CN109324385A - 光学镜头 - Google Patents
光学镜头 Download PDFInfo
- Publication number
- CN109324385A CN109324385A CN201710637078.8A CN201710637078A CN109324385A CN 109324385 A CN109324385 A CN 109324385A CN 201710637078 A CN201710637078 A CN 201710637078A CN 109324385 A CN109324385 A CN 109324385A
- Authority
- CN
- China
- Prior art keywords
- lens
- optical
- object side
- image side
- optical lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 161
- 230000005499 meniscus Effects 0.000 claims abstract description 21
- 230000014509 gene expression Effects 0.000 claims description 11
- 239000011521 glass Substances 0.000 claims description 11
- 230000004075 alteration Effects 0.000 abstract description 23
- 239000000571 coke Substances 0.000 abstract 2
- 230000035945 sensitivity Effects 0.000 description 14
- 230000008901 benefit Effects 0.000 description 13
- 238000003384 imaging method Methods 0.000 description 12
- 230000004304 visual acuity Effects 0.000 description 11
- 230000009286 beneficial effect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000004026 adhesive bonding Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/021—Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/025—Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明提供了光学镜头,从物侧到像侧依次包括:第一透镜,为具有负光焦度的弯月形透镜,其物侧面为凸面、像侧面为凹面;第二透镜,为具有负光焦度的弯月形透镜,其物侧面为凸面、像侧面为凹面;第三透镜,为具有负光焦度的弯月形透镜,其物侧面为凸面、像侧面为凹面;第四透镜,为具有正光焦度的双凸透镜,其物侧面为凸面、像侧面为凸面;第五透镜,为具有正光焦度的双凸透镜,其物侧面为凸面、像侧面为凸面;第六透镜,为具有负光焦度;其中,该第三透镜和该第四透镜为胶合透镜。本发明提供的光学镜头通过优化设置各个透镜的形状并合理分配各个透镜的光焦度,可以在保持镜头小型化的同时实现高解像力、低像差、低成本以及较好的温度性能。
Description
技术领域
本发明涉及光学镜头的领域,特别涉及在保持镜头的小型化的同时提高成像性能的光学镜头。
背景技术
成像设备,例如安装有相机的移动设备和数字式静止相机,使用例如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)作为固态成像元件,这样的成像设备已经是熟知的。
在这种成像设备中,光学镜头用于获取被摄体的图像。随着越来越多的电子设备应用成像功能,对于光学镜头的要求也越来越高。例如,对于光学镜头的解像力要求越来越高,从原来的百万像素,朝着千万像素的方向不断提升,且高像素镜头越来越普及。
例如应用于车载领域的光学镜头,因为车内空间的限制,对于光学镜头的小尺寸的要求非常高。当前的百万像素及以上的光学镜头通常采用6枚或者7枚甚至7枚以上的透镜,虽然解像力获得明显提升,但透镜数目的增加会影响光学镜头的小型化和低成本。
另外,对于车载光学镜头,需要实现低像差,这一般通过采用非球面矫正像差来实现。在采用非球面矫正像差时,如果采用塑料非球面透镜,由于塑料的热膨胀系数较大,温度性能较差,无法满足-40~85℃温度范围内保证完美的成像性能,存在温度变化引起失焦像面模糊问题。相对地,如果采用玻璃非球面透镜来保证温度特性,成本又会过高。
并且,对于用在监控领域的光学镜头,也存在上述问题。
发明内容
本发明的目的在于针对上述现有技术中的缺陷和不足,提供新颖的和改进的能够同时实现或部分实现镜头的小型化、高解像力、低像差、低成本以及较好的温度性能的光学镜头。
本发明的优点在于提供一种光学镜头,通过优化设置各个透镜的形状并合理分配各个透镜的光焦度,可以在保持镜头小型化的同时实现高解像力、低像差、低成本以及较好的温度性能。
本发明的优点在于提供一种光学镜头,通过第三透镜和第四透镜为胶合透镜,可以显著降低第三透镜和第四透镜的敏感度。
本发明的优点在于提供一种光学镜头,通过第三透镜和第四透镜为胶合透镜,可以使得第三透镜的像侧面与第四透镜的物侧面之间的承靠为非平面承靠,从而降低组立倾斜公差。
本发明的优点在于提供一种光学镜头,通过第三透镜和第四透镜为胶合透镜,可以节省第三透镜和第四透镜之间的固定件,从而减少组立部件和组立工序,并降低光学镜头的制造成本。
本发明的优点在于提供一种光学镜头,通过第三透镜和第四透镜为胶合透镜而在其间没有间隙,可以有助于实现光学镜头的小型化。
本发明的优点在于提供一种光学镜头,通过第三透镜和第四透镜为胶合透镜而将孔径光阑前置于第二透镜和第三透镜之间,使得后方光线走势更加平稳,降低后方透镜敏感度,促进减小FNO。
本发明的优点在于提供一种光学镜头,通过第一透镜具有负光焦度和低折射率,避免了物方光线发散过大,有利于后方透镜的口径控制。
本发明的优点在于提供一种光学镜头,通过第二透镜的特殊形状设置和具有高折射率,可以减小光程,有利于提高成像性能。
本发明的优点在于提供一种光学镜头,通过第五透镜和第六透镜为胶合透镜,且该胶合透镜由一枚正透镜和一枚负透镜组成,能够有效地校正像差,提高解像力。
本发明的优点在于提供一种光学镜头,通过第五透镜和第六透镜的胶合透镜,可以有效地缩短光学系统的整体长度。
本发明的优点在于提供一种光学镜头,通过第一透镜到第六透镜的光焦度和形状设置,以及第三透镜和第四透镜为胶合透镜,及第五透镜和第六透镜为胶合透镜,可以实现光学镜头的小型化。
本发明的优点在于提供一种光学镜头,通过两组胶合件的使用,不仅有利于校正像差,实现高解像,且使得光学系统整体紧凑,满足小型化要求,同时降低镜片单元因在组立过程中产生的倾斜/偏芯等公差敏感度问题。
本发明的优点在于提供一种光学镜头,通过两组胶合件的材料对称分布,有助于消除像差。
本发明的优点在于提供一种光学镜头,通过第一透镜到第六透镜采用玻璃球面透镜而避免采用非球面透镜,可以达到高解像力的要求,且同时实现光学镜头的低成本,以及较好的稳定的温度性能。
根据本发明的一方面,提供了一种光学镜头,从物侧到像侧依次包括:第一透镜,为具有负光焦度的弯月形透镜,其物侧面为凸面、像侧面为凹面;第二透镜,为具有负光焦度的弯月形透镜,其物侧面为凸面、像侧面为凹面;第三透镜,为具有负光焦度的弯月形透镜,其物侧面为凸面、像侧面为凹面;第四透镜,为具有正光焦度的双凸透镜,其物侧面为凸面、像侧面为凸面;第五透镜,为具有正光焦度的双凸透镜,其物侧面为凸面、像侧面为凸面;第六透镜,为具有负光焦度;其中,所述第三透镜和所述第四透镜为胶合透镜。
在上述光学镜头中,所述第五透镜和所述第六透镜为胶合透镜。
在上述光学镜头中,所述第六透镜为具有负光角度的弯月形透镜,其物侧面为凹面、像侧面为凸面;或者,所述第六透镜为具有负光角度的双凹透镜,其物侧面为凹面、像侧面为凹面。
在上述光学镜头中,所述第二透镜满足以下条件表达式(1):
0.5≤R21/(R22+D2)≤1.1 (1)
其中,R21是所述第二透镜的物侧面的中心曲率半径,R22是所述第二透镜的像侧面的中心曲率半径,且D2是所述第二透镜的中心厚度。
在上述光学镜头中,所述第二透镜满足以下条件表达式(2):
N2≥1.7 (2)
其中,N2是所述第二透镜的折射率。
在上述光学镜头中,所述第一透镜到第六透镜满足以下条件表达式(3):
TTL/F≤8 (3)
其中,F是所述光学镜头的整组焦距值,且TTL是所述光学镜头的光学长度。
在上述光学镜头中,所述第一透镜到第六透镜均为玻璃透镜。
在上述光学镜头中,进一步包括位于所述第二透镜和所述第三透镜之间的孔径光阑。
本发明提供的光学镜头通过优化设置各个透镜的形状并合理分配各个透镜的光焦度,可以在保持镜头小型化的同时实现高解像力、低像差、低成本以及较好的温度性能。
附图说明
图1图示根据本发明第一实施例的光学镜头的透镜配置;
图2图示根据本发明第二实施例的光学镜头的透镜配置。
具体实施方式
以下描述用于公开本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
以下说明书和权利要求中使用的术语和词不限于字面的含义,而是仅由本发明人使用以使得能够清楚和一致地理解本发明。因此,对本领域技术人员很明显仅为了说明的目的而不是为了如所附权利要求和它们的等效物所定义的限制本发明的目的而提供本发明的各种实施例的以下描述。
在这里使用的术语仅用于描述各种实施例的目的且不意在限制。如在此使用的,单数形式意在也包括复数形式,除非上下文清楚地指示例外。另外将理解术语“包括”和/或“具有”当在该说明书中使用时指定所述的特征、数目、步骤、操作、组件、元件或其组合的存在,而不排除一个或多个其它特征、数目、步骤、操作、组件、元件或其组的存在或者附加。
包括技术和科学术语的在这里使用的术语具有与本领域技术人员通常理解的术语相同的含义,只要不是不同地限定该术语。应当理解在通常使用的词典中限定的术语具有与现有技术中的术语的含义一致的含义。
下面结合附图和具体实施方式对本发明作进一步详细的说明:
[光学镜头的配置]
根据本发明实施例的一方面,提供了一种光学镜头,从物侧到像侧依次包括:第一透镜,为具有负光焦度的弯月形透镜,其物侧面为凸面、像侧面为凹面;第二透镜,为具有负光焦度的弯月形透镜,其物侧面为凸面、像侧面为凹面;第三透镜,为具有负光焦度的弯月形透镜,其物侧面为凸面、像侧面为凹面;第四透镜,为具有正光焦度的双凸透镜,其物侧面为凸面、像侧面为凸面;第五透镜,为具有正光焦度的双凸透镜,其物侧面为凸面、像侧面为凸面;第六透镜,为具有负光焦度;其中,该第三透镜和该第四透镜为胶合透镜。
在根据本发明实施例的光学镜头中,通过第三透镜和第四透镜为胶合透镜,显著降低了第三透镜和第四透镜的敏感度,从而有利于实际生产组立。另外,由于第三透镜和第四透镜彼此胶合,节省了第三透镜和第四透镜之间的固定件,从而减少了组立部件和组立工序,降低了光学镜头的制造成本。
而且,第三透镜和第四透镜通过彼此胶合而在其间没有间隙,也有助于实现光学镜头整体的小TTL,即光学镜头的光学长度,指的是第一透镜的物侧面中心到成像焦平面的距离。
此外,在第三透镜和第四透镜彼此胶合的情况下,光学镜头中包括的孔径光阑需要前移,位于第二透镜和第三透镜之间。这样,可以使得孔径光阑后方,即像侧的光线走势更加平稳,降低后方透镜,即第三透镜到第六透镜的敏感度,且更易于减小FNO。
另外,优选地,在根据本发明实施例的光学镜头中,第五透镜和第六透镜为胶合透镜。并且,类似于第三透镜和第四透镜组成胶合透镜,第五透镜和第六透镜为胶合透镜显著降低了第五透镜和第六透镜的敏感度,降低了组立倾斜公差。另外,节省了第五透镜和第六透镜之间的固定件,从而减少了组立部件和组立工序,降低了光学镜头的制造成本,且通过在第五透镜和第六透镜之间没有间隙,有助于实现光学镜头整体的小TTL。
在根据本发明实施例的光学镜头中,第六透镜为具有负光角度的弯月形透镜,其物侧面为凹面、像侧面为凸面;或者,第六透镜为具有负光角度的双凹透镜,其物侧面为凹面、像侧面为凹面。
在根据本发明实施例的光学镜头中,通过第一透镜采用凸向物方的弯月形透镜,可以使得入射光线在迎击面上入射角小,以尽可能地收集视场内光线,有利于收集更多的光线进入光学系统,有利于实现高入光量。并且,由于第一透镜采用弯月形状,能够有效地减小第二透镜的口径以及第一透镜和第二透镜之间的距离,有助于实现光学镜头的小型化。
另外,当应用于车载镜头时,第一透镜朝向物侧的凸面有利于适应车载镜头的室外使用。例如,当处于例如雨天的环境中时,该凸面可以有助于水珠的滑落。
此外,在根据本发明实施例的光学镜头中,第一透镜优选地具有低折射率。这样,由于第一透镜具有负光焦度和低折射率,可以避免物方光线发散过大,有利于后方镜片的口径控制。
由于第二透镜为具有弯月形形状的发散透镜,可以将收集到的光线平缓地过渡到第三透镜。
另外,第二透镜具有特殊的形状设置,以减小光程,有利于成像质量的提高,如增强解像力和减小像差。
也就是,在根据本发明实施例的光学镜头中,该第二透镜满足以下条件表达式(1):
0.5≤R21/(R22+D2)≤1.1 (1)
其中,R21是该第二透镜的物侧面的中心曲率半径,R22是该第二透镜的像侧面的中心曲率半径,且D2是该第二透镜的中心厚度。
并且,优选地,第二透镜采用高折射率的材料。
也就是,在根据本发明实施例的光学镜头中,该第二透镜满足以下条件表达式(2):
N2≥1.7 (2)
其中,N2是第二透镜的折射率。
在第三透镜和第四透镜为离散透镜的情况下,由于离散的第三透镜处于光学系统中光路的转折处,使得其敏感度较高,不利于实际生产组立。因此,通过第三透镜和第四透镜为胶合透镜,可以显著降低第三透镜和第四透镜的敏感度,尤其是与机构固定部件(如与镜筒配合)的公差敏感度。
另外,在第三透镜和第四透镜为离散透镜的情况下,第三透镜的像侧面和第四透镜的物侧面之间也是离散的。这样,镜片组立承靠为平面承靠,倾斜敏感度较高。而第三透镜和第四透镜为胶合透镜则可以显著降低组立倾斜公差。
进一步地,通过第三透镜和第四透镜为胶合透镜,节省了第三透镜和第四透镜之间的固定件,减少了组立部件,简化了组立工序,从而降低了光学镜头的制造成本。此外,因为第三透镜和第四透镜之间通过彼此胶合而省去了空气间隔,使得光学系统的整体结构紧凑,有利于缩短光学系统总长,从而实现光学镜头的小型化。
并且,对于组成胶合透镜的第三透镜和第四透镜,优选地采用低折射率、高阿贝数和高折射率、低阿贝数的材料搭配。。
具体来说,在第三透镜具有低折射率和高阿贝数的情况下,第四透镜具有高折射率和低阿贝数。并且,在第四透镜具有低折射率和高阿贝数的情况下,第三透镜具有高折射率和低阿贝数。
这里,第四透镜为会聚透镜,将前方光线会聚而平稳过渡至后方。且如上所述,第四透镜可采用阿贝数高的材料。
另外,优选地,第五透镜和第六透镜的光焦度为一正一负。这样,通过第五透镜和第六透镜为胶合透镜,且该胶合透镜由一枚正透镜和一枚负透镜组成,能够分担光学系统的整体色差校正,有效地校正像差,提高解像力。同时,第五透镜和第六透镜的胶合透镜也能够有效地缩短光学系统的整体长度。
并且,对于组成胶合透镜的第五透镜和第六透镜,优选地采用低折射率、高阿贝数和高折射率、低阿贝数的材料搭配。
具体来说,在第五透镜具有低折射率和高阿贝数的情况下,第六透镜具有高折射率和低阿贝数。并且,在第五透镜具有低折射率和高阿贝数的情况下,第六透镜具有高折射率和低阿贝数。
因此,在根据本发明实施例的光学镜头中,第一透镜到第六透镜满足以下条件表达式(3):
TTL/F≤8 (3)
其中,F是光学镜头的整组焦距值,且TTL是光学镜头的光学长度,即第一透镜的物侧面中心到成像焦平面的距离。
这样,通过第一透镜到第六透镜的光焦度和形状设置,以及第三透镜和第四透镜为胶合透镜,及第五透镜和第六透镜为胶合透镜,可以实现光学镜头的小型化。
也就是说,在根据本发明实施例的光学镜头中,通过两组胶合件的使用,且该两组胶合件的材料对称分布,不仅有利于校正像差,实现高解像,且使得光学系统整体紧凑,满足小型化要求,同时,降低镜片单元因在组立过程中产生的倾斜/偏芯等公差敏感度问题。
在上述光学镜头中,第一透镜到第六透镜均为玻璃透镜。
在上述光学镜头中,第一透镜到第六透镜均为球面透镜。
通过第一透镜到第六透镜均采用玻璃球面透镜,避免采用非球面透镜,可以达到高解像力的要求,且同时实现光学镜头的低成本,以及较好的稳定的温度性能。
当然,本领域技术人员可以理解,如果在不需要考虑成本的情况下,也可以采用玻璃非球面透镜以提升光学性能。或者,如果需要考虑成本,但是温度性能要求较低,也可以采用塑料非球面透镜来提升光学性能。
另外,本领域技术人员可以理解,根据本发明实施例的光学镜头除了可以用作车载镜头和监控用的镜头之外,也可以应用于其它需要实现高解像力、低像差、低成本以及较好的温度性能并满足小型化需求的光学镜头。因此,并不意在将根据本发明实施例的光学镜头仅限于某个特定应用。
[光学镜头的数值实例]
下面,将参考附图和表格,描述根据本发明实施例的光学镜头的具体实施例和数值实例,在这些数值实例中,具体数值应用于相应的实施例。其中,Nd表示折射率,Vd表示阿贝系数。
第一实施例
如图1所示,根据本发明第一实施例的光学镜头从物侧到像侧顺序包括:具有负光焦度的弯月形的第一透镜L1,具有凸向物侧的第一表面S1和凹向像侧的第二表面S2;具有负光焦度的弯月形的第二透镜L2,具有凸向物侧的第一表面S3和凹向像侧的第二表面S4;孔径光阑STO;具有负光焦度的弯月形的第三透镜L3,具有凸向物侧的第一表面S4和凹向像侧的第二表面S5;具有正光焦度的双凸形的第四透镜L4,与第三透镜L3为胶合透镜,具有凸向物侧的第一表面S7和凸向像侧的第二表面S8;具有正光焦度的双凸形的第五透镜,具有凸向物侧的第一表面S9和凸向像侧的第二表面S10;具有负光焦度的弯月形的第六透镜L6,与第五透镜L5为胶合透镜,为具有负光焦度的弯月形透镜,具有凹向物侧的第一表面S10和凸向像侧的第二表面S11;平面透镜L7,具有向着物侧的第一表面S12和向着像侧的第二表面S13,一般为保护玻璃和/或滤色片;成像面L8,具有表面S14,一般为芯片。
上述透镜的透镜数据由以下表1所示:
【表1】
表面 | 半径 | 厚度 | Nd | Vd |
1 | 19.35925 | 1.2000 | 1.77 | 49.6 |
2 | 2.9847 | 3.2033 | ||
3 | 4.8665 | 2.3047 | 1.77 | 49.6 |
4 | 3.4301 | 0.9954 | ||
STO | 无限 | 0.0894 | ||
6 | 6.8018 | 1.7790 | 1.87 | 21.8 |
7 | 5.2320 | 3.1846 | 1.69 | 54.6 |
8 | -5.2320 | 0.0922 | ||
9 | 6.2010 | 3.2265 | 1.72 | 52.6 |
10 | -3.7433 | 0.5531 | 1.87 | 21.8 |
11 | -402.8766 | 0.1072 | ||
12 | 无限 | 0.8758 | 1.52 | 64.2 |
13 | 无限 | 2.9416 | ||
IMA | 无限 |
在根据本发明第一实施例的光学镜头中,第二透镜L2的物侧面S3的中心曲率半径R21、第二透镜L2的像侧面S4的中心曲率半径R22、第二透镜L2的中心厚度D2及其之间的关系,第二透镜L2的折射率,光学镜头的整组焦距值F和光学镜头的光学长度TTL及其之间的关系如以下表2所示。
【表2】
R21 | 4.866 |
R22 | 3.430 |
D2 | 2.305 |
R21/(R22+D2) | 0.849 |
N2 | 1.77 |
TTL | 20.553 |
f | 2.723 |
TTL/f | 7.547 |
从以上表2可以看到,根据本发明第一实施例的光学镜头满足前述条件表达式(1)到(3),且两组胶合件的材料对称分布,从而在保持光学镜头的小型化的同时实现高解像力、低像差、低成本以及较好的温度性能。
第二实施例
如图2所示,根据本发明第二实施例的光学镜头从物侧到像侧顺序包括:具有负光焦度的弯月形的第一透镜L1,具有凸向物侧的第一表面S1和凹向像侧的第二表面S2;具有负光焦度的弯月形的第二透镜L2,具有凸向物侧的第一表面S3和凹向像侧的第二表面S4;孔径光阑STO;具有负光焦度的弯月形的第三透镜L3,具有凸向物侧的第一表面S4和凹向像侧的第二表面S5;具有正光焦度的双凸形的第四透镜L4,与第三透镜L3为胶合透镜,具有凸向物侧的第一表面S7和凸向像侧的第二表面S8;具有正光焦度的双凸形的第五透镜,具有凸向物侧的第一表面S9和凸向像侧的第二表面S10;具有负光焦度的双凹形的第六透镜L6,与第五透镜L5为胶合透镜,为具有负光焦度的弯月形透镜,具有凹向物侧的第一表面S10和凹向像侧的第二表面S11;平面透镜L7,具有向着物侧的第一表面S12和向着像侧的第二表面S13,一般为保护玻璃和/或滤色片;成像面L8,具有表面S14,一般为芯片。
上述透镜的透镜数据由以下表3所示:
【表3】
表面 | 半径 | 厚度 | Nd | Vd |
1 | 19.89563 | 1.2000 | 1.75 | 52.0 |
2 | 3.1730 | 3.2282 | ||
3 | 4.5637 | 1.9469 | 1.77 | 49.6 |
4 | 3.0523 | 1.2000 | ||
STO | 无限 | 0.1863 | ||
6 | 6.9204 | 2.0000 | 1.85 | 23.8 |
7 | 4.8890 | 2.6000 | 1.65 | 54.6 |
8 | -4.8890 | 0.1000 | ||
9 | 5.5451 | 3.8000 | 1.65 | 54.6 |
10 | -4.2940 | 0.6000 | 1.85 | 23.8 |
11 | 76.9772 | 0.1102 | ||
12 | 无限 | 0.9500 | 1.52 | 64.2 |
13 | 无限 | 2.4737 | ||
IMA | 无限 |
在根据本发明第二实施例的光学镜头中,第二透镜L2的物侧面S3的中心曲率半径R21、第二透镜L2的像侧面S4的中心曲率半径R22、第二透镜L2的中心厚度D2及其之间的关系,第二透镜L2的折射率,光学镜头的整组焦距值F和光学镜头的光学长度TTL及其之间的关系如以下表4所示。
【表4】
从以上表4可以看到,根据本发明第二实施例的光学镜头满足前述条件表达式(1)到(3),且两组胶合件的材料对称分布,从而在保持光学镜头的小型化的同时实现高解像力、低像差、低成本以及较好的温度性能。
综上所述,根据本发明实施例的光学镜头通过优化设置各个透镜的形状并合理分配各个透镜的光焦度,可以在保持镜头小型化的同时实现高解像力、低像差、低成本以及较好的温度性能。
根据本发明实施例的光学镜头通过第三透镜和第四透镜为胶合透镜,可以显著降低第三透镜和第四透镜的敏感度。
根据本发明实施例的光学镜头通过第三透镜和第四透镜为胶合透镜,可以使得第三透镜的像侧面与第四透镜的物侧面之间的承靠为非平面承靠,从而降低组立倾斜公差。
根据本发明实施例的光学镜头通过第三透镜和第四透镜为胶合透镜,可以节省第三透镜和第四透镜之间的固定件,从而减少组立部件和组立工序,并降低光学镜头的制造成本。
根据本发明实施例的光学镜头通过第三透镜和第四透镜为胶合透镜而在其间没有间隙,可以有助于实现光学镜头的小型化。
根据本发明实施例的光学镜头通过第三透镜和第四透镜为胶合透镜而将孔径光阑前置于第二透镜和第三透镜之间,使得后方光线走势更加平稳,降低后方透镜敏感度,促进减小FNO。
根据本发明实施例的光学镜头通过第一透镜采用弯月形状,能够尽可能地收集视场内光线进入光线系统,从而实现高入光量。
根据本发明实施例的光学镜头通过第一透镜采用弯月形状,能够有效地减小第二透镜的口径以及第一透镜和第二透镜之间的距离,有助于实现光学镜头的小型化。
根据本发明实施例的光学镜头通过第一透镜具有负光焦度和低折射率,避免了物方光线发散过大,有利于后方透镜的口径控制。
根据本发明实施例的光学镜头通过第二透镜的形状和光焦度设置,可以实现光线的平稳过渡,并减小由第一透镜产生的像差。
根据本发明实施例的光学镜头通过第二透镜的特殊形状设置和具有高折射率,可以减小光程,有利于提高成像性能。
根据本发明实施例的光学镜头通过第四透镜为会聚透镜,可以将前方光线会聚而平稳过渡至后方。
根据本发明实施例的光学镜头通过第五透镜和第六透镜为胶合透镜,且该胶合透镜由一枚正透镜和一枚负透镜组成,能够有效地校正像差,提高解像力。
根据本发明实施例的光学镜头通过第五透镜和第六透镜的胶合透镜,可以有效地缩短光学系统的整体长度。
根据本发明实施例的光学镜头通过第一透镜到第六透镜的光焦度和形状设置,以及第三透镜和第四透镜为胶合透镜,及第五透镜和第六透镜为胶合透镜,可以实现光学镜头的小型化。
根据本发明实施例的光学镜头通过两组胶合件的使用,不仅有利于校正像差,实现高解像,且使得光学系统整体紧凑,满足小型化要求,同时降低镜片单元因在组立过程中产生的倾斜/偏芯等公差敏感度问题。
根据本发明实施例的光学镜头通过两组胶合件的材料对称分布,有助于消除像差。
根据本发明实施例的光学镜头通过第一透镜到第六透镜采用玻璃球面透镜而避免采用非球面透镜,可以达到高解像力的要求,且同时实现光学镜头的低成本,以及较好的稳定的温度性能。
根据本发明实施例的光学镜头通过第一透镜到第六透镜采用玻璃非球面透镜,可以提升光学性能。
根据本发明实施例的光学镜头通过第一透镜到第六透镜采用塑料非球面透镜,可以在温度性能要求较低的情况下实现低成本和提升光学性能。
在根据本发明实施例的光学镜头中还可以布置另外的透镜。在这种情况下,根据本发明实施例的光学镜头可以配置有六个或者六个以上的透镜,且这些透镜包括除了上述第一透镜到第六透镜之外的布置的附加透镜。
如上所述,根据本发明实施例的光学镜头可以应用于任何需要在保持镜头小型化的同时实现高解像力、低像差、低成本以及较好的温度性能的光学镜头,而并不限于特定的应用领域。例如,根据本发明实施例的光学镜头可以应用于成像设备,例如作为车载光学镜头或者监控设备的光学镜头,本发明实施例并不意在对此进行任何限制。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离该原理下,本发明的实施方式可以有任何变形或修改。
Claims (8)
1.一种光学镜头,从物侧到像侧依次包括:
第一透镜,为具有负光焦度的弯月形透镜,其物侧面为凸面、像侧面为凹面;
第二透镜,为具有负光焦度的弯月形透镜,其物侧面为凸面、像侧面为凹面;
第三透镜,为具有负光焦度的弯月形透镜,其物侧面为凸面、像侧面为凹面;
第四透镜,为具有正光焦度的双凸透镜,其物侧面为凸面、像侧面为凸面;
第五透镜,为具有正光焦度的双凸透镜,其物侧面为凸面、像侧面为凸面;
第六透镜,具有负光焦度;
其中,所述第三透镜和所述第四透镜为胶合透镜。
2.根据权利要求1所述的光学镜头,其特征在于,所述第五透镜和所述第六透镜为胶合透镜。
3.根据权利要求1或2所述的光学镜头,其特征在于,
所述第六透镜为具有负光焦度的弯月形透镜,其物侧面为凹面、像侧面为凸面;或者,
所述第六透镜为具有负光焦度的双凹透镜,其物侧面为凹面、像侧面为凹面。
4.根据权利要求1到3中任意一项所述的光学镜头,其特征在于,所述第二透镜满足以下条件表达式(1):
0.5≤R21/(R22+D2)≤1.1 (1)
其中,R21是所述第二透镜的物侧面的中心曲率半径,R22是所述第二透镜的像侧面的中心曲率半径,且D2是所述第二透镜的中心厚度。
5.根据权利要求1到3中任意一项所述的光学镜头,其特征在于,所述第二透镜满足以下条件表达式(2):
N2≥1.7 (2)
其中,N2是所述第二透镜的折射率。
6.根据权利要求1到3中任意一项所述的光学镜头,其特征在于,所述第一透镜到第六透镜满足以下条件表达式(3):
TTL/F≤8 (3)
其中,F是所述光学镜头的整组焦距值,且TTL是所述光学镜头的光学长度。
7.根据权利要求1到6中任意一项所述的光学镜头,其特征在于,所述第一透镜到第六透镜均为玻璃透镜。
8.根据权利要求1到6中任意一项所述的光学镜头,其特征在于,进一步包括位于所述第二透镜和所述第三透镜之间的孔径光阑。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710637078.8A CN109324385B (zh) | 2017-07-31 | 2017-07-31 | 光学镜头 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710637078.8A CN109324385B (zh) | 2017-07-31 | 2017-07-31 | 光学镜头 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109324385A true CN109324385A (zh) | 2019-02-12 |
CN109324385B CN109324385B (zh) | 2021-09-17 |
Family
ID=65245434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710637078.8A Active CN109324385B (zh) | 2017-07-31 | 2017-07-31 | 光学镜头 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109324385B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110515184A (zh) * | 2019-08-30 | 2019-11-29 | 长光卫星技术有限公司 | 超广角全球面鱼眼光学系统 |
WO2021109677A1 (zh) * | 2019-12-02 | 2021-06-10 | 宁波舜宇车载光学技术有限公司 | 光学镜头及电子设备 |
CN113031190A (zh) * | 2021-03-10 | 2021-06-25 | 协益电子(苏州)有限公司 | 一种车载监控光学镜头 |
CN113219630A (zh) * | 2021-04-30 | 2021-08-06 | 江西凤凰光学科技有限公司 | 一种高低温日夜共焦光学镜头 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009015253A (ja) * | 2007-07-09 | 2009-01-22 | Olympus Corp | 光学素子、それを備えた光学系及びそれを用いた内視鏡 |
CN103261941A (zh) * | 2010-12-22 | 2013-08-21 | 富士胶片株式会社 | 成像镜头和成像设备 |
CN103777328A (zh) * | 2012-10-25 | 2014-05-07 | 日本电产三协株式会社 | 广角镜头 |
CN205620601U (zh) * | 2016-03-15 | 2016-10-05 | 广东旭业光电科技股份有限公司 | 广角镜头和应用该广角镜头的摄像设备 |
CN205720848U (zh) * | 2016-04-25 | 2016-11-23 | 今国光学工业股份有限公司 | 六片式广角镜头 |
CN106918890A (zh) * | 2015-12-24 | 2017-07-04 | 宁波舜宇车载光学技术有限公司 | 光学成像镜头及其透镜组 |
-
2017
- 2017-07-31 CN CN201710637078.8A patent/CN109324385B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009015253A (ja) * | 2007-07-09 | 2009-01-22 | Olympus Corp | 光学素子、それを備えた光学系及びそれを用いた内視鏡 |
CN103261941A (zh) * | 2010-12-22 | 2013-08-21 | 富士胶片株式会社 | 成像镜头和成像设备 |
CN103777328A (zh) * | 2012-10-25 | 2014-05-07 | 日本电产三协株式会社 | 广角镜头 |
CN106918890A (zh) * | 2015-12-24 | 2017-07-04 | 宁波舜宇车载光学技术有限公司 | 光学成像镜头及其透镜组 |
CN205620601U (zh) * | 2016-03-15 | 2016-10-05 | 广东旭业光电科技股份有限公司 | 广角镜头和应用该广角镜头的摄像设备 |
CN205720848U (zh) * | 2016-04-25 | 2016-11-23 | 今国光学工业股份有限公司 | 六片式广角镜头 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110515184A (zh) * | 2019-08-30 | 2019-11-29 | 长光卫星技术有限公司 | 超广角全球面鱼眼光学系统 |
CN110515184B (zh) * | 2019-08-30 | 2021-06-01 | 长光卫星技术有限公司 | 超广角全球面鱼眼光学系统 |
WO2021109677A1 (zh) * | 2019-12-02 | 2021-06-10 | 宁波舜宇车载光学技术有限公司 | 光学镜头及电子设备 |
CN113031190A (zh) * | 2021-03-10 | 2021-06-25 | 协益电子(苏州)有限公司 | 一种车载监控光学镜头 |
CN113031190B (zh) * | 2021-03-10 | 2023-11-10 | 协益电子(苏州)有限公司 | 一种车载监控光学镜头 |
CN113219630A (zh) * | 2021-04-30 | 2021-08-06 | 江西凤凰光学科技有限公司 | 一种高低温日夜共焦光学镜头 |
CN113219630B (zh) * | 2021-04-30 | 2022-09-27 | 江西凤凰光学科技有限公司 | 一种高低温日夜共焦光学镜头 |
Also Published As
Publication number | Publication date |
---|---|
CN109324385B (zh) | 2021-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108535834B (zh) | 光学镜头和成像设备 | |
CN108663774B (zh) | 光学镜头和成像设备 | |
CN109445077B (zh) | 光学镜头及成像设备 | |
CN112180538B (zh) | 光学镜头及成像设备 | |
CN109960020B (zh) | 光学镜头 | |
CN110632736B (zh) | 光学镜头 | |
CN110542978B (zh) | 光学镜头 | |
CN109324385B (zh) | 光学镜头 | |
CN109425959B (zh) | 光学镜头 | |
CN112014946B (zh) | 光学镜头及成像设备 | |
CN111999863B (zh) | 光学镜头及成像设备 | |
CN111830672B (zh) | 光学镜头及成像设备 | |
CN111781701B (zh) | 光学镜头及成像设备 | |
CN103926674B (zh) | 小型化镜头 | |
CN108663773B (zh) | 光学镜头和成像设备 | |
CN109324393B (zh) | 光学镜头 | |
CN108663772B (zh) | 光学镜头和成像设备 | |
CN109324384B (zh) | 光学镜头 | |
CN112748555B (zh) | 光学镜头及电子设备 | |
CN112444956B (zh) | 光学镜头以及摄像装置 | |
CN111352215B (zh) | 光学镜头及成像设备 | |
CN112987232A (zh) | 光学镜头及电子设备 | |
CN108061960A (zh) | 一种车载流媒体摄像头的镜头 | |
CN110927923B (zh) | 光学镜头 | |
CN115963618A (zh) | 光学镜头和电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |