CN109323776A - 基于液晶法布里-玻罗谐振腔的光纤温度传感器及其制作方法 - Google Patents

基于液晶法布里-玻罗谐振腔的光纤温度传感器及其制作方法 Download PDF

Info

Publication number
CN109323776A
CN109323776A CN201811316311.3A CN201811316311A CN109323776A CN 109323776 A CN109323776 A CN 109323776A CN 201811316311 A CN201811316311 A CN 201811316311A CN 109323776 A CN109323776 A CN 109323776A
Authority
CN
China
Prior art keywords
liquid crystal
luo
resonant cavity
temperature sensor
fabry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811316311.3A
Other languages
English (en)
Inventor
刘艳磊
王斐儒
吕月兰
刘永军
孙伟民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201811316311.3A priority Critical patent/CN109323776A/zh
Publication of CN109323776A publication Critical patent/CN109323776A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明提供一种基于液晶法布里‑玻罗谐振腔的光纤温度传感器及其制备方法,包括陶瓷套筒、设置在陶瓷套筒内的入射光纤和反射光纤、设置在入射光纤和反射光纤内的液晶,所述入射光纤端面上镀有光控取向膜,所述反射光纤端面上依次镀有反射膜和光控取向膜。本发明的光纤液晶法布里‑玻罗谐振腔温度传感器采用液晶作为温度传感的载体,使得其灵敏度可以根据不同的液晶材料而调整;本发明基于光学游标效应,具有更高的温度灵敏度和更灵活的调整范围;本发明不同于通常游标效应需要的两个法布里‑玻罗谐振腔,利用一个注入液晶的法布里‑玻罗谐振腔实现了游标效应,因而具有更好的稳定性和更简单的结构及更低的制作难度。

Description

基于液晶法布里-玻罗谐振腔的光纤温度传感器及其制作 方法
技术领域
本发明涉及一种温度传感器及其制作方法,尤其涉及一种基于液晶法布里-玻罗谐振腔的光纤温度传感器及其制作方法,属于温度传感技术领域。
背景技术
光纤传感器的工作原理是将来自光源的光信号经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光信号的光学性质(如光的强度、波长、频率、相位、偏振态等)发生变化,成为被调制的信号源,再经过光纤进入光探测器,经解调后获得被测参数。光纤传感器可以测量多种物理量,比如温度、电场强度、磁场强度、气体压强和角速度等。由于光纤体积小、损耗小和灵敏度高等特点,光纤传感器可以用于精密测量传感。
光纤温度传感器利用光纤作为温度传感敏感元件和传输信号介质,近十几年以来,在传感和传输研究领域,人们取得不断地进步。法布里-玻罗谐振腔是一种多光束干涉设备,可以用来精准反馈测量不同入射波长的变化。在此基础上应用游标效应可以很大程度的提高传感测量的精密程度和稳定性。游标效应是利用两个具有不同的自由光谱范围的传感子系统,组成一个新的复合系统,其工作原理如下:由于两个子系统的自由光谱范围不同,因此整个传感系统的自由光谱范围应该是这两者的最小公倍数。对于光纤传感系统来说,两个自由光谱范围通常由两个长度接近但不是完全相等的法布里-玻罗谐振腔提供,这样就提升了制作光纤传感器的难度。近年来利用游标效应的光纤传感器有了一定的进步,2012年新加坡通信研究院的Hu等人利用空芯光纤制作的光纤传感器使用了游标效应,其灵敏度为每摄氏度17.064皮米。2015年西南交通大学的张信普等人应用游标效应设计制作获得灵敏度达到每摄氏度1.019纳米的光纤传感器。综上所述,基于游标效应法布里-玻罗谐振腔的光纤传感器的研究,存在着灵敏度难以提高,结构复杂不易加工等问题。
发明内容
本发明的目的是为了解决光纤温度传感器灵敏度低问题和制作复杂的问题而提供一种基于液晶法布里-玻罗谐振腔的光纤温度传感器及其制作方法。
本发明的目的是这样实现的:
一种基于液晶法布里-玻罗谐振腔的光纤温度传感器,包括陶瓷套筒、设置在陶瓷套筒内的入射光纤和反射光纤、设置在入射光纤和反射光纤内的液晶,所述入射光纤端面上镀有光控取向膜,所述反射光纤端面上依次镀有反射膜和光控取向膜。
本发明还包括这样一些特征:
1.所述入射光纤和反射光纤的间距为10-1000μm;
2.所述陶瓷套筒与光纤之间采用紫外固化胶固定。
一种基于液晶法布里-玻罗谐振腔的光纤温度传感器的制作方法,包括如下步骤:
步骤一:选取两根截面平整的单模光纤,入射光纤端面上镀有光控取向膜,反射光纤端面上依次镀有高反射膜和光控取向膜;
步骤二:将步骤一中处理后的光纤端面插入到陶瓷套筒中,两个光纤端面之间留有10-1000μm的间距;
步骤三:将液晶注入到步骤二所述的间距中,并采用用紫外固化胶固定。
本发明在基于游标效应的光纤温度传感器的现有技术基础上,利用液晶的温度敏感特性和双折射效应,提供一种具有高灵敏度、易观测和制作简易的光纤液晶法布里-玻罗谐振腔的温度传感器。当一束光通过整齐有序排列的向列相液晶的时候,不同偏振方向上会被划分为寻常光和非寻常光,两者的折射率存在一定的差值,而这个差值也会随着温度的变化而变化,即温度增加折射率差值减小。当光线进入法布里-玻罗谐振腔时,在腔内两个反射面分别进行反射,这两次反射的光相互干涉形成干涉谱。本发明在法布里-玻罗谐振腔内注入液晶的时候,沿着光轴方向传播的寻常光和非寻常光会有光程差,这样干涉谱会随着温度变化产生相位差的变化,进而影响在光谱仪上产生光谱图的变化,最终实现对温度的传感。本发明采用的游标效应中两个接近但是不相等的光程是由寻常光和非寻常光的折射率不同而造成的,成为了光纤温度传感器使用的游标效应的两臂。游标效应提高了本发明中光纤温度传感器对温度的灵敏度。
本发明光纤液晶法布里-玻罗谐振腔温度传感器是采用这样的方法制作的:选取两根单模光纤,利用光纤切割刀截断获得平整的截面。在其中一根光纤端面镀高反射膜作为反射端,另一根光纤作为信号传输端;将上述两根光纤涂覆上聚酰亚胺光敏取向材料,同时利用偏振紫外灯照射进行光纤端面的表面取向处理;将经过上述处理之后的光纤按处理端面对插入尺寸合适的陶瓷套筒中,留有一定的间隙;将液晶注入到上述的间隙中,即形成了液晶法布里-玻罗谐振腔,利用紫外固化胶将光纤与陶瓷管固定;将波长在1550纳米附近的放大自发辐射光耦合入上述信号光纤传输端,光信号经信号传输光纤的端面以及高反射膜两次反射,反射回的干涉信号经光纤光谱仪接收。
本发明的光纤温度传感器采用液晶层涂覆在两根涂有光控取向膜的光纤端面之间,其中反射光纤镀有高反射膜,整体结构由陶瓷套筒固定,形成液晶填充对温度敏感的法布里-玻罗谐振腔。
与现有技术相比,本发明的有益效果是:
其一,本发明的光纤液晶法布里-玻罗谐振腔温度传感器采用液晶作为温度传感的载体,使得其灵敏度可以根据不同的液晶材料而调整。
其二,本发明基于光学游标效应,具有更高的温度灵敏度和更灵活的调整范围。
其三,本发明不同于通常游标效应需要的两个法布里-玻罗谐振腔,利用一个注入液晶的法布里-玻罗谐振腔实现了游标效应,因而具有更好的稳定性和更简单的结构及更低的制作难度。
附图说明
图1是温度传感示意图;
图2是本发明光纤液晶法布里-玻罗谐振腔温度传感器的结构示意图;
图3是实施例中光纤温度传感器的测试光谱。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述。
一种光纤液晶法布里-玻罗谐振腔温度传感器,其由以下元件构成:入射光纤6、陶瓷套筒7、光控取向膜8、液晶9、反射膜10和反射光纤11,将向列相液晶9置于对接的切割平整且端面进行光控取向膜8处理的两根单模光纤之间。其中一根入射光纤6用于信号传输和反射一部分信号光。反射光纤镀有高反射介质膜10,用于反射其余的信号光。两根光纤对接注入液晶9后置于陶瓷套筒中用紫外固化胶固定;两根光纤组成法布里-玻罗谐振腔,光纤端面经过光控取向膜处理,反射光纤11的端面具有工作波长的高反射率膜;法布里-玻罗谐振腔内部填充平行排列的向列相液晶,液晶层厚为10微米至1000微米;所述光纤液晶法布里-玻罗谐振腔温度传感器的灵敏度依据液晶种类而变化,在器件中使用热光系数大的液晶会得到高的灵敏度。
一种光纤液晶法布里-玻罗谐振腔温度传感器的制备方法如下:
(1)选取两根通信波段1550纳米的单模光纤,利用光纤切割刀截断获得平整的截面,其中一根光纤作为信号传输光路用;另一根光纤作为反射光信号用,且在端面镀二氧化硅和二氧化钛多层介质膜,其对1550纳米波长的光反射率达到98%;
(2)把质量分数为1%的聚酰亚胺光敏取向膜溶液涂抹在两根光纤端面上,利用强度为20毫瓦每平方厘米偏振紫外垂直于光纤端面照射五分钟,然后置于120摄氏度的烘箱中30分钟;
(3)将两根经过上述处理之后的光纤插入尺寸合适的陶瓷套筒7中,确保两根光纤的取向处理方向一致,同时光纤端面之间留有10微米至1000微米的间距,这个间距决定了液晶法布里-玻罗谐振腔的腔长;
(4)将液晶(5CB)注入到上述的法布里-玻罗谐振腔中,利用紫外固化胶将光纤与陶瓷套筒7固定,同时液晶9不会流出腔外;
(5)利用输出波长在1550纳米附近的放大自发辐射(ASE)光源对信号光纤进行输入信号,反射后经波长工作区间的光纤环形器接收后,输入光纤光谱仪中对光谱进行接收。
以下给出一个运用本发明建立的一个基于游标效应的光纤液晶法布里-玻罗谐振腔温度传感器的具体应用的实例。
宽谱光源的波长范围为1520到1570纳米。整个光纤温度传感器的测试光谱如图3所示。温度传感方式与温度传感器结构分布如图1和图2所示,其中1为宽带光源、2为光纤环形器、3为光纤光谱仪、4为单模光纤、5为光纤液晶法布里-玻罗谐振腔温度传感器,填充的液晶材料其折射率在20摄氏度情况下,当入射波长为589纳米的时候,寻常光折射率为1.483,非寻常光折射率为1.566。法布里-玻罗谐振腔的腔长为1000微米。根据图3可以看出随着波长变化,光强在47分贝毫瓦和37分贝毫瓦之间变化,呈现出周期性包络内含有周期性子峰。在实验中,这个包络随着温度增加向短波方向移动,观测其移动波长的差值就可以实现对温度的传感。其温度灵敏度达到每摄氏度13纳米。
综上所述:本发明涉及的是一种液晶填充的法布里-玻罗谐振腔光纤温度传感器,器件主要包含以下部分:6为入射光纤、7为陶瓷套筒、8为光控取向膜、9为液晶、10为反射膜和11为反射光纤。其特征是:将液晶9置于对接的切割平整且端面进行光控取向膜8处理的两根单模光纤之间。其中入射光纤6用于信号传输和反射一部分信号光。反射光纤镀有高反射介质膜10,用于反射其余的信号光。两根光纤对接注入液晶9后置于陶瓷套筒7中用紫外固化胶固定。该设计的温度传感器具有温度灵敏度高、体积小和结构简单的特点。本发明的目的在于利用液晶法布里-玻罗谐振腔解决光纤温度传感器灵敏度低和结构复杂的问题。

Claims (4)

1.一种基于液晶法布里-玻罗谐振腔的光纤温度传感器,其特征是,包括陶瓷套筒、设置在陶瓷套筒内的入射光纤和反射光纤、设置在入射光纤和反射光纤内的液晶,所述入射光纤端面上镀有光控取向膜,所述反射光纤端面上依次镀有反射膜和光控取向膜。
2.根据权利要求1所述的基于液晶法布里-玻罗谐振腔的光纤温度传感器,其特征是,所述入射光纤和反射光纤的间距为10-1000μm。
3.根据权利要求1或2所述的基于液晶法布里-玻罗谐振腔的光纤温度传感器,其特征是,所述陶瓷套筒与光纤之间采用紫外固化胶固定。
4.一种基于液晶法布里-玻罗谐振腔的光纤温度传感器的制作方法,其特征是,包括如下步骤:
步骤一:选取两根截面平整的单模光纤,入射光纤端面上镀有光控取向膜,反射光纤端面上依次镀有高反射膜和光控取向膜;
步骤二:将步骤一中处理后的光纤端面插入到陶瓷套筒中,两个光纤端面之间留有10-1000μm的间距;
步骤三:将液晶注入到步骤二所述的间距中,并采用用紫外固化胶固定。
CN201811316311.3A 2018-11-07 2018-11-07 基于液晶法布里-玻罗谐振腔的光纤温度传感器及其制作方法 Pending CN109323776A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811316311.3A CN109323776A (zh) 2018-11-07 2018-11-07 基于液晶法布里-玻罗谐振腔的光纤温度传感器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811316311.3A CN109323776A (zh) 2018-11-07 2018-11-07 基于液晶法布里-玻罗谐振腔的光纤温度传感器及其制作方法

Publications (1)

Publication Number Publication Date
CN109323776A true CN109323776A (zh) 2019-02-12

Family

ID=65260374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811316311.3A Pending CN109323776A (zh) 2018-11-07 2018-11-07 基于液晶法布里-玻罗谐振腔的光纤温度传感器及其制作方法

Country Status (1)

Country Link
CN (1) CN109323776A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112161723A (zh) * 2020-09-04 2021-01-01 苏州易奥秘光电科技有限公司 一种基于光学谐振腔游标效应的温度传感器及其控制方法
WO2021001412A1 (en) * 2019-07-02 2021-01-07 Airbus Defence and Space GmbH Electro-optical 2d imaging spectrometer
CN113049181A (zh) * 2021-03-25 2021-06-29 大连理工大学 一种光纤法布里—珀罗真空计的制作方法
CN113624361A (zh) * 2021-08-16 2021-11-09 哈尔滨工程大学 一种光纤探头、温度传感器及光纤探头制备方法
CN113686460A (zh) * 2021-03-17 2021-11-23 广东工业大学 基于游标效应的光纤光栅温度传感器和传感装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100890A (zh) * 1985-04-01 1986-01-10 中国科学院化学研究所 胆甾型液晶化合物的合成和配方及在非破坏测试方面的用途
CN101665677A (zh) * 2009-09-01 2010-03-10 苏州纳米技术与纳米仿生研究所 一种热敏变色材料及其制法和用途
CN201917739U (zh) * 2010-11-25 2011-08-03 哈尔滨工程大学 液晶光子晶体光纤可调谐窄带滤波器
CN102243113A (zh) * 2011-06-22 2011-11-16 天津大学 波长可调谐的光子晶体光纤光栅温度传感器
CN103115698A (zh) * 2013-03-06 2013-05-22 东北大学 一种基于酒精填充的光纤fp温度传感器
CN103557960A (zh) * 2013-11-06 2014-02-05 重庆科技学院 光纤法珀温度传感系统及方法
CN105371981A (zh) * 2015-11-23 2016-03-02 大连理工大学 内壁镀银液晶填充空心光纤表面等离子体共振温度传感器
CN106248246A (zh) * 2016-07-21 2016-12-21 西安交通大学 基于蓝宝石光纤制作高温传感器的方法
CN107421623A (zh) * 2017-05-11 2017-12-01 哈尔滨工程大学 集成液晶的压电陶瓷式非相干光纤水听器及制备方法
CN207303643U (zh) * 2017-06-02 2018-05-01 苏州光之羽光电科技有限公司 一种短腔可调的光纤法布里-珀罗谐振腔结构及可调激光器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100890A (zh) * 1985-04-01 1986-01-10 中国科学院化学研究所 胆甾型液晶化合物的合成和配方及在非破坏测试方面的用途
CN101665677A (zh) * 2009-09-01 2010-03-10 苏州纳米技术与纳米仿生研究所 一种热敏变色材料及其制法和用途
CN201917739U (zh) * 2010-11-25 2011-08-03 哈尔滨工程大学 液晶光子晶体光纤可调谐窄带滤波器
CN102243113A (zh) * 2011-06-22 2011-11-16 天津大学 波长可调谐的光子晶体光纤光栅温度传感器
CN103115698A (zh) * 2013-03-06 2013-05-22 东北大学 一种基于酒精填充的光纤fp温度传感器
CN103557960A (zh) * 2013-11-06 2014-02-05 重庆科技学院 光纤法珀温度传感系统及方法
CN105371981A (zh) * 2015-11-23 2016-03-02 大连理工大学 内壁镀银液晶填充空心光纤表面等离子体共振温度传感器
CN106248246A (zh) * 2016-07-21 2016-12-21 西安交通大学 基于蓝宝石光纤制作高温传感器的方法
CN107421623A (zh) * 2017-05-11 2017-12-01 哈尔滨工程大学 集成液晶的压电陶瓷式非相干光纤水听器及制备方法
CN207303643U (zh) * 2017-06-02 2018-05-01 苏州光之羽光电科技有限公司 一种短腔可调的光纤法布里-珀罗谐振腔结构及可调激光器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王家璐等: "基于不同液晶填充光子晶体光纤传输特性的研究", 《物理学报》 *
申溯等: "液晶法布里-珀罗滤波器可调谐特性分析", 《光子学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021001412A1 (en) * 2019-07-02 2021-01-07 Airbus Defence and Space GmbH Electro-optical 2d imaging spectrometer
CN112161723A (zh) * 2020-09-04 2021-01-01 苏州易奥秘光电科技有限公司 一种基于光学谐振腔游标效应的温度传感器及其控制方法
CN113686460A (zh) * 2021-03-17 2021-11-23 广东工业大学 基于游标效应的光纤光栅温度传感器和传感装置
CN113686460B (zh) * 2021-03-17 2024-01-23 广东工业大学 基于游标效应的光纤光栅温度传感器和传感装置
CN113049181A (zh) * 2021-03-25 2021-06-29 大连理工大学 一种光纤法布里—珀罗真空计的制作方法
CN113624361A (zh) * 2021-08-16 2021-11-09 哈尔滨工程大学 一种光纤探头、温度传感器及光纤探头制备方法

Similar Documents

Publication Publication Date Title
CN109323776A (zh) 基于液晶法布里-玻罗谐振腔的光纤温度传感器及其制作方法
Jena et al. Tunable mirrors and filters in 1D photonic crystals containing polymers
WO2021036167A1 (zh) 利用回音壁模式激光光源测fp透过率曲线的装置和方法
CN104634256B (zh) 一种光纤激光单波自混合干涉位移测量系统
Hou et al. Ultra-sensitive optical fiber humidity sensor via Au-film-assisted polyvinyl alcohol micro-cavity and Vernier effect
Wang et al. Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film
CN115956197A (zh) 具有被动相位检测和光波导的泵浦探测光热光谱
CN105372208B (zh) 一种基于敏感膜涂覆的光子晶体光纤甲烷传感器
Yan et al. A humidity sensor based on a whispering-gallery-mode resonator with an L-shaped open microcavity
Diez et al. Acoustic stop-bands in periodically microtapered optical fibers
Liang et al. Ultra-sensitive temperature sensor of cascaded dual PDMS-cavity based on enhanced vernier effect
Zhang et al. High-sensitivity temperature sensor based on two parallel Fabry–Pérot interferometers and Vernier effect
Fakhri et al. Lithium niobate–Based sensors: A review
CN108631147A (zh) 在被动锁模激光器中实现波长和重复频率同步可调的方法
Mohammed et al. Design and implementation tunable band pass filter based on PCF-air micro-cavity FBG fabry-perot resonator
Volkov et al. Miniature fiber-optic sensor based on Si microresonator for absolute temperature measurements
Li et al. Comparative study on sensing properties of fiber-coupled microbottle resonators with polymer materials
Li et al. All-optical tunable fiber filter with dual graphene films enabled by a fiber open microcavity
CN113984095B (zh) 基于偶氮苯集成的光控回音壁模式微腔奇异点调控系统
Zhang et al. Research on Michelson interference refractive index sensing technique based on double-core microfiber
CN212483826U (zh) 包层刻矩形槽填充液体布拉格光纤光栅磁场探头
CN113624361A (zh) 一种光纤探头、温度传感器及光纤探头制备方法
Huang et al. Simultaneous measurement of gas pressure and temperature based on Fabry–Pérot cavity cascading fiber Bragg grating
RU2679474C1 (ru) Перестраиваемый волоконный двухзеркальный отражательный интерферометр
Liu et al. High-sensitivity optical fiber SPR temperature sensing probe based on Au-PDMS@ Au coating

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190212