CN109283596A - A method for interpreting physical properties of carbonate reservoirs - Google Patents
A method for interpreting physical properties of carbonate reservoirs Download PDFInfo
- Publication number
- CN109283596A CN109283596A CN201811360512.3A CN201811360512A CN109283596A CN 109283596 A CN109283596 A CN 109283596A CN 201811360512 A CN201811360512 A CN 201811360512A CN 109283596 A CN109283596 A CN 109283596A
- Authority
- CN
- China
- Prior art keywords
- content
- rock
- mineral
- porosity
- carbonate reservoir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 title claims abstract description 50
- 230000000704 physical effect Effects 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000011435 rock Substances 0.000 claims abstract description 69
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 45
- 239000011707 mineral Substances 0.000 claims abstract description 45
- 239000011159 matrix material Substances 0.000 claims abstract description 21
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 6
- 238000005457 optimization Methods 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims abstract description 6
- 239000012530 fluid Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 13
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000005553 drilling Methods 0.000 claims description 8
- 229910021532 Calcite Inorganic materials 0.000 claims description 6
- 239000010459 dolomite Substances 0.000 claims description 6
- 229910000514 dolomite Inorganic materials 0.000 claims description 6
- 239000000706 filtrate Substances 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 230000005251 gamma ray Effects 0.000 claims description 5
- 241000894007 species Species 0.000 claims description 3
- DHNCFAWJNPJGHS-UHFFFAOYSA-J [C+4].[O-]C([O-])=O.[O-]C([O-])=O Chemical compound [C+4].[O-]C([O-])=O.[O-]C([O-])=O DHNCFAWJNPJGHS-UHFFFAOYSA-J 0.000 claims 1
- 239000004576 sand Substances 0.000 claims 1
- 239000004575 stone Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 15
- 230000009286 beneficial effect Effects 0.000 abstract description 5
- 238000011156 evaluation Methods 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000000470 constituent Substances 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- 206010017076 Fracture Diseases 0.000 description 21
- 208000010392 Bone Fractures Diseases 0.000 description 14
- 239000011148 porous material Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000010440 gypsum Substances 0.000 description 4
- 229910052602 gypsum Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 239000008398 formation water Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 208000035126 Facies Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 208000013201 Stress fracture Diseases 0.000 description 1
- 235000019994 cava Nutrition 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V11/00—Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
技术领域technical field
本发明涉及地质勘探领域,尤其涉及一种碳酸盐岩储层物性解释方法。The invention relates to the field of geological exploration, in particular to a method for interpreting physical properties of carbonate rock reservoirs.
背景技术Background technique
除地质和实验等资料外,录井、测井等钻井资料是最可靠且能连续反映地下岩石物理性质的基础地质资料。地球物理测井资料作为地下岩石信息的重要资料来源,在地层岩性和孔隙度等物性解释中的重要性越来越突出。测井资料物性解释是储层数值模拟和甜点预测的基础,也为沉积相划分、沉积环境判别等地质研究提供了依据。物性解释结果对储层评价、地质模型划分有重大意义,在油气勘探与开发的各个阶段中也扮演了重要的角色。因此,准确的测井物性解释方法研究具有重要的研究意义。In addition to geological and experimental data, drilling data such as well logging and well logging are the most reliable and basic geological data that can continuously reflect the physical properties of underground rocks. As an important source of underground rock information, geophysical logging data plays an increasingly important role in the interpretation of physical properties such as formation lithology and porosity. The interpretation of physical properties of logging data is the basis for reservoir numerical simulation and sweet spot prediction, and also provides a basis for geological studies such as sedimentary facies division and sedimentary environment discrimination. The results of physical property interpretation are of great significance for reservoir evaluation and geological model division, and also play an important role in various stages of oil and gas exploration and development. Therefore, the study of accurate logging physical property interpretation method has important research significance.
目前,常用储层测井物性解释方法主要是根据地层所含矿物类型和数量而划分,大多是一类模糊的通用方法,没有针对特定岩石类型和孔隙类型的精细储层解释方法;声波、中子和密度测井作为储层物性、岩性解释的常用资料,在目前的测井物性解释方法中没有考虑到测井曲线信息的涵盖范围,对于含两种不同类型孔隙空间(孔隙-裂缝型)的非均质性强烈的碳酸盐地层来说解释精度不够;另外,在岩石孔隙度与岩性成分的数值法定量解释中,对于未知数和方程数相等的非奇异线性恰定方程组,组成岩石各矿物的实验室经验值的选择对解释结果有决定性的影响,很难找到恰当的经验参数保证解释结果处于正常范围。At present, the commonly used reservoir logging physical property interpretation methods are mainly divided according to the type and quantity of minerals contained in the formation, and most of them are vague general methods, and there is no fine reservoir interpretation method for specific rock types and pore types. As the common data for interpretation of reservoir physical properties and lithology, the sub-he density logging does not consider the coverage of logging curve information in the current logging physical property interpretation methods. ), the interpretation precision is not enough; in addition, in the quantitative interpretation of rock porosity and lithological composition by numerical method, for the non-singular linear exact equations with equal number of unknowns and equations, The choice of laboratory empirical values of the minerals that make up the rock has a decisive influence on the interpretation results, and it is difficult to find appropriate empirical parameters to ensure that the interpretation results are in the normal range.
测井信息均是在一定假设下直接或间接地反映某一方面的岩石特性,岩石某点的测井值是组成岩石的均质各部分贡献值之和。因此,需要测井综合解释模型将测井信息转换成地质信息,即通过岩石宏观性质的岩石体积模型获取岩石孔隙度、岩石骨架和不同组分基质矿物成分。声波测井的滑行波理论说明声波首波最先沿井壁传播,声波测井孔隙度只能反映低角度被截断的裂缝和均匀分布孔隙的岩石基质孔隙度;而密度测井孔隙度由于测量手段的原因,密度测井只能反映推进过程中所接触到的那部分孔隙;因此,对于非均质性强的碳酸盐岩储层,声波和密度测井信息不能反映岩石总孔隙度大小,只能反映岩石基质中的均质孔隙度。中子测井孔隙度实际上反应的是岩石总的含氢指数,当地层含天然气时“挖掘效应”的存在需要含气性校正才能得到准确的地层总孔隙度。The logging information directly or indirectly reflects a certain aspect of the rock properties under certain assumptions, and the logging value of a certain point in the rock is the sum of the contribution values of the homogeneous parts of the rock. Therefore, a comprehensive logging interpretation model is needed to convert logging information into geological information, that is, to obtain rock porosity, rock skeleton and matrix mineral compositions of different components through a rock volume model of rock macroscopic properties. The sliding wave theory of sonic logging shows that the first wave of sonic waves propagates along the borehole first, and the porosity of sonic logging can only reflect the porosity of low-angle truncated fractures and rock matrix with uniformly distributed pores; Because of the method, the density logging can only reflect the part of the pores that are in contact during the advancement process; therefore, for the carbonate reservoirs with strong heterogeneity, the acoustic wave and density logging information cannot reflect the total porosity of the rock. , can only reflect the homogeneous porosity in the rock matrix. Neutron logging porosity actually reflects the total hydrogen index of the rock. When the formation contains natural gas, the existence of the "digging effect" requires gas-bearing correction to obtain an accurate total formation porosity.
发明内容SUMMARY OF THE INVENTION
为了解决上述问题,本发明提供了一种碳酸盐岩储层物性解释方法,一种碳酸盐岩储层物性解释方法,主要包括以下步骤:In order to solve the above problems, the present invention provides a method for interpreting the physical properties of a carbonate rock reservoir, and a method for interpreting the physical properties of a carbonate rock reservoir, which mainly includes the following steps:
S101:获取碳酸盐岩储层的录井数据和测井数据,所述测井数据包括声波测井数据、密度测井数据、中子测井数据和电阻率测井数据;S101: Acquire logging data and logging data of a carbonate reservoir, where the logging data includes acoustic logging data, density logging data, neutron logging data, and resistivity logging data;
S102:利用公式(1)计算碳酸盐岩储层的岩石泥质矿物含量Vsh:S102: Calculate the argillaceous mineral content V sh of the carbonate reservoir by using formula (1):
上式中,Vsh为岩石泥质矿物含量,GCUR为地层常数,SH为目的层自然伽马射线强度指数;In the above formula, V sh is the argillaceous mineral content of the rock, GCUR is the stratigraphic constant, and SH is the natural gamma ray intensity index of the target layer;
S103:根据录井数据中的钻井液滤液电导率,采用阿尔奇公式计算得到碳酸盐岩储层的岩石裂缝孔隙度φc,计算公式如公式(2)所示:S103: According to the conductivity of the drilling fluid filtrate in the mud logging data, use the Archie formula to calculate the rock fracture porosity φ c of the carbonate reservoir. The calculation formula is shown in formula (2):
上式中,φc为岩石裂缝孔隙度,σLLD和σLLS分别为深侧向电导率和浅侧向电导率,是电阻率测井数据的倒数,σmf和σw分别为钻井液滤液电导率和地层水电导率,为录井数据,mf为裂缝的孔隙度指数,为先验值;In the above formula, φ c is the rock fracture porosity, σ LLD and σ LLS are the deep lateral conductivity and shallow lateral conductivity, respectively, which are the reciprocal of the resistivity logging data, and σ mf and σ w are the drilling fluid filtrate, respectively. Conductivity and formation water conductivity are logging data, mf is the porosity index of fractures, which is a priori value;
S104:根据岩石泥质矿物含量Vsh和岩石裂缝孔隙度φc,采用宏观岩石体积平衡模型,计算得到碳酸盐岩储层的岩石基质孔隙度φs和碳酸盐岩储层中各矿物组成体积含量Vi,计算公式如公式(3)所示:S104: According to the rock argillaceous mineral content V sh and the rock fracture porosity φ c , the macro rock volume balance model is used to calculate the rock matrix porosity φ s of the carbonate reservoir and the minerals in the carbonate reservoir. The composition volume content Vi , the calculation formula is shown in formula (3):
上式中,φs为岩石基质孔隙度,Vi为第i种矿物体积含量,Δtf、Δtsh、Δtima和Δt分别为流体时差值、泥质时差值、第i种矿物时差值和声波测井数据中的声波时差值;ρf、ρsh、ρima和ρ分别为流体密度值、泥质密度值、第i种矿物密度值和密度测井数据中的密度值;CNLf、CNLsh、CNLima和CNL分别为流体中子值、泥质中子值、第i种矿物中子值和中子测井数据中的中子值;其中Δt、ρ和CNL分别为声波测井、密度测井、中子测井的测井数据,Δtf、Δtsh、Δtima、ρf、ρsh、ρima、CNLf、CNLsh和CNLima为先验值;i=1,2,3,…,N,N为碳酸盐岩储层中的矿物种类数量;In the above formula, φ s is the rock matrix porosity, Vi is the volume content of the i -th mineral, Δt f , Δt sh , Δt ima and Δt are the fluid time difference, shale time difference, and the time of the i-th mineral, respectively. Difference value and sonic time difference value in sonic logging data; ρ f , ρ sh , ρ ima and ρ are fluid density value, shale density value, ith mineral density value and density value in density logging data, respectively ; CNL f , CNL sh , CNL ima and CNL are fluid neutron value, argillaceous neutron value, ith mineral neutron value and neutron value in neutron logging data, respectively; where Δt, ρ and CNL are respectively is the logging data of sonic logging, density logging and neutron logging, Δt f , Δt sh , Δt ima , ρ f , ρ sh , ρ ima , CNL f , CNL sh and CNL ima are prior values; i =1,2,3,...,N, where N is the number of mineral species in the carbonate reservoir;
S105:将岩石基质孔隙度φs、岩石裂缝孔隙度φc和各矿物组成体积含量Vi,作为最终的碳酸盐岩储层物性解释结果。S105: Take the rock matrix porosity φ s , the rock fracture porosity φ c and the volume content Vi of each mineral composition as the final interpretation result of carbonate reservoir physical properties.
进一步地,所述测井数据还包括:自然伽马测井数据;步骤S102中,SH的计算公式如公式(4)所示:Further, the logging data further includes: natural gamma logging data; in step S102, the calculation formula of SH is as shown in formula (4):
上式中,GRmax和GRmin分别为自然伽马曲线极大值和极小值,GR为含泥质目的层自然伽马读数,为自然伽马测井数据;GRmax、GRmin为先验值。In the above formula, GR max and GR min are the maximum and minimum values of the natural gamma curve, respectively, GR is the natural gamma reading of the shale target layer, and is the natural gamma logging data; GR max and GR min are the first test value.
进一步地,步骤S102中,地层常数GCUR的值为2。Further, in step S102, the value of the formation constant GCUR is 2.
进一步地,步骤S104中,碳酸盐岩中矿物含量包括:泥质含量、方解石含量、白云石含量和膏盐含量;在泥质含量已知的情况下,Vi分别表示三种矿物含量:方解石含量V1、白云石含量V2和膏盐含量V3、;宏观岩石体积平衡模型的计算步骤如下:Further, in step S104, the mineral content in the carbonate rock includes: argillaceous content, calcite content, dolomite content and gypsum salt content; when the argillaceous content is known, V i represents three mineral contents respectively: Calcite content V 1 , dolomite content V 2 and gypsum salt content V 3 , and the calculation steps of the macroscopic rock volume balance model are as follows:
S201:由公式(3)整理得到未知数个数与方程数相等的非奇异线性恰定方程组;所述未知数包括:φs、V1、V2和V3;S201: Arranged from formula (3) to obtain a non-singular linear exact equation system with the number of unknowns equal to the number of equations; the unknowns include: φ s , V 1 , V 2 and V 3 ;
S202:通过粒子群算法对所述非奇异线性恰定方程组进行搜索,得到一个接近于解的初值;S202: Search the non-singular linear exact definite equation system through the particle swarm algorithm to obtain an initial value close to the solution;
S203:根据所述初值,采用非线性约束优化方法对所述非奇异线性恰定方程组进一步求解,得到岩石基质孔隙度φs和V1、V2、V3的准确解。S203: According to the initial value, the nonlinear constrained optimization method is used to further solve the non-singular linear just-definite equation system, and obtain accurate solutions of rock matrix porosity φ s and V 1 , V 2 , and V 3 .
本发明提供的技术方案带来的有益效果是:本发明所提供的技术方案对于碳酸盐岩石基质孔隙度和裂缝孔隙度,有明显的区分效果,实现了对碳酸盐岩储层的精细描述,有利于储层勘探评价和生产实践;在碳酸盐岩岩石孔隙度与岩性成分的数值法定量解释中,对于未知数和方程数相等的非奇异线性恰定方程组,通过粒子群算法搜索一个接近于解的初值,基于非线性约束优化得到收敛的矿物组分含量和孔隙度正确解,解决了岩石各矿物的实验室经验值选取误差对解释结果的误差,受人为因素干扰较小,优化了测井岩性和物性解释过程。The beneficial effects brought by the technical solution provided by the present invention are as follows: the technical solution provided by the present invention has an obvious distinguishing effect on the matrix porosity and fracture porosity of carbonate rock, and realizes the fine-tuning of carbonate rock reservoirs. It is beneficial to reservoir exploration evaluation and production practice; in the quantitative interpretation of carbonate rock porosity and lithological composition by numerical method, for non-singular linear well-defined equations with equal number of unknowns and equations, particle swarm algorithm Searching for an initial value close to the solution, based on nonlinear constraint optimization, a convergent correct solution of mineral composition content and porosity is obtained, which solves the error of the selection error of the laboratory experience value of each mineral in the rock to the interpretation result, which is relatively disturbed by human factors. Small, optimized the logging lithology and physical property interpretation process.
附图说明Description of drawings
下面将结合附图及实施例对本发明作进一步说明,附图中:The present invention will be further described below in conjunction with the accompanying drawings and embodiments, in which:
图1是本发明实施例中一种碳酸盐岩储层物性解释方法的流程图;Fig. 1 is a flow chart of a method for explaining physical properties of carbonate reservoirs in an embodiment of the present invention;
图2是本发明实施例中双庙1嘉陵江组二段碳酸盐岩储层物性解释结果示意图;Fig. 2 is a schematic diagram of the interpretation result of the carbonate reservoir physical properties of the second member of the Jialingjiang Formation of Shuangmiao 1 in the embodiment of the present invention;
图3是本发明实施例中双庙1飞仙关组三段碳酸盐岩储层物性解释结果示意图。Fig. 3 is a schematic diagram showing the interpretation result of the carbonate reservoir physical properties of the third member of the Feixianguan Formation in Shuangmiao 1 according to the embodiment of the present invention.
具体实施方式Detailed ways
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。In order to have a clearer understanding of the technical features, objects and effects of the present invention, the specific embodiments of the present invention will now be described in detail with reference to the accompanying drawings.
本发明的实施例提供了一种碳酸盐岩储层物性解释方法。Embodiments of the present invention provide a method for interpreting physical properties of carbonate reservoirs.
请参考图1,图1是本发明实施例中一种碳酸盐岩储层物性解释方法的流程图,具体包括如下步骤:Please refer to FIG. 1. FIG. 1 is a flowchart of a method for interpreting physical properties of carbonate rock reservoirs in an embodiment of the present invention, which specifically includes the following steps:
S101:获取碳酸盐岩储层的录井数据和测井数据,所述测井数据包括声波测井数据、密度测井数据、中子测井数据和电阻率测井数据;S101: Acquire logging data and logging data of a carbonate reservoir, where the logging data includes acoustic logging data, density logging data, neutron logging data, and resistivity logging data;
S102:利用公式(1)计算碳酸盐岩储层的岩石泥质矿物含量Vsh:S102: Calculate the argillaceous mineral content V sh of the carbonate reservoir by using formula (1):
上式中,Vsh为岩石泥质矿物含量,GCUR为地层常数,SH为目的层自然伽马射线强度指数;In the above formula, V sh is the argillaceous mineral content of the rock, GCUR is the stratigraphic constant, and SH is the natural gamma ray intensity index of the target layer;
S103:根据录井数据中的钻井液滤液电导率,采用阿尔奇公式计算得到碳酸盐岩储层的岩石裂缝孔隙度φc,计算公式如公式(2)所示:S103: According to the conductivity of the drilling fluid filtrate in the mud logging data, use the Archie formula to calculate the rock fracture porosity φ c of the carbonate reservoir. The calculation formula is shown in formula (2):
上式中,φc为岩石裂缝孔隙度,σLLD和σLLS分别为深侧向电导率和浅侧向电导率,是电阻率测井数据的倒数,σmf和σw分别为钻井液滤液电导率和地层水电导率,为录井数据,mf为裂缝的孔隙度指数,为先验值;In the above formula, φ c is the rock fracture porosity, σ LLD and σ LLS are the deep lateral conductivity and shallow lateral conductivity, respectively, which are the reciprocal of the resistivity logging data, and σ mf and σ w are the drilling fluid filtrate, respectively. Conductivity and formation water conductivity are logging data, mf is the porosity index of fractures, which is a priori value;
S104:根据岩石泥质矿物含量Vsh和岩石裂缝孔隙度φc,采用宏观岩石体积平衡模型,计算得到碳酸盐岩储层的岩石基质孔隙度φs和碳酸盐岩储层中各矿物组成体积含量Vi,计算公式如公式(3)所示:S104: According to the rock argillaceous mineral content V sh and the rock fracture porosity φ c , the macro rock volume balance model is used to calculate the rock matrix porosity φ s of the carbonate reservoir and the minerals in the carbonate reservoir. The composition volume content Vi , the calculation formula is shown in formula (3):
上式中,φs为岩石基质孔隙度,Vi为第i种矿物体积含量,Δtf、Δtsh、Δtima和Δt分别为流体时差值、泥质时差值、第i种矿物时差值和声波测井数据中的声波时差值;ρf、ρsh、ρima和ρ分别为流体密度值、泥质密度值、第i种矿物密度值和密度测井数据中的密度值;CNLf、CNLsh、CNLima和CNL分别为流体中子值、泥质中子值、第i种矿物中子值和中子测井数据中的中子值;其中Δt、ρ和CNL分别为声波测井、密度测井、中子测井的测井数据,Δtf、Δtsh、Δtima、ρf、ρsh、ρima、CNLf、CNLsh和CNLima为先验值;i=1,2,3,…,N,N为碳酸盐岩储层中的矿物种类数量;In the above formula, φ s is the rock matrix porosity, Vi is the volume content of the i -th mineral, Δt f , Δt sh , Δt ima and Δt are the fluid time difference, shale time difference, and the time of the i-th mineral, respectively. Difference value and sonic time difference value in sonic logging data; ρ f , ρ sh , ρ ima and ρ are fluid density value, shale density value, ith mineral density value and density value in density logging data, respectively ; CNL f , CNL sh , CNL ima and CNL are fluid neutron value, argillaceous neutron value, i-th mineral neutron value and neutron value in neutron logging data, respectively; where Δt, ρ and CNL are respectively is the logging data of sonic logging, density logging and neutron logging, Δt f , Δt sh , Δt ima , ρ f , ρ sh , ρ ima , CNL f , CNL sh and CNL ima are prior values; i =1,2,3,...,N, where N is the number of mineral species in the carbonate reservoir;
S105:将岩石基质孔隙度φs、岩石裂缝孔隙度φc和各矿物组成体积含量Vi,作为最终的碳酸盐岩储层物性解释结果。S105: Take the rock matrix porosity φ s , the rock fracture porosity φ c and the volume content Vi of each mineral composition as the final interpretation result of carbonate reservoir physical properties.
所述测井数据还包括:自然伽马测井数据;步骤S102中,SH的计算公式如公式(4)所示:The logging data further includes: natural gamma logging data; in step S102, the calculation formula of SH is shown in formula (4):
上式中,GRmax和GRmin分别为自然伽马曲线极大值和极小值,GR为含泥质目的层自然伽马读数,为自然伽马测井数据;GRmax、GRmin为先验值。In the above formula, GR max and GR min are the maximum and minimum values of the natural gamma curve, respectively, GR is the natural gamma reading of the shale target layer, and is the natural gamma logging data; GR max and GR min are the first test value.
步骤S102中,地层常数GCUR的值为2。In step S102, the value of the formation constant GCUR is 2.
步骤S104中,碳酸盐岩中矿物含量包括:泥质含量、方解石含量、白云石含量和膏盐含量;在泥质含量已知的情况下,Vi分别表示三种矿物含量:方解石含量V1、白云石含量V2和膏盐含量V3、;宏观岩石体积平衡模型的计算步骤如下:In step S104, the mineral content in the carbonate rock includes: argillaceous content, calcite content, dolomite content and gypsum salt content; when the argillaceous content is known, V i respectively represents three mineral contents: calcite content V 1. The dolomite content V 2 and the gypsum salt content V 3 , and the calculation steps of the macroscopic rock volume balance model are as follows:
S201:由公式(3)整理得到未知数个数与方程数相等的非奇异线性恰定方程组;所述未知数包括:φs、V1、V2和V3;S201: Arranged by formula (3) to obtain a non-singular linear exact equation system with the number of unknowns equal to the number of equations; the unknowns include: φ s , V 1 , V 2 and V 3 ;
S202:通过粒子群算法对所述非奇异线性恰定方程组进行搜索,得到一个接近于解的初值;S202: Search the non-singular linear exact definite equation system through the particle swarm algorithm to obtain an initial value close to the solution;
S203:根据所述初值,采用非线性约束优化方法对所述非奇异线性恰定方程组进一步求解,得到岩石基质孔隙度φs和V1、V2、V3的准确解。S203: According to the initial value, the nonlinear constrained optimization method is used to further solve the non-singular linear just-definite equation system, and obtain accurate solutions of rock matrix porosity φ s and V 1 , V 2 , and V 3 .
在本发明实施例中,部分测井数据如下表所示:In the embodiment of the present invention, some logging data are shown in the following table:
为突出技术效果,本发明利用所提供的技术方案对嘉陵江组和飞仙关组海相碳酸盐岩储层的孔隙-裂缝型岩储层进行物性解释,图2和图3对比了双庙1井嘉陵江组二段、飞仙关组三段碳酸盐岩储层岩心实测孔隙度与测井解释岩石基质孔隙度、岩石裂缝孔隙度、总孔隙度的关系,可以看出测井计算总孔隙度值与岩心实测值基本一致,且对于基质孔隙、裂缝孔隙也有明显的区分效果,这与岩心孔、洞、缝统计(表1)结果一致,嘉陵江组二段以裂缝型储层为主,发育大量半充填缝及微细裂缝;而飞仙关组三段为孔隙-裂缝型储层,基质孔隙发育,局部发育裂缝。解释计算得到的岩石成分含量与岩屑录井结果吻合效果好。In order to highlight the technical effect, the present invention uses the provided technical solution to interpret the physical properties of the pore-fracture type rock reservoirs in the marine carbonate reservoirs of the Jialingjiang Formation and Feixianguan Formation. Figures 2 and 3 compare the Shuangmiao The relationship between the measured porosity of the carbonate reservoir cores of the second member of the Jialingjiang Formation and the third member of the Feixianguan Formation in Well 1 and the porosity of the rock matrix, rock fracture porosity and total porosity of the logging interpretation can be seen. The porosity value is basically consistent with the measured value of the core, and it also has an obvious distinguishing effect on matrix pores and fracture pores, which is consistent with the statistics of core pores, caves and fractures (Table 1). The second member of the Jialingjiang Formation is dominated by fractured reservoirs , a large number of semi-filled fractures and micro fractures are developed; while the third member of Feixianguan Formation is a pore-fracture reservoir with developed matrix pores and local fractures. The calculated rock composition content is in good agreement with the cuttings logging results.
表1双庙1井碳酸盐岩储层钻井岩心孔、洞、缝统计表Table 1 Statistical table of holes, holes and fractures in the carbonate reservoir drilling cores of Well Shuangmiao 1
本发明的有益效果是:本发明所提供的技术方案对于碳酸盐岩石基质孔隙度和裂缝孔隙度,有明显的区分效果,实现了对碳酸盐岩储层的精细描述,有利于储层勘探评价和生产实践;在碳酸盐岩岩石孔隙度与岩性成分的数值法定量解释中,对于未知数和方程数相等的非奇异线性恰定方程组,通过粒子群算法搜索一个接近于解的初值,基于非线性约束优化得到收敛的矿物组分含量和孔隙度正确解,解决了岩石各矿物的实验室经验值选取误差对解释结果的误差,受人为因素干扰较小,优化了测井岩性和物性解释过程。The beneficial effects of the present invention are as follows: the technical solution provided by the present invention has an obvious distinguishing effect on the matrix porosity and fracture porosity of the carbonate rock, realizes the fine description of the carbonate rock reservoir, and is beneficial to the reservoir Exploration evaluation and production practice; in the quantitative interpretation of carbonate rock porosity and lithological composition by numerical method, for non-singular linear exact equations with equal number of unknowns and equations, a particle swarm algorithm is used to search for a solution close to the solution. Initial value, based on nonlinear constraint optimization, the convergent correct solution of mineral composition content and porosity is obtained, which solves the error of interpretation results caused by the selection error of laboratory experience value of each mineral in the rock, and is less affected by human factors, and optimizes logging Lithologic and physical property interpretation process.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811360512.3A CN109283596A (en) | 2018-11-15 | 2018-11-15 | A method for interpreting physical properties of carbonate reservoirs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811360512.3A CN109283596A (en) | 2018-11-15 | 2018-11-15 | A method for interpreting physical properties of carbonate reservoirs |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109283596A true CN109283596A (en) | 2019-01-29 |
Family
ID=65175432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811360512.3A Pending CN109283596A (en) | 2018-11-15 | 2018-11-15 | A method for interpreting physical properties of carbonate reservoirs |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109283596A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112016753A (en) * | 2020-08-31 | 2020-12-01 | 中国海洋石油集团有限公司 | Metamorphic rock buried hill productivity prediction method based on ternary coupling |
CN112392471A (en) * | 2019-08-13 | 2021-02-23 | 中国石油化工股份有限公司 | Carbonate reservoir porosity calculation method and device |
CN113009592A (en) * | 2021-03-03 | 2021-06-22 | 中国石油大学(北京) | Evaluation method and correction method for conglomerate stratum rock abrasiveness parameters |
CN113626973A (en) * | 2020-05-09 | 2021-11-09 | 中国石油化工股份有限公司 | Interpretation method and device for carbonate rock gas layer |
CN114724641A (en) * | 2022-06-07 | 2022-07-08 | 中国石油大学(华东) | A Numerical Simulation Method for Acidification of Two Mineral Component Carbonate Reservoirs |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103293562A (en) * | 2013-05-06 | 2013-09-11 | 中国石油天然气股份有限公司 | Method and equipment for determining carbonate reservoir geological reserve |
CN104500049A (en) * | 2014-10-20 | 2015-04-08 | 成都创源油气技术开发有限公司 | Shale gas physical geography quick evaluation method |
-
2018
- 2018-11-15 CN CN201811360512.3A patent/CN109283596A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103293562A (en) * | 2013-05-06 | 2013-09-11 | 中国石油天然气股份有限公司 | Method and equipment for determining carbonate reservoir geological reserve |
CN104500049A (en) * | 2014-10-20 | 2015-04-08 | 成都创源油气技术开发有限公司 | Shale gas physical geography quick evaluation method |
Non-Patent Citations (2)
Title |
---|
司马立强: "碳酸盐岩缝—洞性储层测井综合评价方法及应用研究", 《中国优秀博硕士学位论文全文数据库(博士) 基础科学辑》 * |
张桠楠: "雷家地区沙四段白云岩裂缝型储层测井评价方法研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112392471A (en) * | 2019-08-13 | 2021-02-23 | 中国石油化工股份有限公司 | Carbonate reservoir porosity calculation method and device |
CN112392471B (en) * | 2019-08-13 | 2024-02-02 | 中国石油化工股份有限公司 | Carbonate reservoir porosity calculation method and device |
CN113626973A (en) * | 2020-05-09 | 2021-11-09 | 中国石油化工股份有限公司 | Interpretation method and device for carbonate rock gas layer |
CN113626973B (en) * | 2020-05-09 | 2024-11-08 | 中国石油化工股份有限公司 | A method and device for interpreting carbonate gas layers |
CN112016753A (en) * | 2020-08-31 | 2020-12-01 | 中国海洋石油集团有限公司 | Metamorphic rock buried hill productivity prediction method based on ternary coupling |
CN112016753B (en) * | 2020-08-31 | 2024-03-26 | 中国海洋石油集团有限公司 | Ternary coupling-based metamorphic rock buried hill productivity prediction method |
CN113009592A (en) * | 2021-03-03 | 2021-06-22 | 中国石油大学(北京) | Evaluation method and correction method for conglomerate stratum rock abrasiveness parameters |
CN113009592B (en) * | 2021-03-03 | 2022-02-25 | 中国石油大学(北京) | Evaluation method and correction method for conglomerate stratum rock abrasiveness parameters |
CN114724641A (en) * | 2022-06-07 | 2022-07-08 | 中国石油大学(华东) | A Numerical Simulation Method for Acidification of Two Mineral Component Carbonate Reservoirs |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | An improved model for estimating the TOC in shale formations | |
CN109283596A (en) | A method for interpreting physical properties of carbonate reservoirs | |
Schmoker et al. | Carbonate porosity versus depth: a predictable relation for south Florida | |
WO2017024700A1 (en) | Device for calculating content of organic carbon in source rock | |
CA2784405C (en) | Workflow for petrophysical and geophysical formation evaluation of wireline and lwd log data | |
Grana et al. | Quantitative log interpretation and uncertainty propagation of petrophysical properties and facies classification from rock-physics modeling and formation evaluation analysis | |
Sun et al. | The theory and application of DEM-Gassmann rock physics model for complex carbonate reservoirs | |
BR112017015949B1 (en) | METHOD FOR DETERMINING PROPERTIES OF A FORMATION CROSSED BY A WELL OR DRILL AND COMPUTER READABLE NON-TRANSIOUS MEDIUM | |
CN103883322B (en) | Shale gas reservoirs exploration method and device | |
CN104603642B (en) | The saturation degree modeled using mCSEM data and random rock physics is estimated | |
CN104278991A (en) | Multivariate well logging computing method for total organic carbon and hydrocarbon generating potential of hydrocarbon source rocks in salt-lake facies | |
CN104727813B (en) | The porosity measurement method on one introduces a collection storage symbiotic type stratum | |
CA2836513A1 (en) | Method for evaluation of hydrocarbon content of shale | |
CN103615230B (en) | A kind of method for establishing double-shale-indicatwateractor wateractor saturation model | |
Grana et al. | Petroelastic and geomechanical classification of lithologic facies in the Marcellus Shale | |
CN110344822B (en) | Determination method of water saturation of calcareous compact reservoir | |
CN108035710B (en) | The method for dividing deep layer rock geology phase based on data mining | |
Bennis et al. | Automatic multiwell assessment of flow-related petrophysical properties of tight-gas sandstones based on the physics of mud-filtrate invasion | |
Bennis | New methods for the interpretation of borehole geophysical measurements and core data acquired in spatially complex rocks | |
CN115166857B (en) | Compensation acoustic wave correction method based on electrical imaging porosity spectrum in fracture development sections | |
Zhou et al. | Logging optimization processing method for fractured-vuggy reservoirs | |
Kadhim et al. | Correlation between cementation factor and carbonate reservoir rock properties | |
Feng et al. | TOC estimation of shale oil reservoir by combining nuclear magnetic resonance logging and nuclear physics logging | |
Ali et al. | Comparative estimation of water saturation in carbonate reservoir: A case study of northern Iraq | |
RU2351963C1 (en) | Method of assessment of reservoir bed porosity in horizontal wells by implemeting three-probe neutron survey |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190129 |
|
WD01 | Invention patent application deemed withdrawn after publication |