A kind of high efficiency interactive system based on closed cockpit
Technical field
The invention belongs to showing interaction technique field, in particular to a kind of high efficiency interactive system based on closed cockpit
System.
Background technique
Cockpit display is widely used in aviation, and display interface includes more parameter and state of flight information, behaviour
Making mode is more traditional operating stick interaction and key interaction, and total system requires operation smooth, and picture is clear, interaction and
When.Show that interaction technique is widely used in command and control system, such as aerospace, naval vessels charge, it is considered to be " people and machine
Bridge between device ".Its particular technique refers to that machine provides a large amount of useful informations to people by presentation device and prompt is asked for instructions,
People realizes the process that people interacts with machine by input equipment to machine transmission command information.It and cognitive science, human engineering
There is close connection in the fields such as, psychology.
Interaction technique applied by current is compared with the demand in application scenarios, and there are the gaps of three aspects:
1, show that the integrated level of interactive means is not high;Most of interaction technique still uses traditional display interactive means,
It is simple integrated to be applied to control equipment, do not integrate it is relatively advanced, efficiently show interactive means, also do not examine sufficiently at the same time
Consider the influence to user experience and actual effect such as convenient comfort of interactive efficiency, manipulation.
2, the optimization of interactive mode is insufficient under various modes;Although being integrated with more interactive mode, only to interaction
Mode, which is done, simply piles up, and does not do deeply and optimizes to interactive mode, causes the efficiency of decision-making of user to decline, each interactive mode
Collaborative it is not strong.
3, assist the intelligence of interactive mode not strong, initiative of the interactive mode in interactive process is inadequate, also unstructured
It can adapt to the adaptive human-computer interaction system of different application scene, different manipulation roles.
Summary of the invention
In order to solve the technical issues of above-mentioned background technique proposes, the present invention is intended to provide a kind of based on closed cockpit
High efficiency interactive system realizes the high efficiency interactive under closed cockpit application scenarios, and increases the immersion experience of user.
In order to achieve the above technical purposes, the technical solution of the present invention is as follows:
A kind of high efficiency interactive system based on closed cockpit, including a closed cockpit, closed cockpit outside
Front, rear, left and right four direction install a camera respectively, and each camera is mounted on steering engine holder;Closed seat
Front, rear, left and right four direction on the inside of cabin installs a back projection respectively, each back projection by data line with it is aforementioned
Unidirectional camera is connected, to show the image of corresponding camera acquisition;Pacify at the center of closed cabin interior
Equipped with fixed swiveling seat, array of pressure sensors is respectively set in the chair back and seat cushion of the fixed swiveling seat, and user sits
In on fixed swiveling seat, the head of user and trunk install gyroscope everywhere;The front of fixed swiveling seat is arranged
The lower section of touch screen, touch screen is provided with gesture identification equipment;Focusing control terminal, the control terminal of steering engine holder, the pressure of camera
The output end difference of the output end of force sensor array, the output end of gyroscope, the output end of touch screen and gesture identification equipment
It is connected with system master controller.
Further, which using the body feeling interaction mode based on sitting posture attitude updating and combines gesture to know
Other touch interactive mode.
Further, the body feeling interaction mode based on sitting posture attitude updating is, by the chair back of fixed swiveling seat
It is real-time transmitted to the data of the gyroscope acquisition of the array of pressure sensors and user's head and trunk on seat cushion everywhere and is
System master controller, system master controller solve the current sitting posture information of user, root according to the data that array of pressure sensors acquires
The current body-sensing posture information of user is solved according to the data that gyroscope acquires, and not androgynous by the current sitting posture information correction of user
Feel the threshold value of the triggered response of posture, to obtain the current body-sensing posture of final user, system master controller is worked as according to user
The focus point of preceding each camera of body-sensing gesture stability and the deflection angle of each steering engine holder complete body feeling interaction.
It further, will if being respectively provided with 3 × 3 array of pressure sensors on the chair back and seat cushion of fixed swiveling seat
The signal of each pressure sensor acquisition is calculated as the following formula:
MAXrow=max { row_F1,row_F2,row_F3}
MAXcol=max { col_F1,col_F2,col_F3}
Location (x, y)=(rowmax,colmax)
In above formula, F (i, j) is the letter of the i-th row jth column pressure sensor acquisition in 3 × 3 arrays;Location (x, y) is
The maximum coordinate of array stress point, rowmax,colmaxFor MAXrow,MAXcolCorresponding ranks coordinate, (x, y) | (x, y) ∈ (1,
1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)};
User is solved according to the three axis signal gyroscope (x, y, z) that location (x, y) and gyroscope export currently to sit
Appearance:
State=function_correction [MAXrow-back,MAXcol-back,MAXrow-seat,MAXcol-seat,
location(x,y)back,location(x,y)seat, gyroscope (x, y, z)] and in above formula, MAXrow-back,
MAXcol-back,location(x,y)backThe MAX obtained for chair back array of pressure sensorsrow,MAXcol,location(x,y)
Value, MAXrow-seat,MAXcol-seat,location(x,y)seatThe MAX obtained for seat cushion array of pressure sensorsrow,MAXcol,
Location (x, y) value;Function_correction [] be sitting posture recognition function, state ∈ front, behind,
Left, right, idle }, i.e., user's sitting posture include front, rear, left and right, in 5 kinds of sitting postures, this corresponding body-sensing posture of 5 kinds of sitting postures
Be followed successively by lean forward, swing back, is left-leaning, Right deviation and placed in the middle;
When user is chronically at a certain sitting posture state, sitting posture state is considered as to the habit sitting posture of user, then system master
Controller increase triggers the response activation threshold value of the corresponding body-sensing posture of the sitting posture.
Further, the touch interactive mode of the combination gesture identification is, user's striking on the touchscreen by finger
Instruction is hit and slidably inputed, while identifying the gesture instruction of user by gesture identification equipment, and system master controller executes hand
The priority of gesture instruction is higher than the instruction of touch screen acquisition.
Further, gesture identification equipment is mounted on one-dimensional steering engine holder, the deflection angle of the one-dimensional steering engine holder
It is controlled by system master controller, system master controller input information according to received by touch screen judges active user's hand institute
Position, control the deflection of one-dimensional steering engine holder, accordingly so as to adjust the detection range of gesture identification equipment.
By adopting the above technical scheme bring the utility model has the advantages that
The present invention combines two kinds of interactive modes --- body feeling interaction mode based on sitting posture attitude updating and combine gesture
The touch interactive mode of identification.Emphasis corresponding to two kinds of interactive modes is different, the body feeling interaction based on sitting posture attitude updating
Mode is used to control the rotation of extraneous camera lower rudder machine head and the focus point of camera, for adjusting the shown external world
Environment inputs picture, and wherein the speed of image switching is changed according to the setting of user, avoids too fast and excessively slow phenomenon shadow
Ring user experience.Then it is used to handle the equipment work shape of the closed cockpit of interaction itself in conjunction with the touch interactive mode of gesture identification
State, i.e., corresponding parameter passes through touch screen and is shown to user in closed cockpit, and user can also be realized by this touch screen
To the order of closed cockpit input, gesture identification is then more rapidly easy a kind of interactive mode on this basis.Integrate this
Two kinds of interactive modes, user can realize the good interaction with the external world in closed cockpit, and can experience on this basis
Preferable immersion effect.
Detailed description of the invention
Fig. 1 is inventive closure formula cockpit schematic diagram;
Fig. 2 is inventive sensor setting schematic diagram;
Fig. 3 is the body feeling interaction mode flow chart the present invention is based on sitting posture attitude updating;
Fig. 4 is array of pressure sensors setting schematic diagram of the present invention;
Fig. 5 is the touch interactive system schematic diagram that the present invention combines gesture identification;
Fig. 6 is each component locations schematic diagram of inventive touch interactive system;
Fig. 7 is the touch interactive mode flow chart that the present invention combines gesture identification;
Fig. 8 is whole system implementation flow chart of the present invention.
Specific embodiment
Below with reference to attached drawing, technical solution of the present invention is described in detail.
The present invention devises a kind of high efficiency interactive system based on closed cockpit, as shown in Figure 1, the closed cockpit
Front end, rear end, left end right end place a pancratic camera respectively, referring to the label 1,2,3,4 in Fig. 1, camera shooting
Head is mounted on steering engine holder, and wherein steering engine holder can be turned to by control signal control, to drive camera to difference
Direction rotates, for rendering different scenes.In closed cabin interior, 4 back projections are set, referring to label 5 in Fig. 1,6,7,
8, four camera acquired image information are transmitted to the back projection of closed cabin interior by data line, to closing
Personnel in formula cockpit transmit external image information.Fixed swiveling seat (only bottom is fixed) is arranged in closed cabin interior
At center, referring to the label 9 in Fig. 1.The present invention is using the body feeling interaction mode based on sitting posture attitude updating and gesture is combined to know
Other touch interactive mode.
For the body feeling interaction mode based on sitting posture attitude updating, the sitting posture mould based on the distribution of user's pressure is initially set up
Type enters pressure data acquisition in system master controller according to the pressure sensor of each place arrangement in seat, can by operation
Obtain the sitting posture of user's current state.Secondly, current according to the gyroscope acquisition user for being distributed in user's body key position
Body-sensing information.In order to avoid the numerical value of external irregular effect of jitter gyroscope, the data of gyroscope should be filtered by Kalman
Wave.As shown in Fig. 2, 10 and 12 be respectively the pressure sensor that seat cushion and the chair back is arranged in, 11 and 13 be respectively that setting exists
The gyroscope of user's head and trunk.System master controller acquires body-sensing information and the current sitting posture of user is combined to carry out operation, root
Change the threshold value of corresponding body-sensing action response according to the sitting posture information of active user.For example, if pressure sensor detects user
Pressure distribution be concentrated mainly on the preceding part (this means that user, which compares, is accustomed to forward sitting posture) of seat, then microcontroller exists
Judge that the threshold value that will increase posture triggering of leaning forward when the body-sensing posture of user, this method have evaded different user since sitting posture is practised
Used difference and the problem for causing the response of body-sensing posture inaccurate.Last microcontroller exports active user's according to the result of operation
Body-sensing status information, for interacting, the process is as shown in Figure 3.
In the body feeling interaction mode based on sitting posture attitude updating, active user's body-sensing appearance that system master controller is exported
State information will be used to adjust the deflection angle of the focus point and steering engine holder of extraneous camera, and such embodiment is similar to reality
People and extraneous interactive mode in the world.For example, the visual field will focus on a certain spy when human body tends to a certain specific direction
Earnest body, object will be also presented in human eye in a manner of a kind of be more clear.This scene is mapped in closed cockpit, when
When the posture of user leans forward, by the direction before making camera aligning surface, camera also will be according to leaning forward for the steering engine of camera base
Angle moderately focus, to realize observation to object in front.
In the present invention, according to seat everywhere pressure sensor numerical value come the method that constructs user's sitting posture model are as follows: with
It is respectively arranged 9 pressure sensors on the seat cushion and the chair back of the seat at family, forms 3 × 3 arrays, as shown in 14,15 in Fig. 4,
The pressure value that each coordinate points are calculated by establishing coordinate can calculate the sitting posture of user, carry out subsequent fortune
It calculates, calculates separately the ratio that every a line and the pressure value of each column in the coordinate system account for integral pressure, relatively can be obtained later
The sitting posture state of user.Calculation formula is as follows:
MAXrow=max { row_F1,row_F2,row_F3}
MAXcol=max { col_F1,col_F2,col_F3}
Location (x, y)=(rowmax,colmax)
In above formula, F (i, j) is the letter of the i-th row jth column pressure sensor acquisition in 3 × 3 arrays;Location (x, y) is
The maximum coordinate of array stress point, rowmax,colmaxFor MAXrow,MAXcolCorresponding ranks coordinate, (x, y) | (x, y) ∈ (1,
1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}。
User is solved according to the three axis signal gyroscope (x, y, z) that location (x, y) and gyroscope export currently to sit
Appearance:
State=function_correction [MAXrow-back,MAXcol-back,MAXrow-seat,MAXcol-seat,
location(x,y)back,location(x,y)seat, gyroscope (x, y, z)] and in above formula, MAXrow-back,
MAXcol-back,location(x,y)backThe MAX obtained for chair back array of pressure sensorsrow,MAXcol,location(x,y)
Value, MAXrow-seat,MAXcol-seat,location(x,y)seatThe MAX obtained for seat cushion array of pressure sensorsrow,MAXcol,
Location (x, y) value;Function_correction [] be sitting posture recognition function, state ∈ front, behind,
Left, right, idle }, i.e., user's sitting posture include front, rear, left and right, in 5 kinds of sitting postures.
For combining the touch interactive mode of gesture identification, setting touch screen is used to receive the hand of user in face of seat
Gesture input, while being used to receive the certain gestures information of user in the lower section of touch screen setting Leap Motion.In view of the reality
The touch screen position for applying mode is relatively fixed, but the size of screen may be relatively large, is easy the identification beyond Leap Motion
Range, it is contemplated that the identification range of user gesture must design matched one within triangular pyramid into leap motion
Steering engine holder dynamically track user gesture is tieed up to solve the above problems.The specific embodiment of one-dimensional holder in one's power are as follows: in Leap
Motion pedestal install freedom degree be 1 steering engine holder, realize gestures detection range expansion, implementation model as shown in figure 5, its
In, (a) indicates user gesture not in Leap Motion detection range, (b) indicates to make user gesture position by multistage holder adjustment
In in Leap Motion detection range, label 16 indicates effective gesture identification range in Leap Motion, and 17 indicate to touch
Screen, 18 indicate Leap Motion, and 19 indicate one-dimensional steering engine holder.The rotational angle of steering engine holder is provided by system master controller,
System master controller inputs touch information according to received by touch screen and judges position where active user's hand, by meter
Corresponding rotational angle is exported after calculation realizes Leap Motion to the dynamically track of user gesture with this to steering engine holder.Such as Fig. 6
The shown installation site for touching each component of interactive system, label 20 are one-dimensional steering engine holder, and 21 be to be mounted on above holder
Leap Motion, 22 be touch screen, and 23 be the effective range of Leap Motion.
In the touch interactive mode for combining gesture identification, the priority of gesture identification is greater than touch recognition priority, is
System main device will pay the utmost attention to the result of gesture identification.The design of the part is mainly in view of in case of emergency, and user comes not
And a series of operational motion is made to complete the processing to a certain emergency, so using gesture identification in touch interface
Method improves interactive efficiency.The process that its program executes is as shown in Figure 7.
In the present invention, system master controller uses the microprocessor of generic structure.The fixed closed seat of swiveling seat
The contact position in bilge portion should be disposed with buffer unit, such as spring, rubber, avoid external interference with this.Fig. 8 can be complete
Show the implementation process of two kinds of interactive modes.
Embodiment is merely illustrative of the invention's technical idea, and this does not limit the scope of protection of the present invention, it is all according to
Technical idea proposed by the present invention, any changes made on the basis of the technical scheme are fallen within the scope of the present invention.