CN109323532A - 一种基于制冷量分析的低温液体膨胀机节能效益计算方法 - Google Patents

一种基于制冷量分析的低温液体膨胀机节能效益计算方法 Download PDF

Info

Publication number
CN109323532A
CN109323532A CN201811223040.7A CN201811223040A CN109323532A CN 109323532 A CN109323532 A CN 109323532A CN 201811223040 A CN201811223040 A CN 201811223040A CN 109323532 A CN109323532 A CN 109323532A
Authority
CN
China
Prior art keywords
expander
liquid
refrigerating capacity
gas
supercharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811223040.7A
Other languages
English (en)
Other versions
CN109323532B (zh
Inventor
孙金菊
霍长江
宋鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaishan Xi'an Turbine Machinery Co ltd
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201811223040.7A priority Critical patent/CN109323532B/zh
Publication of CN109323532A publication Critical patent/CN109323532A/zh
Application granted granted Critical
Publication of CN109323532B publication Critical patent/CN109323532B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04848Control strategy, e.g. advanced process control or dynamic modeling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/82Energy audits or management systems therefor

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Game Theory and Decision Science (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种基于制冷量分析的低温液体膨胀机节能效益计算方法,首先获取液体膨胀机的进出口压力和温度,计算液体膨胀机的单位制冷量,然后获取气体膨胀机的进出口压力和温度,计算气体膨胀机的单位制冷量,基于空分装置中增设液体膨胀机前后制冷量不变的原则,计算不使用液体膨胀机时气体膨胀机需要增加的空气处理量,进而得到增压机应增加的压缩空气量,据此计算得到增压机所消耗的额外功率,并考虑液体膨胀机回收节流压力头而输出的功率,实现了对空分装置增设液体膨胀机后所产生的综合节能效益的计算。本发明为空分装置增设液体膨胀机后的节能效益分析提供了一种简便的方法,对促进大型工业空分技术进步和空分装置节能降耗重大意义。

Description

一种基于制冷量分析的低温液体膨胀机节能效益计算方法
技术领域
本发明涉及高耗能工业低温空分领域,涉及利用低温液体膨胀机降低空分装置能耗的技术,特别是涉及一种基于制冷量分析的低温液体膨胀机节能效益计算方法。
背景技术
大型工业空分装置普遍使用先进的内压缩空分流程,在内压缩空分流程中从主换热器排出的液空为低温高压介质,通常高达数十个大气压,需要进行节流降压,然后进入下塔精馏流程。这一节流过程通常采用高压节流阀来完成,使得节流能量白白耗散在低温系统中,会导致低温系统温升并诱发空化,严重影响着精馏塔气体提取率和空分装置能效及稳定运行。利用液体膨胀机替代高压节流阀节流降压,不仅可以满足空分流程的降压要求,还能产生低温制冷效应而带来显著的综合节能效益。
在空分装置中使用液体膨胀机对高压液空降压的同时,液体膨胀机将节流压力头转化成轴功向外输出使得低温系统温度下降,此低温制冷效益将部分补充气体膨胀机的制冷量。因此,可以减少给气体膨胀机提供压缩气体的其上游压缩机和增压机的气体流量,进而降低空分装置的功耗。再者,除了低温制冷效益之外,液体膨胀机还将高压介质的节流压力头转换成轴功输出(用于驱动发电机发电或驱动其它动力机械),产生更多节能效益。显然,合理地计算液体膨胀机这两方面的效益对液体膨胀机技术的应用推广意义重大。本发明涉及一种基于制冷量分析的液体膨胀机节能效益快速计算方法,而目前国内外并未发现基于制冷量分析的液体膨胀机节能效益评价方法。
发明内容
本发明的目的在于提供一种基于制冷量分析的低温液体膨胀机节能效益计算方法,通过分析液体膨胀机所产生的制冷量和输出的轴功率,获得空分装置增设液体膨胀机后而带来的综合节能效益计算方法。
为实现上述目的,本发明采用如下的技术方案:
一种基于制冷量分析的低温液体膨胀机节能效益计算方法,包括以下步骤,
步骤一,获取空分装置中液体膨胀机的进口温度Tl1,进口压力Pl1,出口温度Tl2以及出口压力Pl2;然后查出液体膨胀机的进口比焓hl1和出口比焓hl2,求出液体膨胀机的单位制冷量ql
步骤二,获取空分装置中气体膨胀机的进口温度Tg1,进口压力Pg1,出口温度Tg2,出口压力Pg2;然后查出气体膨胀机的进口比焓hg1和出口比焓hg2,求出气体膨胀机的单位制冷量qg
步骤三,假设空分装置中增设液体膨胀机前后的制冷量相同,在不使用液体膨胀机的情况,液体膨胀机产生的制冷量由气体膨胀机提供,将这部分制冷量折算成气体膨胀机气体处理量Qg
步骤四,获取增压机的进口温度Tc1,进口压力Pc1,中抽温度Tc2,中抽压力Pc2;然后查出液体膨胀机的进口比焓hc1和中抽比焓hc2,求出空气由增压机进口状态到中抽状态的单位压缩功耗wc
步骤五,气体膨胀机增加的膨胀空气量即增压机所需增加的空气量,则根据步骤三中的气体膨胀机气体处理量Qg和步骤4的空气由增压机进口状态到中抽状态的单位压缩功耗wc得到增压机需要多消耗的功率Wc
步骤六,液体膨胀机将节流压力头转化成轴功,其输出功率为We,则空分装置使用液体膨胀机节省的总功率W=Wc+We=Qg×wc+We,实现对低温液体膨胀机节能效益的快速评价。
本发明进一步的改进在于,步骤一中,液体膨胀机的单位制冷量ql=hl1-hl2
本发明进一步的改进在于,步骤二中,气体膨胀机的单位制冷量qg=hg1-hg2
本发明进一步的改进在于,步骤三中,
其中Ql为液体膨胀机的质量流量,ql为液体膨胀机的单位制冷量。
本发明进一步的改进在于,步骤四中,空气由增压机进口状态到中抽状态的单位压缩功耗wc=hc2-hc1
本发明进一步的改进在于,步骤五中,增压机需要多消耗的功率Wc=Qg×wc
本发明的有益效果是:首先获取液体膨胀机的进出口压力和温度,计算液体膨胀机的单位制冷量,然后获取气体膨胀机的进出口压力和温度,计算气体膨胀机的单位制冷量,基于空分装置中增设液体膨胀机前后制冷量不变的原则,通过冷量分析法,计算不使用液体膨胀机时气体膨胀机需要增加的空气处理量,进而得到增压机应增加的压缩空气量,据此计算得到增压机所消耗的额外功率,并考虑液体膨胀机回收节流压力头而输出的功率,实现了对空分装置增设液体膨胀机后所产生的综合节能效益的计算,对低温液体膨胀机节能效益的快速评估。本计算方法简便快速,为快速计算液体膨胀机的节能效益提供了重要依据,有利于液体膨胀机技术在新建空分装置及现运行空分装置中的推广应用,对促进大型工业空分技术进步和空分装置节能降耗具有重要意义。
附图说明
图1为本发明的流程图。
具体实施方式
下面结合附图对本发明进行详细描述。
参见图1,一种基于制冷量分析的低温液体膨胀机节能效益计算方法,包括以下步骤:
步骤一,获取空分装置中液体膨胀机的进口温度Tl1,进口压力Pl1,出口温度Tl2以及出口压力Pl2
步骤二,根据步骤一中的液体膨胀机的进出口参数,利用物性库/计算软件查出液体膨胀机的进口比焓hl1和出口比焓hl2,求出液体膨胀机的单位制冷量ql=hl1-hl2
步骤三,获取空分装置中气体膨胀机的进口温度Tg1,进口压力Pg1,出口温度Tg2,出口压力Pg2
步骤四,根据步骤三中的气体膨胀机的进出口参数,利用物性库/计算软件查出气体膨胀机的进口比焓hg1和出口比焓hg2,求出气体膨胀机的单位制冷量qg=hg1-hg2
步骤五,假设空分装置中增设液体膨胀机前后的制冷量相同,在不使用液体膨胀机的情况,液体膨胀机产生的制冷量需要由气体膨胀机提供,将这部分制冷量折算成气体膨胀机气体处理量Qg,将得到
其中Ql为液体膨胀机的质量流量;
步骤六,获取增压机的进口温度Tc1,进口压力Pc1,中抽温度Tc2,中抽压力Pc2
步骤七,根据步骤六中的增压机的进口参数和中抽参数,利用物性库/计算软件查出液体膨胀机的进口比焓hc1和中抽比焓hc2,求出空气由增压机进口状态到中抽状态的单位压缩功耗wc=hc2-hc1
步骤八,气体膨胀机增加的膨胀空气量即增压机所需增加的空气量,则增压机需要多消耗的功率Wc=Qg×wc
步骤九,液体膨胀机将节流压力头转化成轴功,其输出功率为We,则空分装置使用液体膨胀机节省的总功率W为
W=Wc+We=Qg×wc+We
下面通过一个具体实施例进行说明。
选取增设液体膨胀机后的某35000Nm3/h内压缩空分装置为计算对象,包括以下步骤:
步骤一,空分装置中液体膨胀机的进口温度Tl1=99.15K,进口压力Pl1=5.5MPa,出口温度Tl2=97.12K,出口压力Pl2=0.55MPa。
步骤二,根据步骤一中的液体膨胀机的进出口温度和压力,利用物性库/计算软件查出液体膨胀机的进口比焓hl1=-83.40kJ/kg和出口比焓hl2=-89.64kJ/kg,计算得液体膨胀机的单位制冷量q1=hl1-hl2=6.24kJ/kg。
步骤三,空分装置中气体膨胀机的进口温度Tg1=160.45K,进口压力Pg1=2.55MPa,出口温度Tg2=107.45K,出口压力Pg2=0.522MPa。
步骤四,根据步骤三中的气体膨胀机的进出口参数,利用物性库/计算软件查出气体膨胀机的进口比焓hg1=140.22kJ/kg和出口比焓hg2=99.02kJ/kg,得到气体膨胀机的单位制冷量qg=hg1-hg2=41.20kJ/kg。
步骤五,根据空分装置中增设液体膨胀机前后制冷量不变的原则,假设不使用液体膨胀机,则液体膨胀机产生的制冷量需要由气体膨胀机提供。为此气体膨胀机需要增加膨胀介质气体的流量,此增加的气量表示为其中Ql为液体膨胀机的质量流量。
步骤六,空分装置中增压机的进口温度Tc1=283.15K,进口压力Pc1=0.535MPa,中抽温度Tc2=415.08K,中抽压力Pc2=1.82MPa。
步骤七,根据步骤六中的增压机的进口温度与压力、中抽温度与压力,利用物性库/计算软件查出气体膨胀机的进口比焓hc1=282.25kJ/kg和中抽比焓hc2=414.91kJ/kg,求出将空气由增压机的进口状态压缩到中抽状态所需的单位功耗wc=hc2-hc1=132.66kJ/kg。
步骤八,气体膨胀机增加的膨胀空气量也就是增压机所需增加的空气处理量,则由此可以计算增压机为压缩这些额外的气体需要多消耗的功率,即Wc=Qg×wc=505.43kW。
步骤九,考虑液体膨胀机回收节流压力头而产生的输出轴功,即We=135kW。则使用液体膨胀机后空分装置节省的总功率表示为W=Wc+We=Qg×wc+We=640.43kW。
上述基于制冷量分析的液体膨胀机综合节能效益计算方法,将液体膨胀机产生的低温制冷量折算成气体膨胀机对应的膨胀空气流量,即得到增压机需要多压缩的空气量,进而根据增压机特性计算获得增压机对应的功率消耗;再将液体膨胀机回收节流压力头而产生的输出功率考虑在内,可以便捷地计算出空分装置增设液体膨胀机后所节省总能量。本计算方法简便快速,为快速计算液体膨胀机的节能效益提供了重要依据,有利于液体膨胀机技术在新建空分装置与现运行空分装置中的推广应用,对促进大型工业空分技术进步和空分装置节能降耗具有重要意义。

Claims (6)

1.一种基于制冷量分析的低温液体膨胀机节能效益计算方法,其特征在于,包括以下步骤,
步骤一,获取空分装置中液体膨胀机的进口温度Tl1,进口压力Pl1,出口温度Tl2以及出口压力Pl2;然后查出液体膨胀机的进口比焓hl1和出口比焓hl2,求出液体膨胀机的单位制冷量ql
步骤二,获取空分装置中气体膨胀机的进口温度Tg1,进口压力Pg1,出口温度Tg2,出口压力Pg2;然后查出气体膨胀机的进口比焓hg1和出口比焓hg2,求出气体膨胀机的单位制冷量qg
步骤三,假设空分装置中增设液体膨胀机前后的制冷量相同,在不使用液体膨胀机的情况,液体膨胀机产生的制冷量由气体膨胀机提供,将这部分制冷量折算成气体膨胀机气体处理量Qg
步骤四,获取增压机的进口温度Tc1,进口压力Pc1,中抽温度Tc2,中抽压力Pc2;然后查出液体膨胀机的进口比焓hc1和中抽比焓hc2,求出空气由增压机进口状态到中抽状态的单位压缩功耗wc
步骤五,气体膨胀机增加的膨胀空气量即增压机所需增加的空气量,则根据步骤三中的气体膨胀机气体处理量Qg和步骤4的空气由增压机进口状态到中抽状态的单位压缩功耗wc得到增压机需要多消耗的功率Wc
步骤六,液体膨胀机将节流压力头转化成轴功,其输出功率为We,则空分装置使用液体膨胀机节省的总功率W=Wc+We=Qg×wc+We,实现对低温液体膨胀机节能效益的快速评价。
2.根据权利要求1所述的一种基于制冷量分析的低温液体膨胀机节能效益计算方法,其特征在于,步骤一中,液体膨胀机的单位制冷量ql=hl1-hl2
3.根据权利要求1所述的一种基于制冷量分析的低温液体膨胀机节能效益计算方法,其特征在于,步骤二中,气体膨胀机的单位制冷量qg=hg1-hg2
4.根据权利要求1所述的一种基于制冷量分析的低温液体膨胀机节能效益计算方法,其特征在于,步骤三中,
其中Ql为液体膨胀机的质量流量,ql为液体膨胀机的单位制冷量。
5.根据权利要求1所述的一种基于制冷量分析的低温液体膨胀机节能效益计算方法,其特征在于,步骤四中,空气由增压机进口状态到中抽状态的单位压缩功耗wc=hc2-hc1
6.根据权利要求1所述的一种基于制冷量分析的低温液体膨胀机节能效益计算方法,其特征在于,步骤五中,增压机需要多消耗的功率Wc=Qg×wc
CN201811223040.7A 2018-10-19 2018-10-19 一种基于制冷量分析的低温液体膨胀机节能效益计算方法 Active CN109323532B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811223040.7A CN109323532B (zh) 2018-10-19 2018-10-19 一种基于制冷量分析的低温液体膨胀机节能效益计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811223040.7A CN109323532B (zh) 2018-10-19 2018-10-19 一种基于制冷量分析的低温液体膨胀机节能效益计算方法

Publications (2)

Publication Number Publication Date
CN109323532A true CN109323532A (zh) 2019-02-12
CN109323532B CN109323532B (zh) 2020-10-27

Family

ID=65262648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811223040.7A Active CN109323532B (zh) 2018-10-19 2018-10-19 一种基于制冷量分析的低温液体膨胀机节能效益计算方法

Country Status (1)

Country Link
CN (1) CN109323532B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110376239A (zh) * 2019-05-20 2019-10-25 西安交通大学 油水工质管壳式换热器能效定量的测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101532768A (zh) * 2009-04-27 2009-09-16 四川空分设备(集团)有限责任公司 一种高效利用液化天然气冷能的空分系统
CN102721263A (zh) * 2012-07-12 2012-10-10 杭州杭氧股份有限公司 一种利用深冷技术分离空气的系统及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101532768A (zh) * 2009-04-27 2009-09-16 四川空分设备(集团)有限责任公司 一种高效利用液化天然气冷能的空分系统
CN102721263A (zh) * 2012-07-12 2012-10-10 杭州杭氧股份有限公司 一种利用深冷技术分离空气的系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙全海: "全液体膨胀机对空分流程效率的影响", 《深冷技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110376239A (zh) * 2019-05-20 2019-10-25 西安交通大学 油水工质管壳式换热器能效定量的测量方法
CN110376239B (zh) * 2019-05-20 2021-01-15 西安交通大学 油水工质管壳式换热器能效定量的测量方法

Also Published As

Publication number Publication date
CN109323532B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN112883509B (zh) 一种绝热式压缩空气储能系统的设计方法及设计系统
MY164933A (en) High-efficiency heat cycle system and power generating method
Cummins et al. Energy conservation in industrial pneumatics: A state model for predicting energetic savings using a novel pneumatic strain energy accumulator
Li et al. Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston
Hu et al. Improving refrigeration performance by using pressure exchange characteristic of wave rotor
Jiang et al. Thermodynamic performance analysis, assessment and comparison of an advanced trigenerative compressed air energy storage system under different operation strategies
CN109323532A (zh) 一种基于制冷量分析的低温液体膨胀机节能效益计算方法
Ye et al. Transient flow performance and heat transfer characteristic in the cylinder of hydraulic driving piston hydrogen compressor during compression stroke
Zhou et al. Performance analysis of a novel adiabatic compressed air energy system with ejectors enhanced charging process
Adedeji et al. Improvement of a liquid air energy storage system: investigation of performance analysis for novel ambient air conditioning
Li et al. Comprehensive thermo-exploration of a near-isothermal compressed air energy storage system with a pre-compressing process and heat pump discharging
Vittorini et al. Energy saving potential in existing volumetric rotary compressors
Shi et al. Multi-objective optimization of the oil-free centrifugal air compressor in hydrogen fuel cell vehicles based on grey relational analysis
Zhang et al. A new heating system for the air pre-purification of air separation units
Lu et al. Thermodynamic analysis and efficiency improvement of trans-critical compressed carbon dioxide energy storage system
Bai et al. Dynamic characteristics and optimizations of the proposed combined cold and power system with integrated advanced adiabatic compressed air energy storage and double-effect compression-absorption refrigeration
Cao et al. Numerical study on adiabatic compressed air energy storage system with only one ejector alongside final stage compression
Guo et al. Optimal design of the piston trajectory for the ionic liquid compressor applied in hydrogen storage
Du et al. Synthesis of indirect work exchanger network based on transshipment model
Yusha et al. Calculating and parametric analysis of the work of the air single-stage medium pressure reciprocating compressor of on the basis of the oil-free long-stroke slow-speed stage
CN115313667B (zh) 耦合蒸汽循环的储能系统及储能系统控制方法
He et al. Thermodynamic investigation of variable‐speed compression unit in near‐isothermal compressed air energy storage
CN106401676A (zh) 一种低温液体汽化发电方法及发电设备
CN116305951A (zh) 背压机组特性方程及抽汽量运行限值推导方法
CN109344527A (zh) 基于*分析的低温液体膨胀机节能效益的快速计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221110

Address after: 710075 Room 106, B1, Phase I, Yungu, Fengxi New Town, Xixian New Area, Xi'an, Shaanxi

Patentee after: Kaishan (Xi'an) Turbine Machinery Co.,Ltd.

Address before: Beilin District Xianning West Road 710049, Shaanxi city of Xi'an province No. 28

Patentee before: XI'AN JIAOTONG University