四舍五入的最大整数)。dfract,1是通过给出的延迟。注意,在此上下文中,q1意指相对于子取样的当前量的子取样因子,即,当前帧与前一帧的子取样因子的比率,且可因此具有小于1的值。经内插值然后被馈送回到相应缓冲器,如以下方程式:
等效形式、扩展形式、替代方案及其它方案
所属领域的技术人员在学习以上描述之后将明了本发明的其它实施例。尽管本发明描述及图式揭示实施例及实例,但本发明不限于这些特定实例。可在不背离由所附权利要求书界定的本发明的范围的情况下做出众多修改及变化。权利要求书中出现的任何参考符号不应理解为限制其范围。
另外,从对图式、揭示内容及所附权利要求书的研究,所属领域的技术人员在实践本发明时可理解及实现所揭示实施例的变化。在权利要求书中,词语“包括(comprising)”并不排除其它元件或步骤,且不定冠词“一(a)”或“一(an)”并不排除多个。在互不相同的附属权利要求中陈述某些措施的事实并不指示无法有利地使用这些措施的组合。
上文中所揭示的系统及方法可实施为软件、固件、硬件或其组合。一般来说,本文中所提及的“组件”可实施为电路。在硬件实施方案中,以上描述中所提及的功能单元之间的任务的划分不必对应于物理单元的划分;相反,一个物理组件可具有多个功能性,且一个任务可由数个物理组件协作执行。某些组件或所有组件可实施为由数字信号处理器或微处理器执行的软件,或者实施为硬件或实施为专用集成电路。此软件可分布于计算机可读媒体上,计算机可读媒体可包括计算机存储媒体(或非暂时性媒体)及通信媒体(或暂时性媒体)。如所属领域的技术人员众所周知,术语计算机存储媒体包含以任何方法或技术实施的用于存储例如计算机可读指令、数据结构、程序模块或其它数据等信息的易失性及非易失性两者、可装卸式及非可装卸式两者的媒体。计算机存储媒体包含但不限于RAM、ROM、EEPROM、快闪存储器或其它存储器技术、CD-ROM、数字多功能磁盘(DVD)或其它光盘存储装置、磁盒式录音带、磁带、磁盘存储装置或其它磁性存储装置,或可用于存储所要信息且可由计算机存取的任何其它媒体。此外,所属领域的技术人员众所周知通信媒体通常以经调制数据信号(例如载波或其它输送机制)体现计算机可读指令、数据结构、程序模块或其它数据且包含任何信息递送媒体。
可从以下所列举实例性实施例(EEE)了解本发明的各个方面:
EEE 1.一种在音频解码器中用于将数字音频信号从第一频域变换到第二频域的方法,其包括:
接收在第一频域中表示的数字音频信号的后续帧,所述数字音频信号具有为所述数字音频信号的原始取样速率的一半的尼奎斯特频率,
针对所述数字音频信号的每一帧:
通过分析所述数字音频信号的频谱内容而识别所述数字音频信号的频率范围,
如果所述频率范围比所述尼奎斯特频率低超过阈值量,那么通过移除所述数字音频信号的高于所述经识别频率范围的频谱带而将所述数字音频信号的所述尼奎斯特频率从其原始值降低到经减小值,
经由中间时域将所述数字音频信号从所述第一频域变换到第二频域,其中所述数字音频信号在所述中间时域中具有相对于所述原始取样速率以子取样因子减小的取样速率,所述子取样因子由所述尼奎斯特频率的所述原始值与所述尼奎斯特频率的所述经减小值之间的比率定义,及
将高于所述尼奎斯特频率的所述经减小值的频谱带附加到所述第二频域中的所述数字音频信号,以便将所述尼奎斯特频率恢复到其原始值。
EEE 2.根据EEE 1所述的方法,其中依据前一帧的所述尼奎斯特频率的所述经减小值与当前帧的所述频率范围的关系而设定所述当前帧的所述尼奎斯特频率的所述经减小值。
EEE 3.根据EEE 2所述的方法,其中如果所述当前帧的所述频率范围比所述前一帧的所述尼奎斯特频率的所述经减小值超出超过阈值量,那么将所述当前帧的所述尼奎斯特频率的所述经减小值设定为大于所述前一帧的所述尼奎斯特频率的所述经减小值。
EEE 4.根据EEE 2或3所述的方法,其中如果所述当前帧的所述频率范围的最高频率与所述前一帧的所述尼奎斯特频率的所述经减小值相差不超过阈值量,那么将所述当前帧的所述尼奎斯特频率的所述经减小值设定为等于所述前一帧的所述尼奎斯特频率的所述经减小值。
EEE 5.根据EEE 2到4中任一EEE所述的方法,其中如果所述当前帧的所述频率范围比所述前一帧的所述尼奎斯特频率的所述经减小值低超过阈值量,那么将所述当前帧的所述尼奎斯特频率的所述经减小值设定为低于所述前一帧的所述尼奎斯特频率的所述经减小值。
EEE 6.根据EEE 2到5中任一EEE所述的方法,其中进一步依据预定义数目个先前帧的所述频率范围而设定所述当前帧的所述尼奎斯特频率的所述经减小值。
EEE 7.根据EEE 6所述的方法,其中如果另外所述当前帧的所述频率范围与预定义数目个先前帧中的每一者的所述频率范围之间的差的绝对值各自不超过阈值量,那么将所述当前帧的所述尼奎斯特频率的所述经减小值设定为低于所述前一帧的所述尼奎斯特频率的所述经减小值。
EEE 8.根据EEE 6所述的方法,其中如果另外预定义数目个先前帧中的每一者的所述频率范围比所述前一帧的所述尼奎斯特频率的所述经减小值低超过阈值量,那么将所述当前帧的所述尼奎斯特频率的所述经减小值设定为低于所述前一帧的所述尼奎斯特频率的所述经减小值。
EEE 9.根据前述EEE中任一EEE所述的方法,其中将所述数字音频信号从所述第一频域变换到所述中间时域或从所述中间时域变换到所述第二频域除来自当前帧的所述数字音频信号的中间时域样本外还需要来自前一帧的所述数字音频信号的中间时域样本,所述方法进一步包括:
检查在所述当前帧与所述前一帧中所述尼奎斯特频率的所述经减小值是否为不同的,以便识别在所述当前帧与所述前一帧中所述数字音频信号的所述中间时域样本是否具有不同取样速率,且如果如此,那么进行以下操作:
对所述前一帧的所述中间时域样本进行重新取样,使得在所述当前帧与所述前一帧中所述中间时域样本具有相同取样速率。
EEE 10.根据EEE 9所述的方法,其中所述重新取样包括补偿由于用于将所述数字音频信号从所述第一频域变换到所述中间时域的第一组滤波器中的滤波器与用于将所述数字音频信号从所述中间时域变换到所述第二频域的第二组滤波器中的滤波器的时间不对准导致的时间延迟。
EEE 11.根据EEE 10所述的方法,其中所述时间延迟由值dfract,1给出,根据dfract,1=(q1-1)/2,所述值dfract,1取决于分别地所述当前帧与所述前一帧的所述子取样因子之间的比率q1
EEE 12.根据EEE 9到11中任一EEE所述的方法,其中使用例如线性内插或三次样条内插等内插来对所述前一帧的所述中间时域样本进行重新取样。
EEE 13.根据EEE 9到11中任一EEE所述的方法,其中使用内插及FIR滤波后续接着抽取来对所述前一帧的所述中间时域样本进行重新取样。
EEE 14.根据前述EEE中任一EEE所述的方法,其中
所述第一频域与具有第一预定长度的第一组合成滤波器相关联,
所述第二频域与具有第二预定长度的第二组分析滤波器相关联,且
所述经由中间时域将所述数字音频信号从所述第一频域变换到第二频域的步骤包括:
以所述子取样因子减小所述第一组的所述合成滤波器的所述长度且在将所述数字音频信号从所述第一频域变换到所述中间时域时使用经减小长度的所述合成滤波器,及
以所述子取样因子减小所述第二组的所述分析滤波器的所述长度且在将所述数字音频信号从所述中间时域变换到所述第二频域时使用经减小长度的所述分析滤波器。
EEE 15.根据EEE 14所述的方法,其中通过以所述子取样因子进行减少取样或通过从描述所述第一组的所述合成滤波器的闭型表达式重新计算所述合成滤波器而减小所述第一组的所述合成滤波器的所述长度。
EEE 16.根据EEE 14或15所述的方法,其中通过以所述子取样因子进行减少取样或通过从描述所述第二组的所述分析滤波器的闭型表达式重新计算所述分析滤波器而减小所述第二组的所述分析滤波器的所述长度。
EEE 17.根据EEE 15或16所述的方法,其中对所述第一组的所述合成滤波器及/或所述第二组的所述分析滤波器进行所述减少取样包括补偿由于所述第一组的所述合成滤波器与所述第二滤波器组的所述分析滤波器的时间不对准导致的时间延迟。
EEE 18.根据EEE 14到16中任一EEE所述的方法,其进一步包括:在所述经由中间时域将所述数字音频信号从所述第一频域变换到第二频域的步骤之后将相移施加到所述数字音频信号,其中所述相移取决于由于所述第一组的所述合成滤波器与所述第二滤波器组的所述分析滤波器的时间不对准导致的时间延迟。
EEE 19.根据EEE 17或18所述的方法,其中所述时间延迟由值dfract,2给出,根据dfract,2=(q2-1)/2,所述值dfract,2取决于所述子取样因子,其中q2是所述子取样因子。
EEE 20.根据EEE 15到19中任一EEE所述的方法,其中使用线性内插或三次样条内插对所述第一组中的所述合成滤波器及/或所述第二组中的所述分析滤波器进行减少取样。
EEE 21.根据前述EEE中任一EEE所述的方法,其中所述第一频域是经修改离散余弦变换(MDCT)域,且所述第二频域是正交镜像滤波器(QMF)域。
EEE 22.根据前述EEE中任一EEE所述的方法,其进一步包括接收与所述数字音频信号相关的参数,其中进一步基于所述参数而识别所述频率范围。
EEE 23.根据前述EEE中任一EEE所述的方法,其中所述降低所述数字音频信号的所述尼奎斯特频率的步骤进一步包括:
从值的预定义集选择所述尼奎斯特频率的经减小值作为所述预定义集中高于所述经识别频率范围的最低值,及
移除所述数字音频信号的高于所述尼奎斯特频率的所述选定经减小值的频谱带。
EEE 24.根据前述EEE中任一EEE所述的方法,其中所述数字音频信号具有多个音频信道,且其中针对每一音频信道执行所述识别所述数字音频信号的频率范围及降低所述尼奎斯特频率的步骤,借此允许不同音频信道在相同帧中具有所述尼奎斯特频率的不同经减小值。
EEE 25.一种计算机程序产品,其包括上面存储有计算机代码指令的计算机可读媒体,所述计算机代码指令用于在由具有处理能力的装置执行时执行根据前述EEE中任一EEE所述的方法。
EEE 26.一种用于将数字音频信号从第一频域变换到第二频域的音频解码器,其包括:
接收组件,其经配置以接收在第一频域中表示的数字音频信号的后续帧,所述数字音频信号具有为所述数字音频信号的原始取样速率的一半的尼奎斯特频率,及
变换组件,其经配置以针对所述数字音频信号的每一帧:
通过分析所述数字音频信号的频谱内容而识别所述数字音频信号的频率范围,
如果所述频率范围比所述尼奎斯特频率低超过阈值量,那么通过移除所述数字音频信号的高于所述经识别频率范围的频谱带而将所述数字音频信号的所述尼奎斯特频率从其原始值降低到经减小值,
经由中间时域将所述数字音频信号从所述第一频域变换到第二频域,其中所述数字音频信号在所述中间时域中具有相对于所述原始取样速率以子取样因子减小的取样速率,所述子取样因子由所述尼奎斯特频率的所述原始值与所述尼奎斯特频率的所述经减小值之间的比率定义,及
将高于所述尼奎斯特频率的所述经减小值的频谱带附加到所述第二频域中的所述数字音频信号,以便将所述尼奎斯特频率恢复到其原始值。

Claims (26)

1.一种在音频解码器中用于将数字音频信号从第一频域变换到第二频域的方法,其包括:
接收在第一频域中表示的数字音频信号的后续帧,所述数字音频信号具有为所述数字音频信号的原始取样速率的一半的尼奎斯特频率,
针对所述数字音频信号的每一帧:
通过分析所述数字音频信号的所述帧的频谱内容而识别所述数字音频信号的所述帧的频率范围的上限,其中将所述上限确定为所述帧内具有非零频谱内容的最高频率,
如果所述频率范围的所述上限比所述尼奎斯特频率低超过阈值量,那么通过移除所述数字音频信号的所述帧的高于所述频率范围的所述经识别上限的频谱带而将所述数字音频信号的所述帧的所述尼奎斯特频率从其原始值降低到经减小值,
经由中间时域将所述数字音频信号的所述帧从所述第一频域变换到第二频域,其中所述数字音频信号的所述帧在所述中间时域中具有相对于所述原始取样速率以子取样因子减小的取样速率,所述子取样因子由所述尼奎斯特频率的所述原始值与所述尼奎斯特频率的所述经减小值之间的比率定义,及
将高于所述尼奎斯特频率的所述经减小值的频谱带附加到所述第二频域中的所述数字音频信号的所述帧,以便将所述尼奎斯特频率恢复到其原始值。
2.根据权利要求1所述的方法,其中依据前一帧的所述尼奎斯特频率的所述经减小值与当前帧的所述频率范围的所述上限的关系而设定所述当前帧的所述尼奎斯特频率的所述经减小值。
3.根据权利要求2所述的方法,其中如果所述当前帧的所述频率范围的所述上限比所述前一帧的所述尼奎斯特频率的所述经减小值超出超过阈值量,那么将所述当前帧的所述尼奎斯特频率的所述经减小值设定为大于所述前一帧的所述尼奎斯特频率的所述经减小值。
4.根据权利要求2或3所述的方法,其中如果所述当前帧的所述频率范围的所述上限与所述前一帧的所述尼奎斯特频率的所述经减小值相差不超过阈值量,那么将所述当前帧的所述尼奎斯特频率的所述经减小值设定为等于所述前一帧的所述尼奎斯特频率的所述经减小值。
5.根据权利要求2到4中任一权利要求所述的方法,其中如果所述当前帧的所述频率范围的所述上限比所述前一帧的所述尼奎斯特频率的所述经减小值低超过阈值量,那么将所述当前帧的所述尼奎斯特频率的所述经减小值设定为低于所述前一帧的所述尼奎斯特频率的所述经减小值。
6.根据权利要求2到5中任一权利要求所述的方法,其中进一步依据预定义数目个先前帧的所述频率范围的所述上限而设定所述当前帧的所述尼奎斯特频率的所述经减小值。
7.根据权利要求6所述的方法,其中如果另外所述当前帧的所述频率范围的所述上限与预定义数目个先前帧中的每一者的所述频率范围的所述上限之间的差的绝对值各自不超过阈值量,那么将所述当前帧的所述尼奎斯特频率的所述经减小值设定为低于所述前一帧的所述尼奎斯特频率的所述经减小值。
8.根据权利要求6所述的方法,其中如果另外预定义数目个先前帧中的每一者的所述频率范围的所述上限比所述前一帧的所述尼奎斯特频率的所述经减小值低超过阈值量,那么将所述当前帧的所述尼奎斯特频率的所述经减小值设定为低于所述前一帧的所述尼奎斯特频率的所述经减小值。
9.根据前述权利要求中任一权利要求所述的方法,其中将所述数字音频信号的当前帧从所述第一频域变换到所述中间时域或从所述中间时域变换到所述第二频域除来自所述当前帧的所述数字音频信号的中间时域样本外还需要来自前一帧的所述数字音频信号的中间时域样本,所述方法进一步包括:
检查在所述当前帧与所述前一帧中所述尼奎斯特频率的所述经减小值是否为不同的,以便识别在所述当前帧与所述前一帧中所述数字音频信号的所述中间时域样本是否具有不同取样速率,且如果如此,那么进行以下操作:
对所述前一帧的所述中间时域样本进行重新取样,使得在所述当前帧与所述前一帧中所述中间时域样本具有相同取样速率。
10.根据权利要求9所述的方法,其中所述重新取样包括补偿由于用于将所述数字音频信号从所述第一频域变换到所述中间时域的第一组滤波器中的滤波器与用于将所述数字音频信号从所述中间时域变换到所述第二频域的第二组滤波器中的滤波器的时间不对准导致的时间延迟。
11.根据权利要求10所述的方法,其中所述时间延迟由值dfract,1给出,根据dfract,1=(q1-1)/2,所述值dfract,1取决于分别地所述当前帧与所述前一帧的所述子取样因子之间的比率q1
12.根据权利要求9到11中任一权利要求所述的方法,其中使用例如线性内插或三次样条内插等内插来对所述前一帧的所述中间时域样本进行重新取样。
13.根据权利要求9到11中任一权利要求所述的方法,其中使用内插及FIR滤波后续接着抽取来对所述前一帧的所述中间时域样本进行重新取样。
14.根据前述权利要求中任一权利要求所述的方法,其中
所述第一频域与具有第一预定长度的第一组合成滤波器相关联,
所述第二频域与具有第二预定长度的第二组分析滤波器相关联,且
所述经由中间时域将所述数字音频信号的所述帧从所述第一频域变换到第二频域的步骤包括:
以所述子取样因子减小所述第一组的所述合成滤波器的所述长度且在将所述数字音频信号的所述帧从所述第一频域变换到所述中间时域时使用经减小长度的所述合成滤波器,及
以所述子取样因子减小所述第二组的所述分析滤波器的所述长度且在将所述数字音频信号的所述帧从所述中间时域变换到所述第二频域时使用经减小长度的所述分析滤波器。
15.根据权利要求14所述的方法,其中通过以所述子取样因子进行减少取样或通过从描述所述第一组的所述合成滤波器的闭型表达式重新计算所述合成滤波器而减小所述第一组的所述合成滤波器的所述长度。
16.根据权利要求14或15所述的方法,其中通过以所述子取样因子进行减少取样或通过从描述所述第二组的所述分析滤波器的闭型表达式重新计算所述分析滤波器而减小所述第二组的所述分析滤波器的所述长度。
17.根据权利要求15或16所述的方法,其中对所述第一组的所述合成滤波器及/或所述第二组的所述分析滤波器进行所述减少取样包括补偿由于所述第一组的所述合成滤波器与所述第二滤波器组的所述分析滤波器的时间不对准导致的时间延迟。
18.根据权利要求14到16中任一权利要求所述的方法,其进一步包括:在所述经由中间时域将所述数字音频信号的所述帧从所述第一频域变换到第二频域的步骤之后将相移施加到所述数字音频信号的所述帧,其中所述相移取决于由于所述第一组的所述合成滤波器与所述第二滤波器组的所述分析滤波器的时间不对准导致的时间延迟。
19.根据权利要求17或18所述的方法,其中所述时间延迟由值dfract,2给出,根据dfract,2=(q2-1)/2,所述值dfract,2取决于所述子取样因子,其中q2是所述子取样因子。
20.根据权利要求15到19中任一权利要求所述的方法,其中使用线性内插或三次样条内插对所述第一组中的所述合成滤波器及/或所述第二组中的所述分析滤波器进行减少取样。
21.根据前述权利要求中任一权利要求所述的方法,其中所述第一频域是经修改离散余弦变换MDCT域,且所述第二频域是正交镜像滤波器QMF域。
22.根据前述权利要求中任一权利要求所述的方法,其进一步包括接收与所述数字音频信号相关的参数,其中进一步基于所述参数而识别所述频率范围的所述上限。
23.根据前述权利要求中任一权利要求所述的方法,其中所述降低所述数字音频信号的所述帧的所述尼奎斯特频率的步骤进一步包括:
从值的预定义集选择所述尼奎斯特频率的经减小值作为所述预定义集中高于所述频率范围的所述经识别上限的最低值,及
移除所述数字音频信号的所述帧的高于所述尼奎斯特频率的所述选定经减小值的频谱带。
24.根据前述权利要求中任一权利要求所述的方法,其中所述数字音频信号具有多个音频信道,且其中针对每一音频信道执行所述识别所述数字音频信号的所述帧的所述频率范围的上限及降低所述尼奎斯特频率的步骤,借此允许不同音频信道在相同帧中具有所述尼奎斯特频率的不同经减小值。
25.一种计算机程序产品,其具有指令,所述指令在由计算装置或系统执行时致使所述计算装置或系统执行根据权利要求1到13中任一权利要求所述的方法。
26.一种用于将数字音频信号从第一频域变换到第二频域的音频解码器,其包括:
接收组件,其经配置以接收在第一频域中表示的数字音频信号的后续帧,所述数字音频信号具有为所述数字音频信号的原始取样速率的一半的尼奎斯特频率,及
变换组件,其经配置以针对所述数字音频信号的每一帧:
通过分析所述数字音频信号的所述帧的频谱内容而识别所述数字音频信号的所述帧的频率范围的上限,
如果所述频率范围的所述上限比所述尼奎斯特频率低超过阈值量,那么通过移除所述数字音频信号的所述帧的高于所述频率范围的所述经识别上限的频谱带而将所述数字音频信号的所述帧的所述尼奎斯特频率从其原始值降低到经减小值,
经由中间时域将所述数字音频信号的所述帧从所述第一频域变换到第二频域,其中所述数字音频信号的所述帧在所述中间时域中具有相对于所述原始取样速率以子取样因子减小的取样速率,所述子取样因子由所述尼奎斯特频率的所述原始值与所述尼奎斯特频率的所述经减小值之间的比率定义,及
将高于所述尼奎斯特频率的所述经减小值的频谱带附加到所述第二频域中的所述数字音频信号的所述帧,以便将所述尼奎斯特频率恢复到其原始值。
CN201780038374.4A 2016-06-22 2017-06-20 用于将数字音频信号从第一频域变换到第二频域的音频解码器及方法 Active CN109328382B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662353241P 2016-06-22 2016-06-22
EP16175715 2016-06-22
EP16175715.8 2016-06-22
US62/353,241 2016-06-22
PCT/EP2017/065011 WO2017220528A1 (en) 2016-06-22 2017-06-20 Audio decoder and method for transforming a digital audio signal from a first to a second frequency domain

Publications (2)

Publication Number Publication Date
CN109328382A true CN109328382A (zh) 2019-02-12
CN109328382B CN109328382B (zh) 2023-06-16

Family

ID=56148309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780038374.4A Active CN109328382B (zh) 2016-06-22 2017-06-20 用于将数字音频信号从第一频域变换到第二频域的音频解码器及方法

Country Status (2)

Country Link
CN (1) CN109328382B (zh)
WO (1) WO2017220528A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110781445A (zh) * 2019-10-11 2020-02-11 清华大学 一种时域流数据的增量式频域变换系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010027393A1 (en) * 1999-12-08 2001-10-04 Touimi Abdellatif Benjelloun Method of and apparatus for processing at least one coded binary audio flux organized into frames
JP2004252068A (ja) * 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd デジタルオーディオ信号の符号化装置及び方法
CN101523485A (zh) * 2006-10-02 2009-09-02 卡西欧计算机株式会社 音频编码装置、音频解码装置、音频编码方法、音频解码方法和信息记录介质
CN101925950A (zh) * 2008-01-04 2010-12-22 杜比国际公司 音频编码器和解码器
CN102105930A (zh) * 2008-07-11 2011-06-22 弗朗霍夫应用科学研究促进协会 用于编码采样音频信号的帧的音频编码器和解码器
WO2011086067A1 (en) * 2010-01-12 2011-07-21 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoder, audio decoder, method for encoding and decoding an audio information, and computer program obtaining a context sub-region value on the basis of a norm of previously decoded spectral values
CN102742267A (zh) * 2007-12-19 2012-10-17 杜比实验室特许公司 自适应运动估计
US20130124443A1 (en) * 2008-09-30 2013-05-16 Rockwell Automation Technologies, Inc. Validation of laboratory test data
US20130226570A1 (en) * 2010-10-06 2013-08-29 Voiceage Corporation Apparatus and method for processing an audio signal and for providing a higher temporal granularity for a combined unified speech and audio codec (usac)
EP2757558A1 (en) * 2013-01-18 2014-07-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Time domain level adjustment for audio signal decoding or encoding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI556227B (zh) 2009-05-27 2016-11-01 杜比國際公司 從訊號的低頻成份產生該訊號之高頻成份的系統與方法,及其機上盒、電腦程式產品、軟體程式及儲存媒體
TWI575962B (zh) * 2012-02-24 2017-03-21 杜比國際公司 部份複數處理之重疊濾波器組中的低延遲實數至複數轉換

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010027393A1 (en) * 1999-12-08 2001-10-04 Touimi Abdellatif Benjelloun Method of and apparatus for processing at least one coded binary audio flux organized into frames
JP2004252068A (ja) * 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd デジタルオーディオ信号の符号化装置及び方法
CN101523485A (zh) * 2006-10-02 2009-09-02 卡西欧计算机株式会社 音频编码装置、音频解码装置、音频编码方法、音频解码方法和信息记录介质
CN102742267A (zh) * 2007-12-19 2012-10-17 杜比实验室特许公司 自适应运动估计
CN101925950A (zh) * 2008-01-04 2010-12-22 杜比国际公司 音频编码器和解码器
CN102105930A (zh) * 2008-07-11 2011-06-22 弗朗霍夫应用科学研究促进协会 用于编码采样音频信号的帧的音频编码器和解码器
US20130124443A1 (en) * 2008-09-30 2013-05-16 Rockwell Automation Technologies, Inc. Validation of laboratory test data
WO2011086067A1 (en) * 2010-01-12 2011-07-21 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoder, audio decoder, method for encoding and decoding an audio information, and computer program obtaining a context sub-region value on the basis of a norm of previously decoded spectral values
US20130226570A1 (en) * 2010-10-06 2013-08-29 Voiceage Corporation Apparatus and method for processing an audio signal and for providing a higher temporal granularity for a combined unified speech and audio codec (usac)
EP2757558A1 (en) * 2013-01-18 2014-07-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Time domain level adjustment for audio signal decoding or encoding

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VLADIMIR BRITANAK: "On Properties, Relations, and Simplified Implementation of Filter Banks in the Dolby Digital (Plus) AC-3 Audio Coding Standards", 《IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING》 *
郝晓锋: "音频和语音统一编解码算法研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110781445A (zh) * 2019-10-11 2020-02-11 清华大学 一种时域流数据的增量式频域变换系统及方法

Also Published As

Publication number Publication date
WO2017220528A1 (en) 2017-12-28
CN109328382B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
US11705139B2 (en) Efficient coding of audio scenes comprising audio objects
KR101046982B1 (ko) 전대역 오디오 파형의 외삽법에 기초한 부분대역 예측코딩에 대한 패킷 손실 은닉 기법
US9756448B2 (en) Efficient coding of audio scenes comprising audio objects
KR102356012B1 (ko) 복호화 장치 및 방법, 및 프로그램
RU2436174C2 (ru) Аудиопроцессор и способ обработки звука с высококачественной коррекцией частоты основного тона (варианты)
EP3005356B1 (en) Efficient coding of audio scenes comprising audio objects
AU2015295709B2 (en) Method and apparatus for processing an audio signal, audio decoder, and audio encoder
KR20140085452A (ko) 지터 버퍼 관리 방법 및 이를 이용하는 지터 버퍼
JP2014130359A (ja) 音声信号符号器、符号化されたマルチチャンネル音声信号表現の生成方法およびコンピュータプログラム
JP2014510301A (ja) 復号後オーディオ信号をスペクトル領域で処理する装置及び方法
JP2003122400A (ja) 低ビットレートcelp符号化のための連続タイムワーピングに基づく信号の修正
EP1360686A1 (en) Time scale modification of digital signals in the time domain
US20040263363A1 (en) Rational sample rate conversion
RU2727861C1 (ru) Понижающий микшер и способ для понижающего микширования по меньшей мере двух каналов, и многоканальный кодировщик и многоканальный декодер
CN108140396A (zh) 音频信号处理
JP6976277B2 (ja) 第一の周波数領域から第二の周波数領域にデジタル・オーディオ信号を変換するためのオーディオ・デコーダおよび方法
US9129608B2 (en) Temporal interpolation of adjacent spectra
EP1911022A2 (en) Audio signal modification
CN109328382A (zh) 用于将数字音频信号从第一频域变换到第二频域的音频解码器及方法
JP6307715B2 (ja) 音声信号処理装置、音声信号処理方法
JP7341194B2 (ja) 処理されたオーディオ信号表現を提供するための装置およびオーディオ信号プロセッサ、オーディオデコーダ、オーディオエンコーダ、方法、ならびにコンピュータプログラム
JPS6093840A (ja) 信号符号化方法およびそれに供する装置
JPS62278600A (ja) 可変長フレ−ム型符号復号化装置の同期方法
AU2002237971A1 (en) Time scale modification of digital signal in the time domain

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant