CN109301036A - 一种基于激光烧结法的均匀MgZnO薄膜制备技术 - Google Patents

一种基于激光烧结法的均匀MgZnO薄膜制备技术 Download PDF

Info

Publication number
CN109301036A
CN109301036A CN201811347377.9A CN201811347377A CN109301036A CN 109301036 A CN109301036 A CN 109301036A CN 201811347377 A CN201811347377 A CN 201811347377A CN 109301036 A CN109301036 A CN 109301036A
Authority
CN
China
Prior art keywords
scheme
film
mgzno
uniform
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811347377.9A
Other languages
English (en)
Inventor
刘全生
王晓春
王宏彬
张希艳
柏朝晖
孙海鹰
卢利平
米晓云
王能利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN201811347377.9A priority Critical patent/CN109301036A/zh
Publication of CN109301036A publication Critical patent/CN109301036A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种基于激光烧结法的均匀MgZnO薄膜制备技术,该技术包含了两套封闭的壳层结构,分别是衬底、金属反射层、前驱薄膜、上层加热板(方案1)和底层金属反射板、衬底、前驱薄膜、上层加热板(方案2)。方案1适用于不透明衬底,且电极结构为上、下两层;方案2适用于透明衬底,且采用平面电极。该技术不仅结构简单、成本低廉,而且解决了激光烧结法中薄膜表面不均匀的问题,改善了薄膜的结构,提高了薄膜的电学性能。

Description

一种基于激光烧结法的均匀MgZnO薄膜制备技术
技术领域
本发明涉及一种激光烧结法的均匀MgZnO薄膜制备技术,该技术包含了两套封闭的壳层结构,实现了薄膜均匀受热、受力作用,属于光电功能材料技术领域。
背景技术
近年来,短波光电器件在紫外发光,紫外检测和白光LED领域显示出巨大的市场和商业价值。然而,分别以硅(Si)和砷化镓(GaAs)为代表的传统的第一代和第二代半导体材料不能满足这些领域的需要。因此,寻找具有更宽带隙的新半导体成为短波长光电半导体材料的重要研究领域。MgZnO三元材料是一种新型宽带隙半导体材料,基于ZnO和MgO使其带隙可调,继承了ZnO和MgO的优异物理和化学稳定性,同时,与ZnO和MgO体系相比具有一些新的物理性质和应用前景。Mg2+ 和Zn2+ 的离子半径相近,因此,它们可以相互替代形成MgZnO固溶合金。MgZnO合金薄膜从理论上讲,随着Mg合金化含量的增加,MgZnO的光学带隙可以从ZnO的3.37eV调节到MgO的7.8eV,相应的吸收边在160nm到380nm之间,使其成为一种有前途的太阳盲紫外探测材料。然而,由于六方晶系和立方晶系中的晶体结构不同,MgO在ZnO中的固溶度(4%)受热力学平衡的限制。为了提高固溶度和有效调节MgZnO合金薄膜的带隙,已经开展了不同的制备方法,包括脉冲激光沉积(PLD),金属有机化学气相沉积(MOCVD),金属有机气相外延(MOVPE),磁控溅射,水热沉积和溶胶-凝胶法等。所有这些方法中Mg在六方ZnO中的固溶量非常有限,就目前研究表明,Mg2+在六方ZnO中的固溶体均小于43at.%,很难到达太阳盲区。项目组前期提出并申报了一种激光烧结制备高Mg含量的亚稳态纤锌矿MgZnO薄膜的方法。激光烧结法在瞬时的高温高压作用,薄膜处于亚稳态,可以提高Mg2+离子在ZnO晶体中的固溶度,展宽带隙,实现薄膜带隙从3.75eV到5.08eV连续调控,其吸收边到达了太阳盲区,并且该方法还可以降低成本,节约能源,环保。但由于受到激光光斑能量分布不均匀的影响,采用激光烧结法制备的MgZnO薄膜外形呈现环状,如图1所示,这将无法在大面积薄膜器件中应用。为了解决上述不足,项目开展了大量的探索研究,设计了两套封闭结构的生长方式,成功地制备了均匀的MgZnO合金薄膜。
发明内容
本发明设计了两套封闭壳层结构用于生长均匀的MgZnO薄膜,具体结构如图2所示。设计该结构的目的是为了使薄膜快速均匀受热,根据衬底是否透明和电极设计方案,选用方案1或者方案2,如果样品为不透明衬底,且电极为上、下两层,选用方案1,如果衬底是透明的,且采用平面电极,则可以选用方案1和方案2。本发明采用的激光烧结装置为10微米的二氧化碳激光器。
方案1的结构是在衬底表面首先制备一层具有高电导率的金属薄膜,金属可以采用Cu、W、Al和Ag等,然后是制备MgZnO前驱薄膜,最后在前驱薄膜上面盖一层加热板,该热板对薄膜的受热非常关键,可以选择两种物质。一种是对10微米激光具有高的透过率,最好在90%以上,这样使激光全部透过盖板,作用在样品和底层金属上,金属反射回来的光和直接作用在样品上的光发生相干效应共同作用与样品上,起到均化光能量的作用,同时,上面的盖板起到在样品表面均匀加压的作用,这类材料可以是硫锡化物玻璃或者是透明陶瓷。一种是对10微米光具有少量吸收的材料,比如石英玻璃,部分透射的光的作用和前面原理一致,而部分吸收的光使玻璃的温度升高,玻璃的热量可以均匀的传递给前驱薄膜。
方案2的结构首先是在衬底的背面紧密放置一个反射挡板,反射挡板可以是Cu、W、Al和Sn及其合金板材或薄膜等,然后在透明衬底上制备MgZnO前驱薄膜,最后在前驱薄膜上面盖一层加热板,上加热板的选择、作用和方案1一致。本发明中的前后挡板可以重复使用,具有简单、经济、方便的效果。
附图说明
图1是激光直接烧结法制备的MgZnO薄膜的照片,从图中可以看出,受激光光束能量分布不均匀影响,烧结后样品,呈现环状分布,功能高时,中心的石英玻璃熔化。
图2是本发明提出的激光烧结结构图,发明中提到了两种方案,每种方案的特点和适用范围在发明内容中明确给出。
图3是采用本发明的烧结方式制备的MgZnO薄膜样品图。
图4是本发明中方案1所制备的MgZnO薄膜与无烧结和直接烧结制备的样品的XRD图。
图5是本发明中方案2所制备的MgZnO薄膜与无烧结和直接烧结制备的样品的XRD图。
图6是采用本发明方案1制备的MgZnO薄膜与无烧结和直接烧结样品的透射光谱。
图7是采用本发明方案2制备的MgZnO薄膜与无烧结和直接烧结样品的透射光谱。
图8是采用本发明方案1制备的MgZnO薄膜与无烧结和直接烧结样品的I-V曲线。
图9是采用本发明方案2制备的MgZnO薄膜与无烧结和直接烧结样品的I-V曲线。
具体实施方式
本发明的技术针对激光烧结法制备MgZnO薄膜,制备过程介绍如下:
第一步:鉴于本发明中方案2用到金属反射板,首先说明金属反射板的选取及制作流程,反射板可以选用Cu、W、Sn等单面抛光的金属板,也可以在氧化物的耐高温,结构稳定的陶瓷上镀该金属膜,或者还可以将锡箔纸直接包裹在任何的耐高温材质平板上,这种方法非常简单,且成本低廉。
第二步:制备MgZnO前驱薄膜。具体的制备方法也有多种,1、先以溶胶凝胶法制备胶体,选取Mg和Zn的硝酸盐、醋酸盐、硫酸盐等作为溶质,制备一定浓度的Mg和Zn的混合溶液,选择合适的分散剂和络合剂,使Mg和Zn离子均匀分散,并实现溶液浓度的有效调节。采用旋涂法,使用配置的溶跤,在金属层上涂覆一定厚度的MgZnO前驱薄膜,也可以将衬底浸入溶胶中成膜。2、以涂敷法制备,该方法是直接选择MgO和ZnO粉末,直接按照预先合成的产物比例均匀混合,然后加入少量低粘度或无粘度的易挥发有机溶剂,搅拌均匀,最后涂敷与衬底上,该方法成本低廉、工艺简单,可以制备任意比例的薄膜。
第三步:前驱薄膜上面加热板的选取。该热板对薄膜的受热非常关键,可以选择两种物质。一种是对10微米激光具有高的透过率,最好在90%以上,这样使激光全部透过盖板,作用在样品和底层金属上,金属反射回来的光和直接作用在样品上的光发生相干效应共同作用与样品上,起到均化光能量的作用,同时,上面的盖板起到在样品表面均匀加压的作用,这类材料可以是硫锡化物玻璃或者是透明陶瓷。一种是对10微米光具有少量吸收的材料,比如石英玻璃,部分透射的光的作用和前面原理一致,而部分吸收的光使玻璃的温度升高,玻璃的热量可以均匀的传递给前驱薄膜。
第四步:激光烧结薄膜。在前面制备的封闭壳层结构上,用镜头和准直将光源引到装置的前挡板,在本发明双层盖板作用下,激光的能量均匀地、稳定地作用在前驱薄膜上,通过该闭合结构使薄膜达到均匀受热和受力作用。
采用该发明的结构制备的MgZnO薄膜与激光直接加热和无加热样品的数据如下:
图3是采用本发明的烧结方式制备的MgZnO薄膜样品图,在整个样品表面,薄膜均匀、透明。
图4是本发明中方案1所制备的MgZnO薄膜与无烧结和直接烧结制备的样品的XRD图,样品在没有烧结时,没有任何衍射峰,采用直接烧结,出现了弱的ZnO衍射峰,而采用本发明中方案1所制备的样品,衍射峰明显,表明薄膜发育较好。
图5是本发明中方案2所制备的MgZnO薄膜与无烧结和直接烧结制备的样品的XRD图,同样样品在没有烧结时,没有任何衍射峰,采用直接烧结,出现了弱的ZnO衍射峰,而采用本发明中方案2所制备的样品,衍射峰明显,并且具有c轴择优生长性能,表明薄膜发育较好。
图6是采用发明方案1制备的MgZnO薄膜与无烧结和直接烧结样品的透射光谱,很显然,没有烧结样品为两相混合,直接的样品吸收边则是从200到500nm逐渐上升,而本发明方案1所制备的样品具有一个明显的吸收边,表明该方案制备的薄膜具有单一的物相。
图7是采用发明方案2制备的MgZnO薄膜与无烧结和直接烧结样品的透射光谱,同样的没有烧结样品为两相混合,直接的样品吸收边则是从200到500nm逐渐上升,而本发明方案2所制备的样品具有一个明显的吸收边,且透过率很高,表明薄膜具有优异的质量,且该方案制备的薄膜具有单一的物相。
图8是采用发明方案1制备的MgZnO薄膜与无烧结和直接烧结样品的I-V曲线,可以看出无烧结样品和直接的样品的电流很小,说明薄膜具体较大的电阻,而本发明方案1所制备的样品在同样的电压作用下,电流明显较高,表明该方案制备的薄膜电阻小,导电能力强。
图9是采用发明方案2制备的MgZnO薄膜与无烧结和直接烧结样品的I-V曲线,可以看出无烧结样品和直接的样品的电流很小,说明薄膜具体较大的电阻,而本发明方案2所制备的样品在同样的电压作用下,电流明显更高,表明该方案制备的薄膜电阻更小,导电能力更强。

Claims (3)

1.一种基于激光烧结法的均匀MgZnO薄膜制备技术,采用该技术合成的薄膜表面均匀、结构和电学性能优越;
该技术包含了两套封闭结构,分别定义为方案1和方案2,方案1适用于不透明衬底,且电极结构为上、下两层,方案2适用于透明衬底,且采用平面电极。
2.根据权利要求1所述的方案1,其特征在于,衬底表面首先制备一层具有高电导率的金属薄膜,金属可以采用Cu、W、Al和Ag等,然后是MgZnO前驱薄膜,最后在前驱薄膜上面盖一层加热板,加热板为两种物质,一种是对10微米激光具有高的透过率,90%以上,这类材料为硫锡化物玻璃、硫锡化物透明陶瓷;另一种是对10微米光具有少量吸收的材料,选用石英玻璃等。
3.根据权利要求1所述的方案2,其特征在于,在衬底的背面紧密放置一个反射挡板,反射挡板可以是Cu、W、Al和Sn及其合金板材,或者是在耐高温,结构稳定的氧化物陶瓷上镀Cu、W、Al和Sn金属(合金)膜,或者还可以将锡箔纸等直接包裹在任何耐高温材质的平板上,然后在透明衬底上制备MgZnO前驱薄膜,最后在前驱薄膜上面盖一层加热板,其和权力要求2所述的方案1中加热板一样。
CN201811347377.9A 2018-11-14 2018-11-14 一种基于激光烧结法的均匀MgZnO薄膜制备技术 Pending CN109301036A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811347377.9A CN109301036A (zh) 2018-11-14 2018-11-14 一种基于激光烧结法的均匀MgZnO薄膜制备技术

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811347377.9A CN109301036A (zh) 2018-11-14 2018-11-14 一种基于激光烧结法的均匀MgZnO薄膜制备技术

Publications (1)

Publication Number Publication Date
CN109301036A true CN109301036A (zh) 2019-02-01

Family

ID=65146531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811347377.9A Pending CN109301036A (zh) 2018-11-14 2018-11-14 一种基于激光烧结法的均匀MgZnO薄膜制备技术

Country Status (1)

Country Link
CN (1) CN109301036A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203841A (zh) * 2021-12-15 2022-03-18 仲恺农业工程学院 一种MgZnO薄膜及其带隙调节方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196867A (ja) * 2008-02-23 2009-09-03 Citizen Holdings Co Ltd MgaZn1−aO単結晶薄膜の作製方法
CN101894893A (zh) * 2010-06-08 2010-11-24 浙江大学 基于双层MgZnO薄膜异质结的电致发光器件
CN106756901A (zh) * 2016-11-25 2017-05-31 长春理工大学 亚稳态高镁MgZnO固溶合金薄膜激光烧蚀制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196867A (ja) * 2008-02-23 2009-09-03 Citizen Holdings Co Ltd MgaZn1−aO単結晶薄膜の作製方法
CN101894893A (zh) * 2010-06-08 2010-11-24 浙江大学 基于双层MgZnO薄膜异质结的电致发光器件
CN106756901A (zh) * 2016-11-25 2017-05-31 长春理工大学 亚稳态高镁MgZnO固溶合金薄膜激光烧蚀制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
朱德亮等: "利用脉冲激光沉积法制备高Mg掺杂的六方相MgZnO薄膜", 《发光学报》 *
连洁等: "Si衬底上Mg_xZn_(1-x)O薄膜发光特性研究", 《光电子.激光》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203841A (zh) * 2021-12-15 2022-03-18 仲恺农业工程学院 一种MgZnO薄膜及其带隙调节方法和应用

Similar Documents

Publication Publication Date Title
Rao et al. In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband‐photodetectors
Mkawi et al. The effect of dopant concentration on properties of transparent conducting Al-doped ZnO thin films for efficient Cu 2 ZnSnS 4 thin-film solar cells prepared by electrodeposition method
Nwofe et al. Thickness dependent optical properties of thermally evaporated SnS thin films
Thangaraju et al. Polycrystalline lead tin chalcogenide thin film grown by spray pyrolysis
Rani et al. Structural, morphological, optical and compositional characterization of spray deposited Ga doped ZnO thin film for dye-sensitized solar cell application
Bouich et al. Electrodeposited CdZnS/CdS/CIGS/Mo: characterization and solar cell performance
Kulkarni et al. Room temperature synthesis of crystalline Sb 2 S 3 for SnO 2 photoanode-based solar cell application
Boudaira et al. Optimization of sulphurization temperature for the production of single-phase CZTS kesterite layers synthesized by electrodeposition
CN101759374B (zh) 一种基于三维纳米银树枝状结构的可见光频段左手超材料的制备方法
Turgut et al. An investigation of spray deposited CdO films and CdO/p-Si heterojunction at different substrate temperatures
CN103038891A (zh) 具有光散射界面层的光伏结构及其制造方法
Chinnasamy et al. Influence of ZnSe surface coatings for enhancing the performance of multicrystalline silicon solar cells
Kumari et al. Thickness dependent structural, morphological and optical properties of molybdenum oxide thin films
Ghidelli et al. Light management in TiO2 thin films integrated with Au plasmonic nanoparticles
Gutierrez ZB et al. Development of a CdCl 2 thermal treatment process for improving CdS/CdTe ultrathin solar cells
CN109301036A (zh) 一种基于激光烧结法的均匀MgZnO薄膜制备技术
Fadavieslam Effect of Ag doping on the physical properties of tin-sulfide thin films for optoelectronic applications prepared by spray pyrolysis
Misra et al. ZnO@ CdS core–shell thin film: fabrication and enhancement of exciton life time by CdS nanoparticle
Pandey et al. Characterization of spray deposited CoWO 4 thin films for photovoltaic electrochemical studies
DE102012100259A1 (de) Verfahren zum Erzeugen eines halbleitenden Films und Photovoltaikvorrichtung
Asogwa Variation of optical properties with post deposition annealing in chemically deposited CdZnS thin films
Wang et al. Effect of rapid thermal annealing time on ZnO: F thin films deposited by radio frequency magnetron sputtering for solar cell applications
Arulanantham et al. Influence of heat treatment on the optoelectronic performance of electrodeposited CdSe thin films
Motevalizadeh et al. Nanocrystalline ITO-Sn 2 S 3 transparent thin films for photoconductive sensor applications
Dang et al. CdS sensitized ZnO electrodes in photoelectrochemical cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190201