CN109265713B - Method for constructing single-domain liquid crystal elastomer by liquid crystal polymer modified nano particles - Google Patents
Method for constructing single-domain liquid crystal elastomer by liquid crystal polymer modified nano particles Download PDFInfo
- Publication number
- CN109265713B CN109265713B CN201811144267.2A CN201811144267A CN109265713B CN 109265713 B CN109265713 B CN 109265713B CN 201811144267 A CN201811144267 A CN 201811144267A CN 109265713 B CN109265713 B CN 109265713B
- Authority
- CN
- China
- Prior art keywords
- liquid crystal
- elastomer
- equal
- formula
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004997 Liquid crystal elastomers (LCEs) Substances 0.000 title claims abstract description 42
- 229920000106 Liquid crystal polymer Polymers 0.000 title claims abstract description 39
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 38
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 54
- 239000000203 mixture Substances 0.000 claims abstract description 33
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 18
- 239000000178 monomer Substances 0.000 claims abstract description 17
- 239000006059 cover glass Substances 0.000 claims abstract description 11
- 239000003999 initiator Substances 0.000 claims abstract description 11
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 8
- 238000011065 in-situ storage Methods 0.000 claims abstract description 8
- 238000000137 annealing Methods 0.000 claims abstract description 7
- 238000004528 spin coating Methods 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 12
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 12
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 claims description 6
- 125000003545 alkoxy group Chemical group 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 229920001971 elastomer Polymers 0.000 claims description 6
- 239000000806 elastomer Substances 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- -1 2-hydroxy-2-methylphenyl Chemical group 0.000 claims description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 4
- 125000004185 ester group Chemical group 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 210000002858 crystal cell Anatomy 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 claims description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- NQSMEZJWJJVYOI-UHFFFAOYSA-N Methyl 2-benzoylbenzoate Chemical compound COC(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 NQSMEZJWJJVYOI-UHFFFAOYSA-N 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 238000004132 cross linking Methods 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 abstract description 3
- 210000003205 muscle Anatomy 0.000 abstract description 3
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 27
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 235000010290 biphenyl Nutrition 0.000 description 18
- 239000004305 biphenyl Substances 0.000 description 18
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000003446 ligand Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 10
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 8
- 229910021589 Copper(I) bromide Inorganic materials 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 8
- AGBQKNBQESQNJD-UHFFFAOYSA-N lipoic acid Chemical compound OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 description 8
- UKODFQOELJFMII-UHFFFAOYSA-N pentamethyldiethylenetriamine Chemical compound CN(C)CCN(C)CCN(C)C UKODFQOELJFMII-UHFFFAOYSA-N 0.000 description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000001291 vacuum drying Methods 0.000 description 6
- 239000012071 phase Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- IGHSOWSFSFGPAZ-UHFFFAOYSA-N 6-[4-(4-cyanophenyl)phenoxy]hexyl prop-2-enoate Chemical group C1=CC(OCCCCCCOC(=O)C=C)=CC=C1C1=CC=C(C#N)C=C1 IGHSOWSFSFGPAZ-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- FQCKIWWAEIOPSD-UHFFFAOYSA-N [3-methyl-4-[4-(6-prop-2-enoyloxyhexoxy)benzoyl]oxyphenyl] 4-(6-prop-2-enoyloxyhexoxy)benzoate Chemical compound C=1C=C(OC(=O)C=2C=CC(OCCCCCCOC(=O)C=C)=CC=2)C(C)=CC=1OC(=O)C1=CC=C(OCCCCCCOC(=O)C=C)C=C1 FQCKIWWAEIOPSD-UHFFFAOYSA-N 0.000 description 4
- NKNDPYCGAZPOFS-UHFFFAOYSA-M copper(i) bromide Chemical compound Br[Cu] NKNDPYCGAZPOFS-UHFFFAOYSA-M 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 150000002343 gold Chemical class 0.000 description 4
- 235000019136 lipoic acid Nutrition 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 239000012074 organic phase Substances 0.000 description 4
- 239000012279 sodium borohydride Substances 0.000 description 4
- 229910000033 sodium borohydride Inorganic materials 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- QBVXKDJEZKEASM-UHFFFAOYSA-M tetraoctylammonium bromide Chemical compound [Br-].CCCCCCCC[N+](CCCCCCCC)(CCCCCCCC)CCCCCCCC QBVXKDJEZKEASM-UHFFFAOYSA-M 0.000 description 4
- 229960002663 thioctic acid Drugs 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009210 therapy by ultrasound Methods 0.000 description 3
- 238000004736 wide-angle X-ray diffraction Methods 0.000 description 3
- YOCIJWAHRAJQFT-UHFFFAOYSA-N 2-bromo-2-methylpropanoyl bromide Chemical compound CC(C)(Br)C(Br)=O YOCIJWAHRAJQFT-UHFFFAOYSA-N 0.000 description 2
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000012781 shape memory material Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- XYYVDQWGDNRQDA-UHFFFAOYSA-K trichlorogold;trihydrate;hydrochloride Chemical compound O.O.O.Cl.Cl[Au](Cl)Cl XYYVDQWGDNRQDA-UHFFFAOYSA-K 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F120/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F120/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F120/10—Esters
- C08F120/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F120/30—Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F120/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F120/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F120/10—Esters
- C08F120/34—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
- C08F120/36—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/04—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
- C08F265/06—Polymerisation of acrylate or methacrylate esters on to polymers thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/34—Introducing sulfur atoms or sulfur-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2351/00—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Liquid Crystal Substances (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
The invention discloses a method for constructing a single-domain liquid crystal elastomer by using liquid crystal polymer modified nano particles. Firstly, preparing liquid crystal polymer modified nano particles, spin-coating the nano particles on the surface of a cover glass, and annealing to prepare a liquid crystal box. And then blending the liquid crystal monomer, the cross-linking agent and the initiator to form a uniform liquid crystal mixture, sucking the obtained liquid crystal mixture into a liquid crystal box above the isotropic temperature of the liquid crystal mixture, slowly cooling to a liquid crystal phase interval of the mixture, and carrying out in-situ polymerization on the liquid crystal mixture in the temperature interval to obtain the single-domain oriented liquid crystal elastomer film. The method utilizes the nano particles modified by the liquid crystal polymer to construct the single-domain liquid crystal elastomer, can generate special thermotropic deformation, is simple and easy to prepare the liquid crystal elastomer, has high orientation degree, and has potential application value in the aspects of artificial muscles, sensors, actuators and the like.
Description
Technical Field
The invention discloses a method for preparing a vertically-oriented liquid crystal elastomer, belongs to the technical field of materials, and particularly relates to a method for constructing a single-domain liquid crystal elastomer by using liquid crystal polymer modified nano particles.
Background
The liquid crystal elastomer is formed by partially crosslinked liquid crystal macromolecules, and is a shape memory material combining the ordering of liquid crystal and the soft elasticity of a three-dimensional space network structure. When the temperature of the monodomain-oriented liquid crystal elastomer is raised to the isotropic transition temperature, the oriented liquid crystal primitives are changed from order to disorder to cause the change of the shape of the material, and the original shape can be recovered when the temperature is reduced to a liquid crystal phase interval, so that the reversible shape change enables the liquid crystal elastomer to have potential application values in the aspects of sensors, actuators, artificial muscles and the like. The monodomain orientation liquid crystal elastomer is prepared by a two-step method generally, but the synthesis method is complex and high in cost, and most of the monodomain orientation liquid crystal elastomers are parallel orientation liquid crystal elastomers.
In order to prepare the single-domain oriented liquid crystal elastomer, the invention tries to utilize nano particles modified by liquid crystal macromolecules as a substrate to induce the orientation of liquid crystal monomers, and then utilizes an in-situ polymerization one-step method to quickly prepare the single-domain liquid crystal elastomer. Meanwhile, the single-orientation liquid crystal elastomer can generate thermal deformation, so that the preparation process is simplified, the process cost is reduced, and more feasible selection schemes are provided for the application of shape memory materials in the future.
Disclosure of Invention
The invention aims to provide a method for constructing a single-domain liquid crystal elastomer by using nanoparticles modified by liquid crystal polymers.
The technical scheme of the invention is as follows:
a method for constructing a single-domain liquid crystal elastomer by using liquid crystal polymer modified nano particles. The method comprises the following steps:
(1) preparing liquid crystal polymer modified nano particles, dissolving the obtained liquid crystal polymer modified nano particles in an organic solvent, spin-coating on a cover glass, and annealing to prepare a liquid crystal box.
(2) The liquid crystal monomer, the cross-linking agent and the initiator are blended and dissolved in the organic solvent, and a uniform liquid crystal mixture is formed after the solvent is volatilized.
(3) And (3) sucking the obtained liquid crystal mixture into a liquid crystal box, annealing, carrying out in-situ polymerization, crosslinking a liquid crystal monomer to form a liquid crystal elastomer, and removing a glass substrate to obtain the single-domain oriented liquid crystal elastomer film.
Further, the structure of the liquid crystal polymer modified nanoparticles in the step (1) is shown as formula I:
in the formula I, M is one of gold nanoparticles, nickel nanoparticles, carbon nanotubes and polyhedral oligomeric silsesquioxane (POSS);
in the formula I, N is one of sulfur, alkyl, alkoxy, ester group and carbonyl;
in the formula I, n is more than or equal to 30, A is one of alkyl, alkoxy, ester group and carbonyl;
in the formula I, B is one of hydrogen, alkyl or alkoxy;
in the formula I, C is one of the formulas II:
in the formula II, wherein R1Is (CH)2)n,(CH2)nO, and n is more than or equal to 0 and less than or equal to 18;
wherein R is2Is H, (CH)2)nCH3,O(CH2)nCH3,NH(CH2)nCH3,CN, NO2,SO3One of Na, and n is more than or equal to 0 and less than or equal to 18.
Further, the molecular structure of the liquid crystal monomer in the step (2) is shown as a formula III:
in the formula III, wherein R1Is (CH)2)nAnd n is more than or equal to 0 and less than or equal to 10;
wherein R is2Is (CH)2)n,(CH2)nAnd n is more than or equal to 0 and less than or equal to 10.
Further, the molecular structure of the cross-linking agent in the step (2) is shown as a formula IV:
in the formula IV, R3Is (CH)2)nAnd n is more than or equal to 0 and less than or equal to 10;
wherein R is4Is H, CH3One of (1) and (b).
Further, the initiator in the step (2) is one of a thermal initiator and a photoinitiator. Wherein the photoinitiator is one of 2, 2-dimethoxy-2-phenyl acetophenone, methyl o-benzoylbenzoate and 2-hydroxy-2-methylphenyl propane-1-ketone. Wherein the thermal initiator is one of azodiisobutyronitrile, azodiisoheptonitrile and dibenzoyl peroxide.
Further, the organic solvent used for forming a uniform mixture in the step (2) is one of dichloromethane, chloroform and acetone.
Further, the temperature of the mixture absorbed into the liquid crystal cell in the step (3) is above the isotropic temperature of the mixture.
Further, the in-situ polymerization in the step (3) is one of photo-initiated polymerization and thermal initiated polymerization.
Further, in the step (3), a hydrofluoric acid solution is used for etching the cover glass to obtain the liquid crystal elastomer film.
The invention has the following technical effects:
(1) the invention utilizes the nano particles modified by liquid crystal polymers as the substrate to prepare the liquid crystal elastomer, is synthesized by a one-step method, has simple operation and low cost, and provides a new synthesis method for preparing soft elastic materials.
(2) The liquid crystal elastomer prepared by the invention has uniform single domain orientation, has special thermotropic deformation, and has potential application value in the aspects of actuators, artificial muscles and the like.
Drawings
FIG. 1 is a polarization diagram of the orientation of the mixture of the liquid crystal monomer, the crosslinking agent and the photoinitiator in the liquid crystal cell in example 1 (the upper right corner is a conoscopic diagram);
FIG. 2 is a two-dimensional wide-angle X-ray diffraction pattern of the single-domain liquid crystal elastomer film in example 1;
FIG. 3 is a diagram showing the thermotropic deformation of a single-domain liquid-crystalline elastomer film in example 1.
Detailed Description
The present invention will be described in further detail with reference to specific examples, but the present invention is not limited thereto.
Example 1
A method for preparing a single-domain oriented liquid crystal elastomer by using gold nanoparticles modified by biphenyl liquid crystal macromolecules comprises the following steps:
raw materials: 4- (6-acryloyloxyhexyloxy) -4' -cyanobiphenyl, 1, 4-bis- [4- (6-acryloyloxyhexyloxy) benzoyloxy]-2-methylbenzene, 2, 2-dimethoxy-2-phenylacetophenone, ethylene glycol, 2-bromo-2-methylpropanoyl bromide, triethylamine, pentamethyldiethylenetriamine, cuprous bromide, alpha-lipoic acid, tetrachloroauric acid trihydrate, tetraoctylammonium bromide, sodium borohydride, 4-dimethylaminopyridine, Tetrahydrofuran (THF), toluene, alumina (Al)2O3)。
(1) Synthesis of biphenyl liquid crystal polymer modified gold nanoparticles and preparation of liquid crystal box
Liquid crystal monomer: 6- [ 4' - (4-phenoxy) p-butylbiphenyl ] hexyl methacrylate
Catalyst: cuprous bromide (CuBr)
Initiator: isobromobutyric acid Hydroxyethyl Ester (HEBI)
Ligand: pentamethyldiethylenetriamine (PMDETA)
A small magneton, a monomer, PMDETA, CuBr and HEBI (molar charge ratio is n: 1: 1: 1, wherein n is the polymerization degree of a target polymer, and n is 50) are put into a clean polymerized glass tube in sequence. Then, purified chlorobenzene was added as a solvent, and the reaction concentration was adjusted to 30%. After freezing, vacuumizing and nitrogen blowing for more than three times, vacuum sealing the tube, placing the tube in a constant-temperature oil bath at 75 ℃, reacting for 6 hours at constant temperature, taking out the polymerization tube, placing the tube in an ice-water bath, and stopping the polymerization reaction. The polymerization tube was carefully knocked open, the polymer solution was diluted with chlorobenzene solution and added dropwise to the solution containing AlO3In a chromatography column of (1). Spin-dry to a small amount of solvent and settle to a large amount of anhydrous methanol to remove the monomer. Filtering, drying the obtained polymer in a vacuum drying oven, and keeping the temperature at 40 ℃ for 12h to obtain the biphenyl liquid crystal polymer.
A500 mL round-bottomed flask containing 200mL of purified THF was charged with biphenyl liquid crystal polymer (3g,0.2mmol), alpha-lipoic acid (0.618g,3mmol), DMAP (0.0366g,0.3mmol) and TEA (0.07g,0.6mmol) in this order, the temperature of the mixed solution was lowered to 0 ℃ after ice-cooling, DCC (0.0618g, 0.3mmol) was added thereto, the mixture was stirred for 3 hours, and the reaction was continued at room temperature for 24 hours. And (4) tracking the reaction progress by a point plate, and filtering the precipitate of the mixed solution after the reaction is finished. After spin-drying of the solvent, a yellow crude product was obtained. And dissolving the crude product in a small amount of THF, settling into a large amount of anhydrous methanol, centrifuging, and then placing a sample into a vacuum drying oven, and keeping the temperature at 40 ℃ for 24 hours to obtain the target high-molecular ligand containing biphenyl liquid crystal elements. Wherein the structural formula of the obtained liquid crystal polymer ligand is as follows:
Pipetting HAuCl with pipette4·3H2An aqueous O solution (0.50mL,30mmol/L,0.015mmol) and a TOAB toluene solution (2mL,50mmol/L,0.1mmol) were placed in a 100mL round bottom flask and stirred vigorously at room temperature until the lower aqueous layer was colorless. After phase separation, biphenyl liquid crystalline polymer ligand (225mg,0.015 mmol) was added. Stirring for 30min, adding NaBH4An aqueous solution (0.50mL,0.40mol/L,0.20mmol) was slowly added dropwise to the organic phase. After further stirring for 3H, the organic phase is separated off and washed with H2O wash 2 times. Spin dry to leave 1mL of solvent, and settle into 200mL of absolute ethanol. Keeping at-10 deg.C for 12 hr, ultrasonic treating, and centrifuging. And repeating the steps of sedimentation, ultrasonic treatment and centrifugation until no biphenyl liquid crystal polymer ligand (dot plate) exists in the supernatant. And (3) placing the obtained product in a vacuum drying oven at 40 ℃ and keeping the constant temperature for 24 hours to obtain the biphenyl liquid crystal polymer ligand modified gold nanoparticles.
Dissolving gold nanoparticles modified by biphenyl liquid crystal polymers in toluene by mass fraction of 1%, spin-coating on a cover glass to obtain a liquid crystal polymer nanoparticle film, and annealing. Then, two annealed cover glass containing liquid crystal polymer nano particles are used for preparing a liquid crystal box for later use.
(2) Preparation of liquid Crystal elastomer films
Dissolving 4- (6-acryloyloxyhexyloxy) -4' -cyanobiphenyl, 1, 4-bis- [4- (6-acryloyloxyhexyloxy) benzoyloxy ] -2-methylbenzene and 2, 2-dimethoxy-2-phenyl acetophenone respectively serving as a liquid crystal monomer, a crosslinking agent and a photoinitiator (the molar ratio is 90:10:2.5) in dichloromethane, performing ultrasonic treatment, and naturally volatilizing a dry solvent at room temperature to obtain a mixture.
Placing the mixture and the liquid crystal box prepared in the step (1) on a hot bench, heating to the temperature of the clearing point of the mixture (above 100 ℃), and sucking the mixture into the liquid crystal box by utilizing a capillary effect. Then, the temperature was decreased to 60 ℃ at a rate of 1 ℃/min (i.e., the liquid crystal phase interval of the mixture), and it was observed by a polarizing microscope (POM) that the visual field was dark in the nematic phase temperature interval of the mixture and the dark cross extinction phenomenon was observed under cone light. Thus, it can be concluded that the mixture is vertically aligned within the cell. As shown in fig. 2 (upper right angle is conoscopic).
And (3) irradiating the liquid crystal box sucked into the mixture for 20min by using ultraviolet light at 60 ℃ to perform in-situ photopolymerization, etching the cover glass by using hydrofluoric acid, washing the film by using water to remove the hydrofluoric acid, and drying to obtain the liquid crystal elastomer film. The oriented structure of the film is characterized by two-dimensional wide-angle X-ray diffraction (2D WXRD), the incident direction of X-rays is perpendicular to the thickness direction of the film, as shown in figure 3, two diffraction arcs can be observed in a wide-angle area, which shows that liquid crystal elements are arranged along the thickness direction of the film, and the liquid crystal elastomer film with single domain orientation is obtained.
(3) Thermotropic deformation of liquid crystal elastomers
As shown in FIG. 3, when the liquid crystal elastomer film was heated to an isotropic temperature of 130 ℃ both sides of the film were rolled up, and when cooled to room temperature, the film was restored to its original shape. This reversible change in shape indicates that the liquid crystalline elastomer film has a particular reversible change in shape.
Example 2
A method for preparing a single-domain oriented liquid crystal elastomer by using gold nanoparticles modified by biphenyl azo liquid crystal macromolecules comprises the following steps:
raw materials: 4- (6-acryloyloxyhexyloxy) -4' -cyanobiphenyl, 1, 4-bis- [4- (6-acryloyloxyhexyloxy) benzoyloxy]-2-methylbenzene, 2, 2-dimethoxy-2-phenylacetophenone, ethylene glycol, 2-bromo-2-methylpropanoyl bromide, triethylamine, pentamethyldiethylenetriamine, cuprous bromide, alpha-lipoic acid, tetrachloroauric acid trihydrate, tetraoctylammonium bromide, sodium borohydride, 4-dimethylaminopyridine, Tetrahydrofuran (THF), toluene, alumina (Al)2O3)。
(1) Synthesis of biphenyl azo liquid crystal polymer modified gold nanoparticles and preparation of liquid crystal box
Liquid crystal monomer: 6- [ 4' - (4-phenoxy) p-butylazobiphenyl ] hexyl methacrylate
Catalyst: cuprous bromide (CuBr)
Initiator: isobromobutyric acid Hydroxyethyl Ester (HEBI)
Ligand: pentamethyldiethylenetriamine (PMDETA)
A small magneton, a monomer, PMDETA, CuBr and HEBI (molar charge ratio is n: 1: 1: 1, wherein n is the polymerization degree of a target polymer, and n is 50) are put into a clean polymerized glass tube in sequence. Then, purified chlorobenzene was added as a solvent, and the reaction concentration was adjusted to 30%. After freezing, vacuumizing and nitrogen blowing for more than three times, vacuum sealing the tube, placing the tube in a constant-temperature oil bath at 75 ℃, reacting for 6 hours at constant temperature, taking out the polymerization tube, placing the tube in an ice-water bath, and stopping the polymerization reaction. The polymerization tube was carefully knocked open, the polymer solution was diluted with chlorobenzene solution and added dropwise to the solution containing AlO3In a chromatography column of (1). Spin-dry to a small amount of solvent and settle to a large amount of anhydrous methanol to remove the monomer. Filtering, drying the obtained polymer in a vacuum drying oven, and keeping the temperature at 40 ℃ for 12h to obtain the biphenyl azo liquid crystal polymer.
A500 mL round-bottomed flask containing 200mL of purified THF was charged with biphenyl azo liquid crystal polymer (3g,0.2mmol), alpha-lipoic acid (0.618g,3mmol), DMAP (0.0366g,0.3mmol), TEA (0.07g,0.6mmol) in this order, the temperature of the mixed solution was lowered to 0 ℃ after ice-cooling, DCC (0.0618g, 0.3mmol) was added thereto, the mixture was stirred for 3 hours, and the reaction was continued at room temperature for 24 hours. And (4) tracking the reaction progress by a point plate, and filtering the precipitate of the mixed solution after the reaction is finished. After spin-drying of the solvent, a yellow crude product was obtained. And dissolving the crude product in a small amount of THF, settling into a large amount of anhydrous methanol, centrifuging, and then placing a sample into a vacuum drying oven, and keeping the temperature at 40 ℃ for 24 hours to obtain the target high-molecular ligand containing biphenyl azo mesogen. Wherein the structural formula of the obtained liquid crystal polymer ligand is as follows:
Pipetting HAuCl with pipette4·3H2An aqueous O solution (0.50mL,30mmol/L,0.015mmol) and a TOAB toluene solution (2mL,50mmol/L,0.1mmol) were placed in a 100mL round bottom flask and stirred vigorously at room temperature until the lower aqueous layer was colorless. After phase separation, biphenyl azo liquid crystalline polymer ligand (225mg,0.015 mmol) was added. Stirring for 30min, adding NaBH4An aqueous solution (0.50mL,0.40mol/L,0.20mmol) was slowly added dropwise to the organic phase. After further stirring for 3H, the organic phase is separated off and washed with H2O wash 2 times. Spin dry to leave 1mL of solvent, and settle into 200mL of absolute ethanol. Keeping at-10 deg.C for 12h, ultrasonic treating, and centrifuging. The sedimentation-ultrasonic-centrifugation steps are repeated until no biphenyl azo liquid crystal polymer ligand (dot plate) is present in the supernatant. And (3) placing the obtained product in a vacuum drying oven at 40 ℃ and keeping the constant temperature for 24 hours to obtain the biphenyl azo liquid crystal polymer ligand modified gold nanoparticles.
Dissolving gold nanoparticles modified by biphenyl azo liquid crystal polymers in toluene by mass fraction of 1%, spin-coating on a cover glass to obtain a liquid crystal polymer nanoparticle film, and annealing. Then, two annealed cover glass containing liquid crystal polymer nano particles are used for preparing a liquid crystal box for later use.
(2) Preparation of a Single-Domain liquid Crystal elastomer film
Dissolving 4- (6-acryloyloxyhexyloxy) -4' -cyanobiphenyl, 1, 4-bis- [4- (6-acryloyloxyhexyloxy) benzoyloxy ] -2-methylbenzene and 2, 2-dimethoxy-2-phenyl acetophenone respectively serving as a liquid crystal monomer, a crosslinking agent and a photoinitiator (the molar ratio is 90:10:2.5) in dichloromethane, performing ultrasonic treatment, and naturally volatilizing a dry solvent at room temperature to obtain a mixture.
Placing the mixture and the liquid crystal box prepared in the step (1) on a hot bench, heating to the temperature of the clearing point of the mixture (above 100 ℃), and sucking the mixture into the liquid crystal box by utilizing a capillary effect. Then, the temperature was decreased to 60 ℃ at a rate of 1 ℃/min (i.e., the liquid crystal phase interval of the mixture), and it was observed by a polarizing microscope (POM) that the visual field was dark in the nematic phase temperature interval of the mixture and the dark cross extinction phenomenon was observed under cone light. Thus, it can be concluded that the mixture is vertically aligned within the cell.
And (3) irradiating the liquid crystal box sucked into the mixture for 20min by using ultraviolet light at 60 ℃ to perform in-situ photopolymerization, etching the cover glass by using hydrofluoric acid, washing the film by using water to remove the hydrofluoric acid, and drying to obtain the liquid crystal elastomer film. The oriented structure of the film is characterized by two-dimensional wide-angle X-ray diffraction (2D WXRD), the incident direction of X-rays is perpendicular to the thickness direction of the film, two diffraction arcs can be observed in a wide-angle area, and the liquid crystal elements are shown to be arranged along the thickness direction of the film, so that the liquid crystal elastomer film with single-domain orientation is obtained.
(3) Thermotropic deformation of liquid crystal elastomers
When the liquid crystalline elastomer film was heated to an isotropic temperature of 130 c, both sides of the film rolled up, and when cooled to room temperature, the film returned to its original shape. This reversible change in shape indicates that the liquid crystalline elastomer film has a particular reversible change in shape.
Claims (5)
1. A method for constructing a single-domain liquid crystal elastomer by using liquid crystal polymer modified nano particles comprises the following steps:
(1) preparing liquid crystal polymer modified nano particles, dissolving the obtained liquid crystal polymer modified nano particles in an organic solvent, then spin-coating on a cover glass, and annealing to prepare a liquid crystal box;
(2) blending a liquid crystal monomer, a cross-linking agent and an initiator, dissolving in an organic solvent, and forming a uniform liquid crystal mixture after the solvent is volatilized;
(3) sucking the obtained liquid crystal mixture into a liquid crystal box, annealing, carrying out in-situ polymerization, crosslinking a liquid crystal monomer to form a liquid crystal elastomer, and removing a glass substrate to obtain a single-domain oriented liquid crystal elastomer film;
the structure of the liquid crystal polymer modified nano particle in the step (1) is shown as a formula I:
in the formula I, M is one of gold nanoparticles, nickel nanoparticles, carbon nanotubes and polyhedral oligomeric silsesquioxane (POSS); in the formula I, N is one of sulfur, alkyl, alkoxy, ester group and carbonyl; in the formula I, n is more than or equal to 30, A is one of alkyl, alkoxy, ester group and carbonyl; in the formula I, B is one of hydrogen, alkyl or alkoxy; in the formula I, C is one of the formulas II:
in the formula II, wherein R1Is (CH)2)n,(CH2)nO, and n is more than or equal to 0 and less than or equal to 18; wherein R is2Is H, (CH)2)nCH3,O(CH2)nCH3,NH(CH2)nCH3,CN,NO2,SO3One of Na, and n is more than or equal to 0 and less than or equal to 18;
the molecular structure of the liquid crystal monomer in the step (2) is shown as a formula III:
in the formula III, wherein R1Is (CH)2)nAnd n is more than or equal to 0 and less than or equal to 10; wherein R is2Is (CH)2)n,(CH2)nO, and n is more than or equal to 0 and less than or equal to 10;
the molecular structure of the cross-linking agent in the step (2) is shown as a formula IV:
in the formula IV, wherein R3Is (CH)2)nAnd n is more than or equal to 0 and less than or equal to 10; wherein R is4Is H, CH3One kind of (1); the initiator in the step (2) is one of a thermal initiator and a photoinitiator; wherein the photoinitiator is one of 2, 2-dimethoxy-2-phenyl acetophenone, methyl o-benzoylbenzoate and 2-hydroxy-2-methylphenyl propane-1-ketone; wherein the thermal initiator is one of azodiisobutyronitrile, azodiisoheptonitrile and dibenzoyl peroxide.
2. The method for preparing a monodomain liquid crystalline elastomer from liquid crystal polymer-modified nanoparticles as claimed in claim 1, wherein the organic solvent used in the step (2) is one of dichloromethane, chloroform and acetone.
3. The method for preparing a monodomain liquid crystalline elastomer from nanoparticles modified with a liquid crystalline polymer as claimed in claim 1, wherein the temperature at which the mixture is drawn into the liquid crystal cell in step (3) is higher than the isotropic temperature of the mixture.
4. The method for preparing a monodomain liquid crystal elastomer from nanoparticles modified by a liquid crystal polymer as claimed in claim 1, wherein the in-situ polymerization in the step (3) is one of photo-initiated polymerization and thermal initiated polymerization.
5. The method for preparing a monodomain liquid crystal elastomer from nanoparticles modified by liquid crystal polymers as claimed in claim 1, wherein the step (3) is performed by etching a cover glass with a hydrofluoric acid solution to obtain a liquid crystal elastomer film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811144267.2A CN109265713B (en) | 2018-09-29 | 2018-09-29 | Method for constructing single-domain liquid crystal elastomer by liquid crystal polymer modified nano particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811144267.2A CN109265713B (en) | 2018-09-29 | 2018-09-29 | Method for constructing single-domain liquid crystal elastomer by liquid crystal polymer modified nano particles |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109265713A CN109265713A (en) | 2019-01-25 |
CN109265713B true CN109265713B (en) | 2022-01-11 |
Family
ID=65198785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811144267.2A Expired - Fee Related CN109265713B (en) | 2018-09-29 | 2018-09-29 | Method for constructing single-domain liquid crystal elastomer by liquid crystal polymer modified nano particles |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109265713B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110333612B (en) * | 2019-07-04 | 2021-10-01 | 湘潭大学 | Method for preparing multi-response intelligent window through liquid crystal polymer modified carbon nano tube |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104449542A (en) * | 2014-12-11 | 2015-03-25 | 江南大学 | Preparation method of novel dual-cured UV curing binder |
CN104529781A (en) * | 2014-11-14 | 2015-04-22 | 泰州市产品质量监督检验所 | A synthetic method of a chiral liquid crystal monomer, a cross-linking agent and an elastomer of the monomer |
CN107121844A (en) * | 2017-05-23 | 2017-09-01 | 湘潭大学 | The method that the golden nanometer particle modified by liquid crystal polymer regulates and controls liquid crystal aligning |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5827161B2 (en) * | 2012-03-28 | 2015-12-02 | 富士フイルム株式会社 | Cholesteric liquid crystalline mixture, film, infrared reflector, laminate and laminated glass |
-
2018
- 2018-09-29 CN CN201811144267.2A patent/CN109265713B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104529781A (en) * | 2014-11-14 | 2015-04-22 | 泰州市产品质量监督检验所 | A synthetic method of a chiral liquid crystal monomer, a cross-linking agent and an elastomer of the monomer |
CN104449542A (en) * | 2014-12-11 | 2015-03-25 | 江南大学 | Preparation method of novel dual-cured UV curing binder |
CN107121844A (en) * | 2017-05-23 | 2017-09-01 | 湘潭大学 | The method that the golden nanometer particle modified by liquid crystal polymer regulates and controls liquid crystal aligning |
Also Published As
Publication number | Publication date |
---|---|
CN109265713A (en) | 2019-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | A novel amphotropic polymer based on cellulose nanocrystals grafted with azo polymers | |
Johansson et al. | Fluorophobic effect in the self-assembly of polymers and model compounds containing tapered groups into supramolecular columns | |
JP4011652B2 (en) | Photoactive polymer material capable of crosslinking | |
Zhao et al. | Synthesis of double side-chain liquid crystalline block copolymers using RAFT polymerization and the orientational cooperative effect | |
CN109776719B (en) | Preparation method of photo-induced deformation liquid crystal polymer film based on spiroalkene molecules, polymer film and device | |
JP5600467B2 (en) | Method for producing hyperbranched polymer | |
CN111499817A (en) | Supermolecule chiral azobenzene assembly and in-situ construction method | |
CN114381279B (en) | Polymerizable compound, composition, and liquid crystal display device | |
CN107099006A (en) | A kind of preparation method with liquid crystal and light memory storage type Comblike polymers material | |
CN109265713B (en) | Method for constructing single-domain liquid crystal elastomer by liquid crystal polymer modified nano particles | |
CN107121844B (en) | Regulate and control the method for liquid crystal aligning by the gold nanoparticle that liquid crystal polymer is modified | |
Han et al. | Construction of topological macromolecular side chains packing model: study unique relationship and differences in LC-microstructures and properties of two analogous architectures with well-designed side attachment density | |
CN107422542B (en) | Method for regulating and controlling liquid crystal orientation of liquid crystal polymer brush constructed by random copolymerization | |
Mizoshita et al. | Liquid‐Crystal Composites Composed of Photopolymerized Self‐Assembled Fibers and Aligned Smectic Molecules | |
CN104693466B (en) | A kind of method for easily going removing coating regulation and control liquid crystalline block copolymers film farmland area orientation | |
Yang et al. | Effects of main chain and acceptor content on phase behaviors of hydrogen-bonded main-chain/side-chain combined liquid crystalline polymers | |
Zenati et al. | Synthesis and properties of azo-based ABC triblock copolymers owning interaction and composition parameters that influence their phase behaviors | |
Moment et al. | Synthesis of polystyrene‐polysiloxane side‐chain liquid crystalline block copolymers | |
CN109384869B (en) | Fluorine-containing azobenzene amphiphilic polymer, visible light response polymer nanotube and preparation method thereof | |
Zhu et al. | Photoresponsive diblock copolymers bearing strong push–pull azo chromophores and mesogenic biphenyl groups | |
He et al. | Double‐Hydrophilic Polymer Brushes: Synthesis and Application for Crystallization Modification of Calcium Carbonate | |
Okano et al. | Liquid‐Crystalline Polymer with a Block Mesogenic Side Group: Photoinduced Manipulation of Nanophase‐Separated Structures | |
CN111285982B (en) | Chiral supramolecular azobenzene assembly and in-situ construction method | |
Liu et al. | Long range chirality transfer in free radical polymerization of vinylterphenyl monomers bearing chiral alkoxy groups | |
CN103172793B (en) | Comb-like graft copolymer and method for forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220111 |
|
CF01 | Termination of patent right due to non-payment of annual fee |