CN109302224B - Hybrid beamforming algorithm for massive MIMO - Google Patents
Hybrid beamforming algorithm for massive MIMO Download PDFInfo
- Publication number
- CN109302224B CN109302224B CN201811213984.6A CN201811213984A CN109302224B CN 109302224 B CN109302224 B CN 109302224B CN 201811213984 A CN201811213984 A CN 201811213984A CN 109302224 B CN109302224 B CN 109302224B
- Authority
- CN
- China
- Prior art keywords
- phase shifter
- algorithm
- analog
- matrix
- beamforming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 13
- 230000003595 spectral effect Effects 0.000 claims abstract description 7
- 238000002347 injection Methods 0.000 claims abstract description 5
- 239000007924 injection Substances 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000011159 matrix material Substances 0.000 claims description 22
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000005562 fading Methods 0.000 claims description 2
- 238000001228 spectrum Methods 0.000 claims description 2
- 241000287196 Asthenes Species 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000010606 normalization Methods 0.000 claims 1
- 238000004088 simulation Methods 0.000 abstract description 3
- 238000004891 communication Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明属于毫米波大规模MIMO系统领域,具体为一种用于大规模MIMO的混合波束赋形算法。这种新的算法旨在联合优化模拟域波束赋形与数字域波束赋形,以最大化频谱效率。本发明分为两大部分:一是模拟波束赋形的算法;二是当给定模拟波束赋形器后,根据“注水法”得出数字波束赋形器。该算法适用于不同类型的模拟网络,包括连续可调移相器网络、有限比特可调移相器网络、开关网络等。仿真结果表明,算法性能与最优的全数字波束赋形的性能很接近;而且基于开关网络的混合波束赋形与移相器网络的性能接近,而更有利于工程实现。
The invention belongs to the field of millimeter-wave massive MIMO systems, in particular to a hybrid beamforming algorithm for massive MIMO. This new algorithm aims to jointly optimize beamforming in the analog and digital domains to maximize spectral efficiency. The invention is divided into two parts: one is the algorithm of analog beamforming; the other is that when the analog beamformer is given, the digital beamformer is obtained according to the "water injection method". The algorithm is suitable for different types of analog networks, including continuously adjustable phase shifter networks, finite-bit adjustable phase shifter networks, and switching networks. The simulation results show that the performance of the algorithm is very close to the performance of the optimal all-digital beamforming; and the hybrid beamforming based on the switch network is close to the performance of the phase shifter network, which is more conducive to engineering implementation.
Description
技术领域technical field
本发明属于MIMO通信领域,具体涉及一种用于大规模MIMO的混合波束赋形算法。The invention belongs to the field of MIMO communication, and in particular relates to a hybrid beamforming algorithm for massive MIMO.
背景技术Background technique
5G毫米波技术将通信带宽提高几百兆甚至上千赫兹,并在基站安装几十甚至上百个天线,因此能极大地提高小区的信道容量。但是,如果用传统的通信接收机,数字域需要实时处理上百路高速码流,困难非常大。研究者们提出在数模转换器(ADC)之前就进行模拟域波束赋形(Analog Beamforming/ABF),将M个天线所接收到的高维信号压缩到N维(N<<M),通过ABF,大规模MIMO的天线增益得以保存,同时又大大压缩信号维度,从而大幅减少数字域的运算量和所需的ADC数量,显著降低硬件成本。这种技术人们称之为混合波束赋形(Hybrid Beamforming/HBF)。5G millimeter wave technology increases the communication bandwidth by hundreds of megahertz or even thousands of hertz, and installs dozens or even hundreds of antennas at the base station, so it can greatly improve the channel capacity of the cell. However, if a traditional communication receiver is used, the digital domain needs to process hundreds of high-speed code streams in real time, which is very difficult. The researchers proposed to perform analog beamforming (Analog Beamforming/ABF) before the digital-to-analog converter (ADC) to compress the high-dimensional signals received by M antennas into N dimensions (N<<M). ABF, the antenna gain of massive MIMO is preserved, and the signal dimension is greatly compressed, thereby greatly reducing the amount of operations in the digital domain and the number of ADCs required, and significantly reducing hardware costs. This technique is called hybrid beamforming (Hybrid Beamforming/HBF).
针对上述技术,已经有一些关于混合波束赋形(Hybrid Beamforming/HBF)的研究工作发表。传统的模拟域网络主要分为移相器和开关结构,如何能用一种方式来解决不同模拟域网络结构(包括开关、固定相位的移相器、可变相位的不同分辨率的移相器等),这仍是一个难题。For the above-mentioned technology, some research work on hybrid beamforming (Hybrid Beamforming/HBF) has been published. The traditional analog domain network is mainly divided into phase shifters and switch structures. How can we solve different analog domain network structures (including switches, fixed phase phase shifters, and variable phase phase shifters with different resolutions) in one way? etc.), this is still a problem.
发明内容SUMMARY OF THE INVENTION
为了克服现有技术的不足,本发明的目的在于提供一种用于大规模MIMO的不同类型模拟网络的混合波束赋形算法。本发明算法适合于大规模MIMO的中的移相器网络、开关网络和移相器加开关复合网络,以利于联合优化模拟域波束赋形与数字域波束赋形,实现频谱效率最大化。In order to overcome the deficiencies of the prior art, the purpose of the present invention is to provide a hybrid beamforming algorithm for different types of analog networks of massive MIMO. The algorithm of the invention is suitable for phase shifter network, switch network and phase shifter plus switch composite network in massive MIMO, so as to facilitate joint optimization of analog domain beamforming and digital domain beamforming and maximize spectrum efficiency.
本发明提供一种用于大规模MIMO的混合波束赋形算法,具体步骤如下:The present invention provides a hybrid beamforming algorithm for massive MIMO, and the specific steps are as follows:
第一步,首先考虑的是单用户毫米波MIMO系统,信号矢量经过数字基带预编码器和模拟预编码器然后通过Mt个天线传输。发送天线为:The first step, the first consideration is the single-user mmWave MIMO system, the signal vector digital baseband precoder and analog precoder It is then transmitted through M t antennas. The transmitting antenna is:
x=FRFFBBs (1)x=F RF F BB s (1)
假定其中表示期望,是维度为Ns单位阵。通过一个平衰落信道后,我们将得到基带信号:assumed in express expectations, is an identity matrix of dimension N s . After passing through a flat fading channel, we will get the baseband signal:
Y=HFRFFBBs+z (2)Y=HF RF F BB s+z (2)
是信道矩阵,是协方差矩阵为的循环对称复高斯分布的白噪声,由于总发射功率是由噪声功率归一化的因此输入信噪比是: is the channel matrix, is the covariance matrix of cyclic symmetric complex Gaussian white noise, since the total transmit power is normalized by the noise power So the input signal-to-noise ratio is:
频谱效率为:The spectral efficiency is:
本发明提供的算法的目的是提高频谱效率,为了去解决下列问题:The purpose of the algorithm provided by the present invention is to improve the spectral efficiency, in order to solve the following problems:
Subject to Subject to
其中,第一个约束是有关于输入SNR的,第二个约束中的S集合取决于RF反馈网络的集合:对于无限分辨率的移相器网络S={ejφ:φ∈[0,2π]};对于b比特分辨率的移相器网络的对于开关网络S={0,1};对于移相器加开关网络S={ejφ:φ∈[0,2π]}∪{0}或者FRF(i,j)∈S的约束将混合波束赋形与传统的全数字波束赋形区分开。where the first constraint is about the input SNR, and the set of S in the second constraint depends on the set of RF feedback networks: for infinite-resolution phase shifter networks S={e jφ :φ∈[0,2π ]}; for a phase shifter network with b-bit resolution For switch network S={0,1}; for phase shifter plus switch network S={e jφ :φ∈[0,2π]}∪{0}or The constraint of F RF (i,j)∈S distinguishes hybrid beamforming from conventional all-digital beamforming.
第二步,优化模拟域波束赋形矩阵FRF The second step is to optimize the beamforming matrix F RF in the analog domain
在介绍模拟域波束赋形矩阵的优化方法之前,我们先来介绍两个majorization理论。Before introducing the optimization method of the beamforming matrix in the analog domain, we first introduce two majorization theories.
定义1:向量被向量所乘积主要化,定义为:如果Definition 1: Vector be vectored The multiplied product is majorized, defined as: if
其中,x[i]、y[i]分别是x、y第i大的元素。Among them, x[i] and y[i] are the i-th largest elements of x and y, respectively.
定义2:一个函数φ:叫做在上的乘积Schur-convex,如果:Definition 2: A function φ: called in The product Schur-convex over , if:
下面我们来看模拟域波束赋形的优化,,假定Ns=NRF=N,对于ρ足够大的情况,满足Let's look at the optimization of beamforming in the analog domain, assuming that N s =N RF =N, for the case where ρ is large enough, it satisfies
很容易去证明,频谱效率为It is easy to show that the spectral efficiency is
下面讨论我们用到了上面讲到的主要化的两个定义。In the following discussion we use the two definitions of majorization mentioned above.
定理1:函数是主要化的Schur-convex。对于每个λi来说,C(λ)是非递减的函数。Theorem 1: Function is the main Schur-convex. For each λ i , C(λ) is a non-decreasing function.
给定QR分解为HURF=QR,定义由R的对角元素所组成,我们所知道的是R的对角元素被HURF的奇异值所乘积主要化,并且λ是HURF的奇异值的平方。因此,Given QR is decomposed into HU RF = QR, define Composed of the diagonal elements of R, what we know is that the diagonal elements of R are dominated by the product of the singular values of HU RF , and λ is the square of the singular values of HU RF . therefore,
根据定理1得出According to Theorem 1, we get
C(λ)≥C(|r|2) (13)C(λ)≥C(|r| 2 ) (13)
通过最大化C(λ)的下界C(|r|2),来代替最大化C(λ)。接下来我们讨论一下关于R对角线的内部的结构:Instead of maximizing C(λ), we maximize the lower bound C(|r| 2 ) of C(λ). Next we discuss the internal structure of the R diagonal:
定理2:关于在QR分解中HURF=QR的R的对角线元素,Theorem 2: Regarding the diagonal elements of R where HU RF = QR in QR decomposition,
其中,in,
Ui-1表示URF的前i-1列,ui表示URF的第i列。U i-1 represents the first i-1 column of U RF , and ui represents the i-th column of U RF .
定理3:对于URF的列,Theorem 3: For a column of U RF ,
其中,Fi-1表示FRF的前i-1列,fi表示FRF的第i列。in, F i-1 represents the first i-1 column of F RF , and f i represents the i-th column of F RF .
由定理2、定理3我们可以推导出From Theorem 2 and Theorem 3, we can deduce
从中,我们可以看出Rii只取决于FRF的前i列,与FRF的后几列无关。From this, we can see that R ii only depends on the first i columns of F RF , and has nothing to do with the last few columns of F RF .
上述观察促使我们考虑一个N步的迭代,其中第i步是用来最大化R的第i个对角线元素Rii:The above observation prompts us to consider an N-step iteration, where the ith step is used to maximize the ith diagonal element of R R ii :
将x拆成:Split x into:
并且定义and define
则代价函数可以重写为Then the cost function can be rewritten as
对于无限精度的移相器来说,xn=ejθ,则我们可以进而重写代价函数:For infinite precision phase shifters, x n = e jθ , then we can rewrite the cost function as:
其中,in,
其中,∠表示复数的相位,当我们固定时,我们可以对于不同集合限制S来优化xn。where ∠ represents the phase of the complex number, when we fix , we can optimize x n for different set constraints S.
定理4:关于θopt的解:Theorem 4: The solution for θ opt :
等价于Equivalent to
subject to subject to
其中,in,
对于一个b-bit分辨率的移相器,整数k由下式决定:For a b-bit resolution phase shifter, the integer k is determined by:
并且更新θopt and update θ opt
然后,Then,
对于移相器加开关网络,0∈S,比较g(θopt)与比例xn可得:For a phase shifter plus switching network, 0∈S, compare g(θ opt ) with the ratio x n can be obtained:
对于开关网络,For switch networks,
解决问题(18)的算法1的具体步骤总结如下:The specific steps of Algorithm 1 to solve problem (18) are summarized as follows:
(1)输入:计算A、B;(1) Input: Calculate A and B;
(2)初始化:选取一个随机的 (2) Initialization: choose a random
(3)当目标函数值仍增加时,执行第(4)步;(3) When the objective function value still increases, perform step (4);
(4)当n取1到Mt时,固定通过(28)、(29)、(30),根据不同S的约束计算xn;(4) When n takes 1 to M t , fixed Through (28), (29), (30), calculate x n according to the constraints of different S;
(5)当目标函数值不变时,退出循环;(5) When the objective function value remains unchanged, exit the loop;
(6)返回最终结果 (6) Return the final result
进而,设计模拟波束赋形矩阵FRF的算法2的具体步骤如下:Furthermore, the specific steps of designing the
(1)输入参数H;(1) Input parameter H;
(2)首先给定 (2) First given
(3)对于i取1到N,执行下列(4)~(8)步;(3) For i, take 1 to N, and perform the following steps (4) to (8);
(4)根据(20)计算A和B;(4) Calculate A and B according to (20);
(5)根据算法1计算 (5) Calculated according to Algorithm 1
(6)FRF(:,i)←x;(6) F RF (:,i)←x;
(7)计算 (7) Calculation
(8)计算 (8) Calculation
(9)返回FRF。(9) Return F RF .
第三步,优化数字波束赋形矩阵FBB:计算出FRF后,我们根据上述的“注水”方法求解FBB。The third step is to optimize the digital beamforming matrix F BB : After calculating F RF , we solve F BB according to the above-mentioned “water injection” method.
首先,当我们固定模拟域波束赋形矩阵FRF,问题(5)可以简化为:First, when we fix the analog domain beamforming matrix F RF , problem (5) can be simplified to:
Subject to Subject to
我们定义we define
我们把公式(7)代入公式(6)中可得,We can substitute formula (7) into formula (6) to get,
Subject to Tr(GGH)≤ρSubject to Tr(GG H )≤ρ
其中,是一个半酉矩阵,表示FRF的列空间。对于问题(8)的解为:in, is a semi-unitary matrix representing the column space of F RF . The solution to problem (8) is:
(1)首先进行SVD分解: (1) First perform SVD decomposition:
(2)其中,是对角阵,γi可用“注水”功率分配方法获得(2) in, is a diagonal matrix, γi can be obtained by the "water injection" power distribution method
(3)其中,λi表示Λ的第i个对角线元素。当时,得到拉格朗日乘子μ。(3) of which, λ i denotes the ith diagonal element of Λ. when , the Lagrange multiplier μ is obtained.
(4)根据公式(7)得到数字域波束赋形矩阵FBB。(4) According to formula (7), the digital domain beamforming matrix FBB is obtained.
和现有技术相比,本发明的有益效果在于:该算法适用于不同类型的模拟网络,包括连续可调移相器网络、有限比特可调移相器网络、开关网络等。仿真结果表明,算法性能与最优的全数字波束赋形的性能很接近;而且基于开关网络的混合波束赋形与移相器网络的性能接近,而更有利于工程实现。Compared with the prior art, the present invention has the beneficial effects that the algorithm is suitable for different types of analog networks, including continuously adjustable phase shifter networks, finite-bit adjustable phase shifter networks, switching networks, and the like. The simulation results show that the performance of the algorithm is very close to the performance of the optimal all-digital beamforming; and the hybrid beamforming based on the switch network is close to the performance of the phase shifter network, which is more conducive to engineering implementation.
附图说明Description of drawings
图1为MIMO系统中发送端混合波束赋形结构。Figure 1 shows the hybrid beamforming structure at the transmitting end in a MIMO system.
图2为模拟预编码器(波束赋形器)的三种实现形式:(a)移相器网络,(b)开关网络,(c)移相器加开关网络。Figure 2 shows three implementations of an analog precoder (beamformer): (a) a phase shifter network, (b) a switch network, and (c) a phase shifter plus switch network.
图3为不同的RF网络结构的频谱效率比较。Figure 3 shows the spectral efficiency comparison of different RF network structures.
具体实施方式Detailed ways
下面结合附图和实施例对本发明的技术方案进行详细介绍。The technical solutions of the present invention will be described in detail below with reference to the accompanying drawings and embodiments.
图1为MIMO系统中发送端混合波束赋形结构。Figure 1 shows the hybrid beamforming structure at the transmitting end in a MIMO system.
图2为模拟预编码器(波束赋形器)的三种实现形式,即三种不同的RF网络结构。Figure 2 shows three implementations of an analog precoder (beamformer), ie, three different RF network structures.
实施例1Example 1
我们使用的信道模型为窄带毫米波簇信道模型:The channel model we use is the narrowband millimeter wave cluster channel model:
其中多径增益为αl~CN(0,1),at(θl)和ar(φl)分别为是发送机和接收机的天线阵列响应;其中θl为离开角、φl为到达角。我们仿真使用的是均匀线性阵列(ULA),对于角θ来说,其阵列响应为:where the multipath gain is α l ~CN(0,1), at (θ l ) and a r (φ l ) are the antenna array responses of the transmitter and receiver, respectively ; where θ l is the departure angle, φ l for the angle of arrival. Our simulations use a Uniform Linear Array (ULA) whose array response for angle θ is:
其中,λ是信号的波长,是天线间距,ar(φl)也有类似的形式。where λ is the wavelength of the signal, is the antenna spacing, and a r (φ l ) has a similar form.
我们实际仿真的系统是一个64×16的MIMO系统(Mt=64,Mr=16),其中NRF=Ns=8,多径数L为15。图3的结果展示出我们的算法在不同RF链的限制下,频谱效率的比较。包括有无限精度的移相器网络(-◇-),1bit分辨率的移相器(-○-),2bit分辨率的移相器开关网络(-*-),移相器加开关网络(--)。结果表明,移相器加开关结构与无限精度的移相器结构相比,性能略微要好一点;而且2bit分辨率的移相器(例如:S={±1 ±j})与无限精度的移相器网络相比在性能上的差距小于1dB;开关网络(-*-)性能也是比较出色的与无限精度的移相器网络相比在性能上的差距要小于4dB。为了便于比较,我们也仿真了贪婪天线选择算法[1](图3中的点线);天线选择方法(每个RF链只与一个天线相连)的性能明显不如开关网络。The system we actually simulate is a 64×16 MIMO system (M t =64, M r =16), where N RF =N s =8, and the multipath number L is 15. The results in Figure 3 show the comparison of the spectral efficiency of our algorithm under the constraints of different RF chains. Including infinite precision phase shifter network (-◇-), 1bit resolution phase shifter (-○-), 2bit resolution phase shifter Switch network (-*-), phase shifter plus switch network (--). The results show that the performance of the phase shifter plus switch structure is slightly better than that of the infinite precision phase shifter structure; Compared with the phase shifter network, the performance gap is less than 1dB; the performance of the switch network (-*-) is also excellent, and the performance gap compared with the infinite precision phase shifter network is less than 4dB. For comparison purposes, we also simulated the greedy antenna selection algorithm [1] (dotted line in Figure 3); the antenna selection method (each RF chain connected to only one antenna) performs significantly worse than the switch network.
参考文献references
[1]Y.Jiang and M.K.Varanasi,“The RF-chain limited MIMO system-Part I:optimum diversity-multiplexing tradeoff,”IEEE Transactions on WirelessCommunications,vol.8,no.10,pp.5238–5247,2009。[1] Y. Jiang and M.K. Varanasi, "The RF-chain limited MIMO system-Part I: optimal diversity-multiplexing tradeoff," IEEE Transactions on Wireless Communications, vol.8, no.10, pp.5238–5247, 2009.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811213984.6A CN109302224B (en) | 2018-10-18 | 2018-10-18 | Hybrid beamforming algorithm for massive MIMO |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811213984.6A CN109302224B (en) | 2018-10-18 | 2018-10-18 | Hybrid beamforming algorithm for massive MIMO |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109302224A CN109302224A (en) | 2019-02-01 |
CN109302224B true CN109302224B (en) | 2021-06-22 |
Family
ID=65157358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811213984.6A Expired - Fee Related CN109302224B (en) | 2018-10-18 | 2018-10-18 | Hybrid beamforming algorithm for massive MIMO |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109302224B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110071751B (en) * | 2019-03-19 | 2021-10-26 | 西安电子科技大学 | Partial connection hybrid beam forming method for non-constant mode of beam forming parameter in analog domain |
CN109861729B (en) * | 2019-03-21 | 2021-03-05 | 杭州电子科技大学 | Single-user multi-antenna signal transceiver system and signal processing method in MIMO system |
CN110166103B (en) * | 2019-05-31 | 2021-07-16 | 大连理工大学 | A Novel Hybrid Beamforming Structure and Setting Method of Millimeter-Wave MU-MISO System |
CN110212962B (en) * | 2019-07-07 | 2021-04-02 | 东北大学秦皇岛分校 | Hybrid precoding method based on analog phase shift-switch cascade network |
CN110661555B (en) * | 2019-10-14 | 2021-06-22 | 复旦大学 | A Hybrid Precoding Algorithm for Partially Connected Phase Shifter Networks for Massive MIMO |
CN112019247B (en) * | 2020-09-02 | 2021-06-29 | 北京理工大学 | Hybrid precision phase shifting network with variable phase shifters and precoding method |
CN112073105B (en) * | 2020-11-11 | 2021-02-26 | 华东交通大学 | A low energy consumption millimeter wave MIMO communication precoding design method |
CN112564754B (en) * | 2020-12-01 | 2021-09-28 | 哈尔滨工业大学 | Wave beam selection method based on self-adaptive cross entropy under millimeter wave Massive MIMO system |
CN112910521B (en) * | 2021-02-27 | 2022-04-05 | 中电万维信息技术有限责任公司 | Deep learning-based MIMO mixed beam forming method |
CN113472404B (en) * | 2021-07-13 | 2022-02-11 | 西安科技大学 | Digital Domain Beamforming Optimization Method and Device Based on Conditional Generative Adversarial Networks |
CN113726380B (en) * | 2021-07-26 | 2023-03-28 | 北京理工大学 | Broadband mixed beam forming method based on training sequence |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106571858A (en) * | 2016-11-03 | 2017-04-19 | 北京邮电大学 | Hybrid beam forming transmission system and method |
CN107359921A (en) * | 2017-08-04 | 2017-11-17 | 西安科技大学 | Extensive mixing method for precoding of the mimo system based on orthonormalization |
EP3270524A1 (en) * | 2015-03-12 | 2018-01-17 | China Academy of Telecommunications Technology | Hybrid beam-forming transmission method and network device |
WO2018058262A1 (en) * | 2016-09-27 | 2018-04-05 | Intel Corporation | Communication device and a method for hybrid beamforming |
WO2018136581A1 (en) * | 2017-01-19 | 2018-07-26 | Idac Holdings, Inc. | Efficient implementation of hybrid beamforming |
CN108449118A (en) * | 2018-02-08 | 2018-08-24 | 北京邮电大学 | Hybrid precoding method and device in massive MIMO system |
CN108494455A (en) * | 2018-02-27 | 2018-09-04 | 同济大学 | Using the mixing Precoding Design method of single-bit analog-digital converter mimo system |
CN108667501A (en) * | 2017-03-31 | 2018-10-16 | 华为技术有限公司 | Network device, method and controller for analog-digital hybrid beamforming |
-
2018
- 2018-10-18 CN CN201811213984.6A patent/CN109302224B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3270524A1 (en) * | 2015-03-12 | 2018-01-17 | China Academy of Telecommunications Technology | Hybrid beam-forming transmission method and network device |
WO2018058262A1 (en) * | 2016-09-27 | 2018-04-05 | Intel Corporation | Communication device and a method for hybrid beamforming |
CN106571858A (en) * | 2016-11-03 | 2017-04-19 | 北京邮电大学 | Hybrid beam forming transmission system and method |
WO2018136581A1 (en) * | 2017-01-19 | 2018-07-26 | Idac Holdings, Inc. | Efficient implementation of hybrid beamforming |
CN108667501A (en) * | 2017-03-31 | 2018-10-16 | 华为技术有限公司 | Network device, method and controller for analog-digital hybrid beamforming |
CN107359921A (en) * | 2017-08-04 | 2017-11-17 | 西安科技大学 | Extensive mixing method for precoding of the mimo system based on orthonormalization |
CN108449118A (en) * | 2018-02-08 | 2018-08-24 | 北京邮电大学 | Hybrid precoding method and device in massive MIMO system |
CN108494455A (en) * | 2018-02-27 | 2018-09-04 | 同济大学 | Using the mixing Precoding Design method of single-bit analog-digital converter mimo system |
Non-Patent Citations (6)
Title |
---|
Hybrid Beamforming for Large Antenna Arrays With Phase Shifter Selection;Sohail Payami et al.;《IEEE Transactions on Wireless Communications》;20160811;第15卷(第11期);第1-14页 * |
Hybrid beamforming with finite-resolution phase shifters for large-scale MIMO systems;Foad Sohrabi et al.;《2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)》;20150831;第1-3页 * |
Low Complexity Hybrid Precoding Strategies for Millimeter Wave Communication Systems;Cristian Rusu et al.;《IEEE Transactions on Wireless Communications》;20160929;第15卷(第12期);第1-14页 * |
Spatially Sparse Precoding in Millimeter Wave MIMO Systems;Omar El Ayach et al.;《IEEE Transactions on Wireless Communications》;20140121;第13卷(第3期);第1-15页 * |
基于有限反馈的毫米波MIMO系统的混合预编码方法;尤若楠;《电信科学》;20180820;第1-10页 * |
毫米波通信中的混合波束成形技术研究;王敏;《中国优秀硕士学位论文全文数据库 信息科技辑》;20180415;第30-44页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109302224A (en) | 2019-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109302224B (en) | Hybrid beamforming algorithm for massive MIMO | |
CN111294095B (en) | IRS (inter-range instrumentation Standard) assisted large-scale MIMO (multiple input multiple output) wireless transmission method based on statistical CSI (channel State information) | |
CN108809397B (en) | High-efficiency digital-analog hybrid beamforming method, apparatus and device in multi-antenna system | |
Gao et al. | Machine learning inspired energy-efficient hybrid precoding for mmWave massive MIMO systems | |
CN101867402B (en) | A MIMO system with adaptive antenna selection and its application method | |
CN108494455B (en) | Mixed precoding design method adopting single-bit analog-to-digital converter MIMO system | |
Kaushik et al. | Joint bit allocation and hybrid beamforming optimization for energy efficient millimeter wave MIMO systems | |
CN111294096A (en) | A Channel Capacity Optimization Method of Smart Reflector MISO Wireless Communication System | |
CN107809274B (en) | Hybrid precoding method based on novel phase-shifting switch network | |
CN107046434B (en) | Large-scale MIMO system analog-digital mixed precoding method | |
CN110661555B (en) | A Hybrid Precoding Algorithm for Partially Connected Phase Shifter Networks for Massive MIMO | |
CN109714091B (en) | An iterative hybrid precoding method based on hierarchical design in mmWave MIMO systems | |
CN109104225A (en) | A kind of optimal extensive MIMO Beam Domain multicast transmission method of efficiency | |
CN109167623B (en) | Hybrid beam forming system applied to millimeter wave multi-antenna system and millimeter wave multi-antenna system thereof | |
Kaushik et al. | Energy efficiency maximization of millimeter wave hybrid MIMO systems with low resolution DACs | |
CN109547082A (en) | Mixing precoding optimization method based on the extensive antenna system of millimeter wave | |
Kaushik et al. | Energy efficient ADC bit allocation and hybrid combining for millimeter wave MIMO systems | |
Jiang et al. | Hybrid beamforming for massive MIMO: A unified solution for both phase shifter and switch networks | |
CN110233649B (en) | Dynamic subarray design method based on millimeter wave MIMO system | |
Cavalcante et al. | Efficient hybrid A/D beamforming for millimeter-wave systems using butler matrices | |
CN113472409B (en) | Hybrid pre-coding method based on PAST algorithm in millimeter wave large-scale MIMO system | |
Kaushik et al. | Energy efficiency maximization in millimeter wave hybrid MIMO systems for 5G and beyond | |
CN112312569A (en) | Lens array-based precoding and beam selection matrix joint design method | |
CN109586777A (en) | Code book with analytic structure generates and transmitting-receiving cooperation adaptive beam training method | |
CN108923831B (en) | Method and device for precoding transmission signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210622 |
|
CF01 | Termination of patent right due to non-payment of annual fee |