CN109324778B - 补偿表压缩方法 - Google Patents

补偿表压缩方法 Download PDF

Info

Publication number
CN109324778B
CN109324778B CN201811475457.2A CN201811475457A CN109324778B CN 109324778 B CN109324778 B CN 109324778B CN 201811475457 A CN201811475457 A CN 201811475457A CN 109324778 B CN109324778 B CN 109324778B
Authority
CN
China
Prior art keywords
sub
compensation
block
quantization
gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811475457.2A
Other languages
English (en)
Other versions
CN109324778A (zh
Inventor
程琳
邓宇帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen China Star Optoelectronics Semiconductor Display Technology Co Ltd
Original Assignee
Shenzhen China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen China Star Optoelectronics Semiconductor Display Technology Co Ltd filed Critical Shenzhen China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority to CN201811475457.2A priority Critical patent/CN109324778B/zh
Priority to PCT/CN2019/071033 priority patent/WO2020113766A1/zh
Publication of CN109324778A publication Critical patent/CN109324778A/zh
Application granted granted Critical
Publication of CN109324778B publication Critical patent/CN109324778B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1407General aspects irrespective of display type, e.g. determination of decimal point position, display with fixed or driving decimal point, suppression of non-significant zeros
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/007Transform coding, e.g. discrete cosine transform

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Discrete Mathematics (AREA)
  • Multimedia (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)

Abstract

本发明提供一种补偿表压缩方法。该补偿表压缩方法通过视觉无损压缩补偿表,使人眼察觉不出原始补偿表的质量损失,且极大增加压缩效率,和现有的补偿表压缩算法相比,本发明无需迭代即可获得最佳量化步长,减少对内存空间的占用,节省系统的硬件资源,且可以降低成本及减少传输和烧录数据耗费的时间。

Description

补偿表压缩方法
技术领域
本发明涉及图像处理领域,尤其涉及一种补偿表压缩方法。
背景技术
数据压缩是用于减小数据大小的一种较为成熟的技术。其应用于保存在计算机系统的存储器子系统中的数据以,增加存储能力。当数据在计算机系统内的不同子系统之间传输时,或者通常当在包括通信网络的数据通信系统中的两个点之间进行所述传输时,数据压缩也被使用。
数据压缩需要两个基本的操作:1、压缩(也称为编码),压缩是将未压缩的数据作为输入,并通过用相应的码字(在文献中也称为编码、字码或代码)替换数据值来将未压缩的数据转换为经压缩的数据:2、解压缩(也称为解码),解压缩是将经压缩的数据作为输入并通过用相应的数据值替换码字来将该经压缩的数据转换为未压缩的。数据压缩可以是无损式的或者有损式的,这取决于是否解压缩后的实际数据值与压缩前的原始数据值完全相同(无损式),或者取决于是否解压缩后的数据值不同于原始数据值且原始值无法取得(有损式)。可以用软件、或硬件、或软件和硬件的组合来实施压缩和解压缩,以实现相应的方法、设备和系统。
为消除显示器的Mura,通常采用补偿表存储各像素的补偿信息。显示影像时,驱动板(TCON)查找补偿表,调整信号,将面板过暗区域的信号调高,过亮区域的信号调低,呈现均匀的显示效果。在补偿表中,每个像素对应于一组补偿信息,每组补偿信息包含一个或多个补偿数据。补偿数据的物理意义视算法而定,通常为特定灰阶的调整值,也有算法将其设定为待调整的电压值。现有技术的补偿表有损压缩算法,在视觉上会看出损失,使用二分法,需要大量迭代,不断迭代求最佳量化步长,对硬件要求高且较耗时;而补偿表的大小等于面板像素数目乘以每组补偿信息的大小,如果补偿55寸UHD(超高清)RGB面板(每个像素包括红绿蓝三个子像素),假设每个子像素补偿信息为24bit,则补偿表数据量大小为2160*3840*24bit*3≈597Mb,现有技术的补偿表占用大量系统存储资源,对硬件系统要求较高,并在产线上传输、烧录数据的过程耗费时间。
发明内容
本发明的目的在于提供一种补偿表压缩方法,无需迭代即可获得最佳量化步长,减少对内存空间的占用,节省系统的硬件资源,且可以降低成本及减少传输和烧录数据耗费的时间。
为实现上述目的,本发明提供了一种补偿表压缩方法,包括如下步骤:
步骤S1、将原始补偿表在空域中分成多个相同大小的子块;
步骤S2、对分成多个子块后的原始补偿表乘以sobel算子得到梯度矢量,分别计算每个字块的方差;
步骤S3、根据量化步长计算公式:Qstep=aσ2+b得到每个子块对应的量化步长,其中,Qstep为量化步长,σ2为方差,a和b均为常数;
步骤S4、每个子块根据其对应的量化步长分别量化,得到量化补偿表,采用编码算法对量化补偿表进行压缩。
步骤S5、通过解压压缩后的量化补偿表,再根据量化补偿表中的信息反量化每个子块重建原始补偿表。
每个子块的大小为8*8。
所述步骤S2中通过sobel算子检测每个子块的边缘。
所述步骤S3中通过视觉无损主观实验得到量化步长计算公式,其中,a和b是通过拟合视觉无损主观实验结果得到的参数。
本发明还提供一种补偿表压缩方法,包括如下步骤:
步骤S1’、对原始补偿表进行DCT变换,将原始补偿表从空域转换到频域,且分成多个相同大小的子块;
步骤S2’、根据能量函数计算公式:E=sum(D)+K计算每个子块DCT系数右下角区域的能量函数,其中,sum(D)为子块DCT系数右下角区域中每个点的绝对值之和,K为DC系数,E为每个子块DCT系数右下角区域的能量函数;
步骤S3’、根据量化步长计算公式:Qstep=aE+b得到每个子块对应的量化步长,其中,Qstep为量化步长,a和b均为常数;
步骤S4’、每个子块根据其对应的量化步长分别量化,得到量化补偿表,采用编码算法对量化补偿表进行压缩。
步骤S5’、通过解压压缩后的量化补偿表,再根据量化补偿表中的信息反量化及反DCT变换每个子块重建原始补偿表。
每个子块的大小为8*8。
每个子块DCT系数右下角区域的大小为4*4;DC系数为每个子块中最左上角的值。
所述步骤S3’中通过视觉无损主观实验得到量化步长计算公式,其中,a和b是通过拟合视觉无损主观实验结果得到的参数。
本发明的有益效果:本发明的补偿表压缩方法通过视觉无损压缩补偿表,使人眼察觉不出原补偿表的质量损失,且极大增加压缩效率,和现有的补偿表压缩算法相比,本发明无需迭代即可获得最佳量化步长,减少对内存空间的占用,节省系统的硬件资源,且可以降低成本及减少传输和烧录数据耗费的时间。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的补偿表压缩方法第一实施例的流程图;
图2为本发明的补偿表压缩方法第一实施例的逻辑图;
图3为本发明的补偿表压缩方法第二实施例的流程图;
图4为本发明的补偿表压缩方法第二实施例的逻辑图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1及图2,本发明提供一种补偿表压缩方法的第一实施例,包括如下步骤:
步骤S1、将原始补偿表在空域中分成多个相同大小的子块,
步骤S2、对分成多个子块后的原始补偿表乘以sobel算子得到梯度矢量,分别计算每个字块的方差;
步骤S3、根据量化步长计算公式:Qstep=aσ2+b得到每个子块对应的量化步长,其中,Qstep为量化步长,σ2为方差,a和b均为常数;
步骤S4、每个子块根据其对应的量化步长分别量化,得到量化补偿表,采用编码算法对量化补偿表进行压缩。
具体的,还包括步骤S5、通过解压压缩后的量化补偿表,再根据量化补偿表中的信息反量化每个子块,即可重建原始补偿表。
具体的,每个子块的大小为8*8,即每个子块对应8行8列像素(总共64个像素)的补偿信息。
具体的,所述步骤S2中通过sobel算子检测每个子块的边缘,确定每个子块所在的位置。
具体的,所述步骤S3中,量化步长计算公式可以根据视觉无损主观实验得到,从而无损压缩量化补偿表,其中,a和b是通过拟合视觉无损主观实验结果得到的参数。
需要说明的是,本发明通过视觉无损压缩补偿表,使人眼察觉不出原补偿表的质量损失,且极大增加压缩效率,和现有的补偿表压缩算法相比,本发明无需迭代即可获得最佳量化步长,减少对内存空间的占用,节省系统的硬件资源,且可以降低成本及减少传输和烧录数据耗费的时间。
请参阅图3及图4,本发明提供一种补偿表压缩方法的第二实施例,包括如下步骤:
步骤S1’、对原始补偿表进行DCT变换(离散余弦变换),将原始补偿表从空域转换到频域,且分成多个相同大小的子块;
步骤S2’、根据能量函数计算公式:E=sum(D)+K计算每个子块DCT系数右下角区域的能量函数,其中,sum(D)为子块DCT系数右下角区域中每个点的绝对值之和,K为DC系数,E为每个子块DCT系数右下角区域的能量函数;
步骤S3’、根据量化步长计算公式:Qstep=aE+b得到每个子块对应的量化步长,其中,Qstep为量化步长,a和b均为常数;
步骤S4’、每个子块根据其对应的量化步长分别量化,得到量化补偿表,采用编码算法对量化补偿表进行压缩。
具体的,还包括步骤S5’、通过解压压缩后的量化补偿表,再根据量化补偿表中的信息反量化每个子块,再反DCT变换每个子块即可重建原始补偿表。
具体的,每个子块的大小为8*8,即每个子块对应8行8列像素(总共64个像素)的补偿信息。
进一步的,每个子块DCT系数右下角区域的大小为4*4,即每个子块DCT系数右下角区域对应4行4列像素(总共16个像素)的补偿信息;DC系数为每个子块中最左上角的值。
具体的,所述步骤S3’中,量化步长计算公式可以根据视觉无损主观实验得到,从而无损压缩量化补偿表,其中,a和b是通过拟合视觉无损主观实验结果得到的参数。
需要说明的是,本发明通过视觉无损压缩补偿表,使人眼察觉不出原补偿表的质量损失,且极大增加压缩效率,和现有的补偿表压缩算法相比,本发明无需迭代即可获得最佳量化步长,减少对内存空间的占用,节省系统的硬件资源,且可以降低成本及减少传输和烧录数据耗费的时间。
综上所述,本发明的补偿表压缩方法通过视觉无损压缩补偿表,使人眼察觉不出原补偿表的质量损失,且极大增加压缩效率,和现有的补偿表压缩算法相比,本发明无需迭代即可获得最佳量化步长,减少对内存空间的占用,节省系统的硬件资源,且可以降低成本及减少传输和烧录数据耗费的时间。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

1.一种补偿表压缩方法,其特征在于,包括如下步骤:
步骤S1、将原始补偿表在空域中分成多个相同大小的子块;
步骤S2、对分成多个子块后的原始补偿表乘以sobel算子得到梯度矢量,分别计算每个子块的方差;
步骤S3、根据量化步长计算公式:Qstep=aσ2+b得到每个子块对应的量化步长,其中,Qstep为量化步长,σ2为方差,a和b均为常数;
步骤S4、每个子块根据其对应的量化步长分别量化,得到量化补偿表,采用编码算法对量化补偿表进行压缩。
2.如权利要求1所述的补偿表压缩方法,其特征在于,还包括步骤S5、通过解压压缩后的量化补偿表,再根据量化补偿表中的信息反量化每个子块重建原始补偿表。
3.如权利要求1所述的补偿表压缩方法,其特征在于,每个子块对应8行8列像素的补偿信息。
4.如权利要求1所述的补偿表压缩方法,其特征在于,所述步骤S2中通过sobel算子检测每个子块的边缘。
5.如权利要求1所述的补偿表压缩方法,其特征在于,所述步骤S3中通过视觉无损主观实验得到量化步长计算公式,其中,a和b是通过拟合视觉无损主观实验结果得到的参数。
6.一种补偿表压缩方法,其特征在于,包括如下步骤:
步骤S1’、对原始补偿表进行DCT变换,将原始补偿表从空域转换到频域,且分成多个相同大小的子块;
步骤S2’、根据能量函数计算公式:E=sum(D)+K计算每个子块DCT系数右下角区域的能量函数,其中,sum(D)为子块DCT系数右下角区域中每个像素的补偿信息的绝对值之和,K为DC系数,E为每个子块DCT系数右下角区域的能量函数;
步骤S3’、根据量化步长计算公式:Qstep=aE+b得到每个子块对应的量化步长,其中,Qstep为量化步长,a和b均为常数;
步骤S4’、每个子块根据其对应的量化步长分别量化,得到量化补偿表,采用编码算法对量化补偿表进行压缩。
7.如权利要求6所述的补偿表压缩方法,其特征在于,还包括步骤S5’、通过解压压缩后的量化补偿表,再根据量化补偿表中的信息反量化及反DCT变换每个子块重建原始补偿表。
8.如权利要求6所述的补偿表压缩方法,其特征在于,每个子块对应8行8列像素的补偿信息。
9.如权利要求8所述的补偿表压缩方法,其特征在于,每个子块DCT系数右下角区域对应4行4列像素的补偿信息;DC系数为每个子块中最左上角的值。
10.如权利要求6所述的补偿表压缩方法,其特征在于,所述步骤S3’中通过视觉无损主观实验得到量化步长计算公式,其中,a和b是通过拟合视觉无损主观实验结果得到的参数。
CN201811475457.2A 2018-12-04 2018-12-04 补偿表压缩方法 Active CN109324778B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811475457.2A CN109324778B (zh) 2018-12-04 2018-12-04 补偿表压缩方法
PCT/CN2019/071033 WO2020113766A1 (zh) 2018-12-04 2019-01-09 补偿表压缩方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811475457.2A CN109324778B (zh) 2018-12-04 2018-12-04 补偿表压缩方法

Publications (2)

Publication Number Publication Date
CN109324778A CN109324778A (zh) 2019-02-12
CN109324778B true CN109324778B (zh) 2020-03-27

Family

ID=65256221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811475457.2A Active CN109324778B (zh) 2018-12-04 2018-12-04 补偿表压缩方法

Country Status (2)

Country Link
CN (1) CN109324778B (zh)
WO (1) WO2020113766A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166783B (zh) 2019-06-03 2021-03-23 Tcl华星光电技术有限公司 补偿表压缩方法、显示器制造设备和具有存储功能的装置
CN110796995B (zh) * 2019-11-28 2021-09-03 Tcl华星光电技术有限公司 显示面板的补偿数据的处理方法及显示装置
CN111225216A (zh) * 2020-01-10 2020-06-02 Tcl华星光电技术有限公司 显示器补偿表压缩方法、装置、系统及显示器
CN111223438B (zh) * 2020-03-11 2022-11-04 Tcl华星光电技术有限公司 像素补偿表的压缩方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112336A (zh) * 1994-04-30 1995-11-22 大宇电子株式会社 具有编码误差补偿功能的图像信号解码装置
CN1522073A (zh) * 2003-02-10 2004-08-18 ���ǵ�����ʽ���� 视频编码器和使用视频编码器的压缩视频信号的方法
CN101068355A (zh) * 2007-06-05 2007-11-07 南京大学 Mpeg-2到h.264码的快速转换方法
CN103313056A (zh) * 2013-06-03 2013-09-18 南京邮电大学 一种基于图像融合和边缘Hash的子块修复方法
CN105700847A (zh) * 2016-03-25 2016-06-22 深圳市华星光电技术有限公司 Oled显示面板补偿数据的存储方法
CN106339196A (zh) * 2016-08-31 2017-01-18 深圳市华星光电技术有限公司 DeMura表的数据压缩、解压缩方法及Mura补偿方法
CN107068050A (zh) * 2017-06-09 2017-08-18 深圳市华星光电技术有限公司 Oled显示面板的补偿表存储方法
CN107294538A (zh) * 2017-06-09 2017-10-24 深圳市华星光电技术有限公司 Oled显示装置的补偿表压缩方法及解压方法
CN108172168A (zh) * 2017-12-22 2018-06-15 深圳市华星光电半导体显示技术有限公司 一种补偿表压缩方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6963668B2 (en) * 1998-11-13 2005-11-08 Lightsurf Technologies, Inc. Method and system for fast image correction
JP2007507183A (ja) * 2003-09-24 2007-03-22 テキサス インスツルメンツ インコーポレイテッド 8×8変換及び量子化
KR20080065820A (ko) * 2007-01-10 2008-07-15 삼성전자주식회사 디지털 멀티미디어 중계 신호처리장치 및 그 방법
CN102256126A (zh) * 2011-07-14 2011-11-23 北京工业大学 混合图像的编码方法
CN104202599B (zh) * 2014-09-23 2017-07-28 浙江工商大学 一种应用于hevc帧间编码的全零块检测方法
CN106341576B (zh) * 2016-08-25 2020-07-03 深圳市华星光电技术有限公司 图像处理方法
CN107799065B (zh) * 2017-11-02 2019-11-26 深圳市华星光电半导体显示技术有限公司 Oled显示面板的灰阶补偿表的压缩方法
CN108008553A (zh) * 2017-11-22 2018-05-08 深圳市华星光电技术有限公司 一种Mura检测校正方法和系统
CN108416725B (zh) * 2018-03-13 2021-07-27 中山大学 一种基于消除块效应的非对称jpeg隐写方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112336A (zh) * 1994-04-30 1995-11-22 大宇电子株式会社 具有编码误差补偿功能的图像信号解码装置
CN1522073A (zh) * 2003-02-10 2004-08-18 ���ǵ�����ʽ���� 视频编码器和使用视频编码器的压缩视频信号的方法
CN101068355A (zh) * 2007-06-05 2007-11-07 南京大学 Mpeg-2到h.264码的快速转换方法
CN103313056A (zh) * 2013-06-03 2013-09-18 南京邮电大学 一种基于图像融合和边缘Hash的子块修复方法
CN105700847A (zh) * 2016-03-25 2016-06-22 深圳市华星光电技术有限公司 Oled显示面板补偿数据的存储方法
CN106339196A (zh) * 2016-08-31 2017-01-18 深圳市华星光电技术有限公司 DeMura表的数据压缩、解压缩方法及Mura补偿方法
CN107068050A (zh) * 2017-06-09 2017-08-18 深圳市华星光电技术有限公司 Oled显示面板的补偿表存储方法
CN107294538A (zh) * 2017-06-09 2017-10-24 深圳市华星光电技术有限公司 Oled显示装置的补偿表压缩方法及解压方法
CN108172168A (zh) * 2017-12-22 2018-06-15 深圳市华星光电半导体显示技术有限公司 一种补偿表压缩方法

Also Published As

Publication number Publication date
WO2020113766A1 (zh) 2020-06-11
CN109324778A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
CN109324778B (zh) 补偿表压缩方法
US9894374B2 (en) High dynamic range codecs
CN104378636A (zh) 一种视频图像编码方法及装置
KR102171227B1 (ko) 비트율 제어 방법 및 이의 장치
JP3105335B2 (ja) 画像の直交変換符号化による圧縮・伸張方法
CN103957426A (zh) 一种rgb565真彩色图像有损压缩及解压方法
CN109474824B (zh) 图像压缩方法
CN111225216A (zh) 显示器补偿表压缩方法、装置、系统及显示器
US20100027617A1 (en) Method and apparatus for compressing a reference frame in encoding/decoding moving images
Taskin et al. An overview of image compression approaches
More et al. JPEG picture compression using Discrete Cosine Transform
US7657110B2 (en) Image compression using a color visual model
CN115866277A (zh) 视频编码控制方法、视频编码控制设备及可读存储介质
KR100991421B1 (ko) 고압축 영상 인코딩 장치 및 방법과, 이를 이용하는 동적커패시턴스 보상 신호 처리 장치 및 방법
Sundaresan et al. Image compression using H. 264 and deflate algorithm
Joshi et al. Performance Analysis of 2D-DCT based JPEG Compression Algorithm
Elmourssi et al. A Performance Study Of Two Jpeg Compression Approaches
CN111819848B (zh) 用于图像压缩和解压缩的方法和装置以及存储介质
US20240029202A1 (en) Super-resolution video processing method and system for effective video compression
EP3893504A1 (en) Systems and methods for low-complexity near lossless fixed-rate hybrid data compression codecs
Arjun et al. Verilog implementation of adaptive compression of RGB images at low bit rates
Bethel et al. Optimal quantisation of the discrete cosine transform for image compression
EP2605515B1 (en) Method and apparatus for discrete cosine transform/inverse discrete cosine transform
JPH0746407A (ja) 画像データ圧縮装置および画像データ復元装置
KinTak et al. An Adaptive Quantization Technique for JPEG Based on Non-uniform Rectangular Partition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant