CN109302156B - 基于模式识别的功率放大器动态线性化系统及其方法 - Google Patents
基于模式识别的功率放大器动态线性化系统及其方法 Download PDFInfo
- Publication number
- CN109302156B CN109302156B CN201811138064.2A CN201811138064A CN109302156B CN 109302156 B CN109302156 B CN 109302156B CN 201811138064 A CN201811138064 A CN 201811138064A CN 109302156 B CN109302156 B CN 109302156B
- Authority
- CN
- China
- Prior art keywords
- power amplifier
- module
- power
- signal
- predistortion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/30—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Evolutionary Biology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Amplifiers (AREA)
Abstract
本发明公开了一种基于模式识别的功率放大器动态线性化系统,包括特征向量生成模块、多层感知器模块、预失真系数查找表模块、矢量信号模块、发射链路模块、功率放大器模块和反馈回路模块。本发明还公开了采用其的方法。本发明采用一种新的标准,即幅度调制到幅度调制(AM/AM)的模式,来识别功率放大器的工作状态,利用多层感知器神经网络对功放AM/AM的识别结果,来索引不同的预失真系数,实现功放的动态线性化。与传统的功率查找表、功率索引算法相比,本方法可以提供更好的线性化性能。此外,本发明还能够解决由温度,频率,带宽和信号类型等许多其他非功率因素变化引起的功放动态情况下的线性化问题。
Description
技术领域
本发明涉及功率放大器的线性化系统及其方法,特别是涉及一种基于模式识别的功率放大器动态线性化系统及其方法。
背景技术
在第五代无线通信系统(5G)中,动态功率传输技术将会被广泛利用,以实现对功率资源的高效利用。功率放大器作为5G系统中的关键器件,它不仅会出现传统系统中静态的带内失真以及带外失真,也会出现由输入信号功率动态改变引起的动态状态变化。这不可避免地影响到解调后信号的质量。传统的数字预失真技术是用来消除功放的静态非线性失真以及保持其高效率工作的常用技术。然而,这种动态功率传输的场景会给功放的线性化任务带来新的挑战。有一些学者已经提出基于功率指标的查找表方法、插值方法等,能够有效地解决动态功率传输问题。
然而,由于功放具有十分复杂的特性,上述这些传统的仅仅基于功率指标的动态线性化方法会存在一些不足之处,这体现在,即使在某个固定的输入信号功率水平,功放的状态也会由于许多其它非功率的改变而发生变化,例如,热效应。因此,亟需开发一种能够识别功放的不同状态,并实现其动态线性化的方法。
发明内容
发明目的:本发明的目的是提供一种基于模式识别的功率放大器动态线性化系统及其方法,能够识别功放的不同状态,并实现其动态线性化。
技术方案:为达到此目的,本发明采用以下技术方案:
本发明所述的基于模式识别的功率放大器动态线性化系统,包括:
特征向量生成模块:用于生成表征功率放大器当前状态的特征向量;
多层感知器模块:对功率放大器的特征向量进行模式识别,得到对功率放大器当前状态的模式识别结果;
预失真系数查找表模块:根据多层感知器的识别结果,索引对应于功率放大器当前状态的预失真系数,产生对应于功率放大器当前状态的预失真信号;
矢量信号模块:用于产生线性化系统训练以及线性化系统运行时的原始信号;
发射链路模块:将数字信号转换为模拟信号,并将其变频到功率放大器的工作频段内,接收动态功率调整的信息并动态改变输出信号的功率,以便验证系统功能;
功率放大器模块:对信号功率放大并输出;
反馈回路模块:采集功率放大器的输出信号,并发送到特征向量生成模块和预失真系数查找表模块进行处理,完成系统训练和系统运行的后续工作。
采用本发明所述的基于模式识别的功率放大器动态线性化系统的方法,包括系统训练过程和系统运行过程:
系统训练过程包括以下步骤:
S1.1:收集系统训练数据,将矢量信号模块的输出信号x(n)发送到发射链路模块,调整发射链路模块的输出功率,得到N个功率放大器当前状态下的输入信号x(n)和输出信号y(n);n为对功率放大器的输入信号和输出信号的总采样点数;
S1.2:特征向量生成模块利用步骤S1.1中得到的x(n)和y(n)生成N*k个特征向量,其中k为每个功率放大器当前状态下生成的特征向量的数量;
S1.3:利用步骤S1.2中得到的N*k个特征向量及其对应的功率放大器状态训练多层感知器模块;
S1.4:通过预失真系数查找表模块建立预失真系数查找表,利用N个功率放大器当前状态下的输入信号和输出信号得到N组功率放大器的预失真系数;
系统运行过程包括以下步骤:
S2.1:收集系统运行数据,将矢量信号模块的输出信号x1(n)发送到发射链路模块,在系统训练时发射链路模块输出功率的范围内随机调整发射链路模块的输出功率,得到功率放大器某个未知状态下的输入信号x1(n)和输出信号y1(n);
S2.2:特征向量生成模块利用步骤S2.1中得到的x1(n)和y1(n)生成功率放大器在当前未知状态下的特征向量;
S2.3:运行多层感知器模块,对功率放大器当前未知状态下生成的特征向量进行模式识别;
S2.4:根据多层感知器模块的模式识别结果,在预失真系数查找表模块中选择相应的一组预失真系数,对矢量信号模块的输出信号x1(n)进行预失真处理并发送到发射链路模块,利用从反馈回路模块得到的功率放大器输出信号,测试线性化效果。
进一步,所述步骤S1.2中的特征向量通过以下方法生成:
S1.2.1:根据式(1)对x(n)、y(n)进行模值归一化处理:
S1.2.2:建立一个r*r的零矩阵P;r为系统训练时,对功率放大器输入信号和输出信号的量化分辨率;
S1.2.4:将P矩阵按列排开,得到表征功率放大器当前状态的特征向量V。
进一步,所述步骤S2.2中的特征向量通过以下方法生成:
S2.2.1:根据式(2)对x1(n)、y1(n)进行模值归一化处理:
S2.2.2:建立一个r1*r1的零矩阵P1;r1为系统运行时,对功率放大器输入信号和输出信号的量化分辨率;
S2.2.4:将P1矩阵按列排开,得到表征功率放大器当前状态的特征向量V1。
进一步,所述步骤S1.3具体包括以下步骤:
其中,θ为多层感知器模块中的层间权重参数;
S1.3.2:建立平方误差函数:
S1.3.3:利用梯度法优化θ:
其中,θold为优化前的θ,θnew为优化后的θ。
进一步,所述步骤S1.4具体包括以下步骤:
S1.4.1:利用式(6)所示的记忆多项式模型对功率放大器进行建模,将系统训练时得到的功率放大器输入信号和输出信号按列排开,得到式(7);
Y=XC (7)
其中,M为记忆多项式的最大记忆深度,N为记忆多项式的最高非线性阶数,cji为记忆多项式中对应于j阶记忆深度、i阶非线性阶数的系数,x(n-j)为n-j时刻功率放大器输入信号的复数值,y(n)为功率放大器输出信号,Y为功率放大器输出信号按列排开得到的功率放大器输出信号矢量;X为功率放大器输入信号按列排开并对每一列进行非线性运算以及延时处理,再合并每一列后得到的功率放大器输入信号矩阵;C为系数按列排开得到的系数矢量;
S1.4.2:利用式(8)求解预失真系数:
CLS=(XHX)-1XHY (8)
其中,CLS为预失真系数。
有益效果:本发明公开了一种基于模式识别的功率放大器动态线性化系统及其方法,采用一种新的标准,即幅度调制到幅度调制(AM/AM)的模式,来识别功率放大器的工作状态,利用多层感知器神经网络对功放AM/AM的识别结果,来索引不同的预失真系数,实现功放的动态线性化。与传统的功率查找表、功率索引算法相比,本方法可以提供更好的线性化性能。此外,本发明还能够解决由温度,频率,带宽和信号类型等许多其他非功率因素变化引起的功放动态情况下的线性化问题。
附图说明
图1为本发明具体实施方式中的系统框图;
图2是将发明具体实施方式的系统应用在信号带宽为20MHz、预失真与线性化带宽为100MHz的1.6GHz Doherty功率放大器(Cree CGH40010F),并调整功放的输入信号功率(即发射链路的输出功率)在10个不同水平下(从-18.7dBm到-16.0dBm,以0.3dBm为间隔),得到功放的10条AM/AM曲线;
图3是将发明具体实施方式的系统应用在信号带宽为20MHz、预失真与线性化带宽为100MHz的1.6GHz Doherty功率放大器(Cree CGH40010F),采用不同分辨率时,特征向量生成步骤示意图;其中,图3(a)为原始数据,图3(b)、图3(c)、图3(d)和图3(e)分别为采用分辨率4*4、16*16、36*36和64*64时生成的特征向量;
图4是将发明具体实施方式的系统应用在信号带宽为20MHz、预失真与线性化带宽为100MHz的1.6GHz Doherty功率放大器(Cree CGH40010F),对某个未知功放状态(输入功率为-17.4dBm)的模式识别结果;
图5是将发明具体实施方式的系统应用在信号带宽为20MHz、预失真与线性化带宽为100MHz的1.6GHz Doherty功率放大器(Cree CGH40010F),基于功率索引查找表的线性化系统与所提出的基于模式识别查找表线性化系统的性能比较。
具体实施方式
下面结合具体实施方式对本发明的技术方案作进一步的介绍。
本具体实施方式公开了一种基于模式识别的功率放大器动态线性化系统,如图1所示,包括:
特征向量生成模块:用于生成表征功率放大器当前状态的特征向量;
多层感知器模块:对功率放大器的特征向量进行模式识别,得到对功率放大器当前状态的模式识别结果;
预失真系数查找表模块:根据多层感知器的识别结果,索引对应于功率放大器当前状态的预失真系数,产生对应于功率放大器当前状态的预失真信号;
矢量信号模块:用于产生线性化系统训练以及线性化系统运行时的原始信号;
发射链路模块:将数字信号转换为模拟信号,并将其变频到功率放大器的工作频段内,接收动态功率调整的信息并动态改变输出信号的功率,以便验证系统功能;
功率放大器模块:对信号功率放大并输出;
反馈回路模块:采集功率放大器的输出信号,并发送到特征向量生成模块和预失真系数查找表模块进行处理,完成系统训练和系统运行的后续工作。
本具体实施方式还公开了采用上述系统的功率放大器动态线性化方法,包括系统训练过程和系统运行过程:
系统训练过程包括以下步骤:
S1.1:收集系统训练数据,将矢量信号模块的输出信号x(n)发送到发射链路模块,调整发射链路模块的输出功率,得到N个功率放大器当前状态下的输入信号x(n)和输出信号y(n);n为对功率放大器的输入信号和输出信号的总采样点数;
S1.2:特征向量生成模块利用步骤S1.1中得到的x(n)和y(n)生成N*k个特征向量,其中k为每个功率放大器当前状态下生成的特征向量的数量;
S1.3:利用步骤S1.2中得到的N*k个特征向量及其对应的功率放大器状态训练多层感知器模块;
S1.4:通过预失真系数查找表模块建立预失真系数查找表,利用N个功率放大器当前状态下的输入信号和输出信号得到N组功率放大器的预失真系数;
系统运行过程包括以下步骤:
S2.1:收集系统运行数据,将矢量信号模块的输出信号x1(n)发送到发射链路模块,在系统训练时发射链路模块输出功率的范围内随机调整发射链路模块的输出功率,得到功率放大器某个未知状态下的输入信号x1(n)和输出信号y1(n);
S2.2:特征向量生成模块利用步骤S2.1中得到的x1(n)和y1(n)生成功率放大器在当前未知状态下的特征向量;
S2.3:运行多层感知器模块,对功率放大器当前未知状态下生成的特征向量进行模式识别;
S2.4:根据多层感知器模块的模式识别结果,在预失真系数查找表模块中选择相应的一组预失真系数,对矢量信号模块的输出信号x1(n)进行预失真处理并发送到发射链路模块,利用从反馈回路模块得到的功率放大器输出信号,测试线性化效果。
步骤S1.2中的特征向量通过以下方法生成:
S1.2.1:根据式(1)对x(n)、y(n)进行模值归一化处理:
S1.2.2:建立一个r*r的零矩阵P;r为系统训练时,对功率放大器输入信号和输出信号的量化分辨率;
S1.2.4:将P矩阵按列排开,得到表征功率放大器当前状态的特征向量V。
步骤S2.2中的特征向量通过以下方法生成:
S2.2.1:根据式(2)对x1(n)、y1(n)进行模值归一化处理:
S2.2.2:建立一个r1*r1的零矩阵P1;r1为系统运行时,对功率放大器输入信号和输出信号的量化分辨率;
S2.2.4:将P1矩阵按列排开,得到表征功率放大器当前状态的特征向量V1。
步骤S1.3具体包括以下步骤:
其中,θ为多层感知器模块中的层间权重参数;
S1.3.2:建立平方误差函数:
S1.3.3:利用梯度法优化θ:
其中,θold为优化前的θ,θnew为优化后的θ。
步骤S1.4具体包括以下步骤:
S1.4.1:利用式(6)所示的记忆多项式模型对功率放大器进行建模,将系统训练时得到的功率放大器输入信号和输出信号按列排开,得到式(7);
Y=XC (7)
其中,M为记忆多项式的最大记忆深度,N为记忆多项式的最高非线性阶数,cji为记忆多项式中对应于j阶记忆深度、i阶非线性阶数的系数,x(n-j)为n-j时刻功率放大器输入信号的复数值,y(n)为功率放大器输出信号,Y为功率放大器输出信号按列排开得到的功率放大器输出信号矢量;X为功率放大器输入信号按列排开并对每一列进行非线性运算以及延时处理,再合并每一列后得到的功率放大器输入信号矩阵;C为系数按列排开得到的系数矢量;
S1.4.2:利用式(8)求解预失真系数:
CLS=(XHX)-1XHY (8)
其中,CLS为预失真系数。
下面以一个实施例,对本方法进行验证。
为了测试所提出的基于模式识别的功率放大器动态线性化系统及其方法的表现,将发明具体实施在信号带宽为20MHz、预失真与线性化带宽为100MHz的1.6GHz Doherty功率放大器(Cree CGH40010F)的场景下,调整功放的输入功率(与发射链路的输出功率等效)为从-18.7dBm到-16.0dBm,以0.3dBm为间隔,得到10个不同功放状态下的10组输入输出信号,即步骤S1.1。这10个状态下对应的AM/AM曲线如图2所示。
然后,进行步骤S1.2,利用10组输入输出信号,分别进行特征向量生成,图3为其中某一状态下,特征向量生成过程的示意图。其中,图3(a)为原始数据,图3(b)、图3(c)、图3(d)和图3(e)分别为采用分辨率为4*4,16*16,36*36,64*64时,生成的特征向量,实施例中,采用16*16分辨率进行特征向量的生成。
接下来,进行步骤S1.3,利用10个状态下的特征向量,以及与之对应的已知功放状态,利用梯度法,对多层感知器进行训练。此时,再输入一个未知的功放特征向量,训练好的多层感知器就能有效地对该特征向量进行模式识别,识别出未知状态与哪个训练中的功放状态最为相似。
最后,进行步骤S1.4,利用10组训练的功放输入输出数据,如步骤S1.4所述,采用记忆多项式模型,利用最小二乘算法,得到10组功放的预失真系数,利用10个已知的功放状态,索引这10组功放的预失真系数。
2.然后是系统运行的过程:
首先进行步骤S2.1,将功放的输入功率置于一个未知的状态(-17.4dBm,不在训练的功率点上)。然后进行步骤S2.2,生成该状态下的功放特征向量。接下来进行步骤S2.3,利用多层感知器对-17.4dBm输入功率状态下功放特征向量进行模式识别,最后,进行步骤S2.4,根据多层感知器对未知特征向量的模式识别结果,来选取一组特定的预失真系数。这样,如图1所示,原始信号x(n)经过预失真系数查找表后,得到了预失真信号p(n),p(n)再经过功放以后就得到了线性化的功放输出信号y(n)。
值得指出的是,为了对比本发明中基于功放模式索引预失真系数查找表的方式与传统的基于功率数值索引预失真系数查找表的方式,在运行传统线性化方法时,与上述过程不同的是,步骤S2.3中不是利用模式来索引预失真系数,而是利用最接近的功率数值。而步骤S2.4中,则根据训练时与-17.4dBm下最接近的功率,来索引预失真系数。
利用传统方法,必须已知功放的输入信号功率,即-17.4dBm,根据上述功率最接近的原则,选用系统训练时-17.5dBm的一组预失真系数。
而利用本发明中方法,对-17.5dBm的输入功率状态下功放特征向量的模式识别结果如图4所示,即系统运行时-17.4dBm下的功放状态与系统训练时-17.2dBm下的功放状态最为相似,因此,索引-17.2dBm对应的预失真系数对原始信号x(n)进行预失真处理。
图5与表1比较了利用本发明中方法索引的预失真系数(-17.2dBm)与利用传统功率方法索引的预失真系数(-17.5dBm)的线性化性能表现。
表1-17.4dBm下的功放线性化性能对比
通过观察图5以及表1,可以得出结论,利用本发明中基于模式的方法选取的-17.2dBm下的预失真系数与利用传统基于功率的方法选取的-17.5dBm下的系数都能有效地实现功放的线性化,但是本发明中利用模式相似度选取的-17.2dBm下的预失真系数能够达到更好的结果,这意味着本发明中基于模式识别的功率放大器动态线性化系统及其方法,相比于传统的基于功率水平索引查找表的动态线性化算法,能够达到更好的线性化性能。
Claims (3)
1.基于模式识别的功率放大器动态线性化方法,其特征在于:该方法基于模式识别的功率放大器动态线性化系统实现,该系统包括:
特征向量生成模块:用于生成表征功率放大器当前状态的特征向量;
多层感知器模块:对功率放大器的特征向量进行模式识别,得到对功率放大器当前状态的模式识别结果;
预失真系数查找表模块:根据多层感知器模块的识别结果,索引对应于功率放大器当前状态的预失真系数,产生对应于功率放大器当前状态的预失真信号;
矢量信号模块:用于产生线性化系统训练以及线性化系统运行时的原始信号;
发射链路模块:将数字信号转换为模拟信号,并将其变频到功率放大器的工作频段内,接收动态功率调整的信息并动态改变输出信号的功率,以便验证系统功能;
功率放大器模块:对信号功率放大并输出;
反馈回路模块:采集功率放大器的输出信号,并发送到特征向量生成模块和预失真系数查找表模块进行处理,完成系统训练和系统运行的后续工作;
方法包括系统训练过程和系统运行过程:
系统训练过程包括以下步骤:
S1.1:收集系统训练数据,将矢量信号模块的输出信号x(n)一路发送到发射链路模块,调整发射链路模块的输出功率,得到N个功率放大器当前状态下的输出信号y(n),输出信号x(n)另一路发送到特征向量生成模块;n为对功率放大器的输入信号和输出信号的总采样点数;
S1.2:特征向量生成模块利用步骤S1.1中的x(n)和得到的N个y(n)生成N*k个特征向量,其中k为每个功率放大器当前状态下生成的特征向量的数量;
特征向量通过以下方法生成:
S1.2.1:根据式(1)对x(n)、y(n)进行模值归一化处理:
S1.2.2:建立一个r*r的零矩阵P;r为系统训练时,对功率放大器输入信号和输出信号的量化分辨率;
S1.2.4:将零矩阵P按列排开,得到表征功率放大器当前状态的特征向量V;
S1.3:利用步骤S1.2中得到的N*k个特征向量及其对应的功率放大器状态训练多层感知器模块;
S1.4:通过预失真系数查找表模块建立预失真系数查找表,利用N个功率放大器当前状态下的输入信号和输出信号得到N个功率放大器的预失真系数;
系统运行过程包括以下步骤:
S2.1:收集系统运行数据,将矢量信号模块的输出信号x1(n)一路发送到发射链路模块,在系统训练时发射链路模块输出功率的范围内随机调整发射链路模块的输出功率,得到功率放大器某个未知状态下的输出信号y1(n),输出信号x1(n)另一路发送到特征生成模块;
S2.2:特征向量生成模块利用步骤S2.1中的x1(n)和得到的y1(n)生成功率放大器在当前未知状态下的特征向量;
S2.3:运行多层感知器模块,对功率放大器当前未知状态下生成的特征向量进行模式识别;
S2.4:根据多层感知器模块的模式识别结果,在预失真系数查找表模块中选择相应的一组预失真系数,对矢量信号模块的输出信号x1(n)进行预失真处理并发送到发射链路模块,利用从反馈回路模块得到的功率放大器输出信号,测试线性化效果。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811138064.2A CN109302156B (zh) | 2018-09-28 | 2018-09-28 | 基于模式识别的功率放大器动态线性化系统及其方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811138064.2A CN109302156B (zh) | 2018-09-28 | 2018-09-28 | 基于模式识别的功率放大器动态线性化系统及其方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109302156A CN109302156A (zh) | 2019-02-01 |
CN109302156B true CN109302156B (zh) | 2022-03-29 |
Family
ID=65164527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811138064.2A Active CN109302156B (zh) | 2018-09-28 | 2018-09-28 | 基于模式识别的功率放大器动态线性化系统及其方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109302156B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110166007A (zh) * | 2019-05-08 | 2019-08-23 | 东南大学 | 基于超前项模型的宽带功率放大器数字预失真系统及方法 |
CN110598261B (zh) * | 2019-08-16 | 2021-03-30 | 南京航空航天大学 | 一种基于复数反向神经网络的功率放大器频域建模方法 |
CN111900937A (zh) * | 2020-06-02 | 2020-11-06 | 中兴通讯股份有限公司 | 一种预失真方法、系统、设备及存储介质 |
CN113055323B (zh) * | 2021-03-03 | 2022-08-02 | 青岛矽昌通信技术有限公司 | 一种通信系统的数字预失真处理的方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1302476A (zh) * | 1998-08-06 | 2001-07-04 | 三星电子株式会社 | 移动无线通讯系统中的功率放大器线性化的装置和方法 |
CN101057394A (zh) * | 2004-09-15 | 2007-10-17 | 艾利森电话股份有限公司 | 与信号预失真有关的布置和方法 |
CN101626355A (zh) * | 2009-08-11 | 2010-01-13 | 北京天碁科技有限公司 | 一种多输入多输出终端的校准装置及校准方法 |
CN104301269A (zh) * | 2014-10-27 | 2015-01-21 | 成都师范学院 | 等效采样预失真系统及其方法 |
CN105262447A (zh) * | 2015-11-26 | 2016-01-20 | 中国电子科技集团公司第三十研究所 | 一种功率放大器的预失真方法、装置及射频系统 |
CN107592083A (zh) * | 2017-09-07 | 2018-01-16 | 东南大学 | 毫米波宽带功率放大器的数字预失真系统及其方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070004344A1 (en) * | 2005-06-29 | 2007-01-04 | Degroot Robert J | Wireless device and system for discriminating different operating environments |
US9270504B2 (en) * | 2014-07-28 | 2016-02-23 | Mitsubishi Electric Research Laboratories, Inc. | System and method for linearizing power amplifiers |
-
2018
- 2018-09-28 CN CN201811138064.2A patent/CN109302156B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1302476A (zh) * | 1998-08-06 | 2001-07-04 | 三星电子株式会社 | 移动无线通讯系统中的功率放大器线性化的装置和方法 |
CN101057394A (zh) * | 2004-09-15 | 2007-10-17 | 艾利森电话股份有限公司 | 与信号预失真有关的布置和方法 |
CN101626355A (zh) * | 2009-08-11 | 2010-01-13 | 北京天碁科技有限公司 | 一种多输入多输出终端的校准装置及校准方法 |
CN104301269A (zh) * | 2014-10-27 | 2015-01-21 | 成都师范学院 | 等效采样预失真系统及其方法 |
CN105262447A (zh) * | 2015-11-26 | 2016-01-20 | 中国电子科技集团公司第三十研究所 | 一种功率放大器的预失真方法、装置及射频系统 |
CN107592083A (zh) * | 2017-09-07 | 2018-01-16 | 东南大学 | 毫米波宽带功率放大器的数字预失真系统及其方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109302156A (zh) | 2019-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109302156B (zh) | 基于模式识别的功率放大器动态线性化系统及其方法 | |
Hu et al. | Convolutional neural network for behavioral modeling and predistortion of wideband power amplifiers | |
CN105684301B (zh) | 功率编码器和用于对数据进行调制的方法 | |
CN111490737B (zh) | 一种用于功率放大器的非线性补偿方法和设备 | |
US20160285485A1 (en) | Method and apparatus for multiband predistortion using time-shared adaptation loop | |
US20140118066A1 (en) | Low-cost digital predistortion apparatus and method using envelope detection feedback | |
CN109684995A (zh) | 基于深度残差网络的特定辐射源识别方法及装置 | |
CN105656434B (zh) | 基于修改分段线性函数的功放数字预失真装置及方法 | |
CN106506417A (zh) | 一种窄带反馈的数字预失真系统与方法 | |
CN105391665B (zh) | 用于数字预失真调适的方法及装置 | |
CN106685368A (zh) | 一种欠采样反馈的数字预失真系统与方法 | |
US20240014914A1 (en) | Multiple Radio Frequency Impairment Estimation | |
CN115589209A (zh) | 补偿功率放大器失真的方法以及系统 | |
CN109951412B (zh) | 深度神经网络抑制信号立方度量的方法 | |
CN109560778B (zh) | 一种高速跳频预失真系统与方法 | |
Jiang et al. | A manifold regularization approach for low sampling rate digital predistortion with band-limited feedback | |
Liu et al. | Real-time implementation and evaluation of sdr-based deep joint source-channel coding | |
CN104994051B (zh) | 基于瞬时与平均功率比的提高混合载波系统pa效率的线性尺度变换的信号发射和接收方法 | |
CN111988254A (zh) | 一种低复杂度峰均比压缩与预失真联合优化方法 | |
TWI810056B (zh) | Rf通信組件執行的方法和rf通信組件 | |
CN108173611B (zh) | 一种基于ofdm体制卫星转发器的evm测试优化方法 | |
Wu et al. | Symbol-based over-the-air digital predistortion using reinforcement learning | |
EP4320723A1 (en) | Digital pre-distortion using convolutional neural networks | |
CN109714288B (zh) | 降低ofdm信号立方度量的限幅滤波方法 | |
CN102801670B (zh) | 一种数字预失真方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |