CN109254424A - 一种电光调制方法、电光调制设备及其应用和再生放大器 - Google Patents

一种电光调制方法、电光调制设备及其应用和再生放大器 Download PDF

Info

Publication number
CN109254424A
CN109254424A CN201811358128.XA CN201811358128A CN109254424A CN 109254424 A CN109254424 A CN 109254424A CN 201811358128 A CN201811358128 A CN 201811358128A CN 109254424 A CN109254424 A CN 109254424A
Authority
CN
China
Prior art keywords
electro
optic crystal
crystal
slide
optic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811358128.XA
Other languages
English (en)
Inventor
艾庆康
舒严
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING LAIZE PHOTONICS Co Ltd
Original Assignee
BEIJING LAIZE PHOTONICS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING LAIZE PHOTONICS Co Ltd filed Critical BEIJING LAIZE PHOTONICS Co Ltd
Priority to CN201811358128.XA priority Critical patent/CN109254424A/zh
Publication of CN109254424A publication Critical patent/CN109254424A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0311Structural association of optical elements, e.g. lenses, polarizers, phase plates, with the crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0327Operation of the cell; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/07Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical liquids exhibiting Kerr effect
    • G02F1/076Operation of the cell; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • G02F1/0142TE-TM mode conversion

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种电光调制方法,包括以下步骤:发射激光依次通过玻片和电光晶体,电光晶体包括相对设置的第一表面和第二表面;对电光晶体的第一表面进行正向加压,对电光晶体的第二表面进行反向加压,其中,对第一表面进行正向加压和对第二表面进行反向加压的两个步骤交替进行。上述电光调制方法,对电光晶体的相对两个表面进行正向和反向交替加压,经过电光晶体的激光偏振态的旋转方向是交替变化的。从而改变激光输出方向。可以有效降低了加载到电光晶体上的高压值,或者说在相同的高压和晶体长度下,可以允许更大的晶体通光孔径。从而降低了电光开关驱动装置的制作难度。此外,还提供一种电光调制设备及其应用,及一种再生放大器。

Description

一种电光调制方法、电光调制设备及其应用和再生放大器
技术领域
本发明涉及激光器件技术领域,尤其涉及一种电光调制方法、电光调制设备及其应用和再生放大器。
背景技术
在脉冲式激光器中,由于电光调制响应速度快,可以产生时间宽度很窄的脉冲,而且作为开关和选单器件,可以进行高重频脉冲选单,因此电光调制在调Q激光器,再生放大器,以及腔外开关控制上应用十分广泛。但由于电光晶体所需四分之一波长或二分之一波长调制电压很高,特别是横向加压的普克尔盒,其高压值与两个加压面距离成正比,与晶体长度成反比。而对于现有驱动器及高压发生器提供过高电压是非常困难的,尤其是高频高压,因此在高重频工作时,驱动器提供的高压必须降低。高频高压是电磁干扰的重要来源,辐射强度与施加的电压平方成正比,因此电压降低意味着辐射强度平方关系的降低,电磁兼容性将会得到显著改善。此外,对于高峰值功率激光,为了防止晶体损伤,一般光斑较大,因此需要较大通光孔径晶体,而大孔径电光晶体将导致晶体所施加高压的提高。因此横向加压电光普克尔盒面临主要问题是大的通光孔径与相应提高的高压之间的矛盾。
电光开关是根据普克尔效应制作的,当具有电光效应的晶体受到外部电场作用时,其折射发生与外部电场成线性关系的改变。以横向加压电光普克尔效应为例,目前最常用的电光普克尔盒采用的是对电光晶体两个相对的表面,进行固定方式加压,也就是说晶体一侧施加一个正高压值,另一侧接地,在工作过程中,始终保持这种方式。这样激光经过电光晶体后,两个正交的偏振态之间的相位延迟是固定的,始终是一个方向的偏振态相位超前或落后于另一方向的偏振态,表现为左旋或右旋偏振光。目前横向加压电光普克尔盒面临主要问题是大的通光孔径与相应提高的高压之间的矛盾,比如最常用的电光晶体BBO,电压值与晶体两个加压面距离成正比,与晶体长度成反比。其四分之一电压理论计算公式:
其中,折射率no=1.655,有效电光系数r22=2.2pm/V,L为晶体长度,d为高低电压间距,λ为激光波长。
BBO晶体尺寸多为(3×3×20)mm3或(4×4×25)mm3,而对于有些大能量高峰值功率的放大,需要孔径更大的BBO晶体,如(5×5)mm2截面。当激光波长为1064nm时,对于(3×3×20)mm3尺寸的电光晶体,Vλ/4=4000V。对于(5×5×25)mm3的晶体,Vλ/4=5300V。对于目前多数普克尔盒驱动来说,当工作在低重频条件下,如10kHz以下,是有可能达到上述高压的,但如果工作在高重频,如200kHz或更高,普克尔盒驱动功率很难达到。采用双晶体串联方式,可以降低工作电压,但大大增加系统复杂程度和成本。
发明内容
为了克服现有的电光开关调制电压过高的问题,提供一种能够减小工作电压且操作简单的电光调制方法、电光调制设备及其应用和再生放大器。
一种电光调制方法,包括以下步骤:
发射激光依次通过玻片和电光晶体,所述电光晶体包括相对设置的第一表面和第二表面;
对所述电光晶体的所述第一表面进行正向加压,对所述电光晶体的所述第二表面进行反向加压,其中,对所述电光晶体的所述第一表面进行正向加压和对所述电光晶体的所述第二表面进行反向加压的两个步骤交替进行。
在一个实施例中,所述玻片为四分之一玻片、八分之一玻片或十六分之一玻片。
在一个实施例中,所述电光晶体为BBO晶体、KTP晶体或RTP晶体。
在一个实施例中,对所述电光晶体的所述第一表面进行正向加压时,电光效应使得X方向偏振光相位超前Y方向偏振光相位,合成后的偏振光在经过所述电光晶体后表现为右旋;
对所述电光晶体的所述第二表面进行反向加压时,电光效应使得Y方向偏振光相位超前X方向偏振光相位,合成后的偏振光在经过所述电光晶体后表现为左旋。
此外,还提供一种电光调制设备,包括沿光路设置的玻片和电光晶体,所述电光晶体包括相对设置的第一表面和第二表面;
发射激光依次通过所述玻片和所述电光晶体;
对所述电光晶体的所述第一表面进行正向加压,对所述电光晶体的所述第二表面进行反向加压,其中,对所述电光晶体的所述第一表面进行正向加压和对所述电光晶体的所述第二表面进行反向加压的两个步骤交替进行。
在一个实施例中,所述玻片为四分之一玻片、八分之一玻片或十六分之一玻片。
在一个实施例中,所述电光晶体为BBO晶体、KTP晶体或RTP晶体。
上述电光调制设备可应用于电光调Q、电光腔倒空、再生放大器或腔外电光开关中。
此外,还提供一种再生放大器,包括沿光路依次设置的第一偏振片、隔离器、第二偏振片、玻片、电光晶体和第一腔镜,以及沿所述第二偏振片的反射光路方向依次设置的增益介质和第二腔镜,所述电光晶体包括相对设置的第一表面和第二表面;
对所述电光晶体的所述第一表面进行正向加压,对所述电光晶体的所述第二表面进行反向加压,其中,对所述电光晶体的所述第一表面进行正向加压和对所述电光晶体的所述第二表面进行反向加压的两个步骤交替进行。
在一个实施例中,所述玻片为四分之一玻片、八分之一玻片或十六分之一玻片。
上述电光调制方法,对电光晶体的第一表面进行正向加压时,电光效应使得X方向偏振光相位超前Y方向偏振光相位,合成后的偏振光在经过电光晶体后表现为右旋。对电光晶体的第二表面进行反向加压时,电光效应使得Y方向偏振光相位超前X方向偏振光相位,合成后的偏振光在经过电光晶体后表现为左旋。这样经过电光晶体的激光偏振态的旋转方向是交替变化的,从而改变激光输出方向。这种方式的好处在于,有效降低了加载到电光晶体上的高压值,或者说在相同的高压和晶体长度下,可以允许更大的晶体通光孔径。从而降低了电光开关驱动装置的制作难度,并且可以将激光工作频率提高到MHz范围。且该电光调制方法操作简单。
上述电光调制设备,通过对电光晶体的两个表面交替进行正向和反向加压,从而改变激光输出方向,可以有效降低了加载到电光晶体上的高压值,或者说在相同的高压和晶体长度下,可以允许更大的晶体通光孔径。从而降低了电光开关驱动装置的制作难度,并且可以将激光工作频率提高到MHz范围。
附图说明
图1为电光晶体施加正向电压时,偏振光经过后相位变化示意图;
图2为电光晶体施加反向电压时,偏振光经过后相位变化示意图;
图3为传统的电光调制方法实现激光脉冲传播方向变化示意图;
图4为本发明的电光调制方法实现激光脉冲传播方向变化示意图;
图5为一实施方式的再生放大器一个阶段的结构示意图;
图6为图5所示的再生放大器另一个阶段的结构示意图;
图7为图5所示的再生放大器又一个阶段的结构示意图;
图8为图5至图7所示的再生放大器的工作时序图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清晰,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一实施方式的电光调制方法,包括以下步骤:
S10、发射激光依次通过玻片和电光晶体,电光晶体包括相对设置的第一表面和第二表面。
其中,玻片可以为四分之一玻片、八分之一玻片或十六分之一玻片。可以理解,玻片不限于上述三种玻片。
电光晶体可以为BBO晶体、KTP晶体或RTP晶体。
S20、对电光晶体的第一表面进行正向加压,对电光晶体的第二表面进行反向加压,其中,对电光晶体的第一表面进行正向加压和对电光晶体的第二表面进行反向加压的两个步骤交替进行。即对电光晶体的两个相对面进行正向和反向交替加压。
S20中,正向和反向加压和撤压的时间根据实际需要确定。
上述电光调制方法,请同时参考图1,入射电光晶体之前的线偏振光可分解为两个同相位正交线偏振光30和线偏振光28。对电光晶体的第一表面进行正向加压时,电光效应使得X方向偏振光相位超前Y方向偏振光相位,如线偏振光29和线偏振光27,合成后的偏振光在经过电光晶体后表现为右旋。请同时参考图2,对电光晶体的第二表面进行反向加压时,电光效应使得Y方向偏振光相位超前X方向偏振光相位,如线偏振光35和线偏振光31,合成后的偏振光在经过电光晶体后表现为左旋。这样经过电光晶体的激光偏振态的旋转方向是交替变化的。这种方式的好处在于,有效降低了加载到电光晶体上的高压值,或者说在相同的高压和晶体长度下,可以允许更大的晶体通光孔径。从而降低了电光开关驱动装置的制作难度,并且可以将激光工作频率提高到MHz范围。
图3是传统的改变激光输出方向,控制激光开关的调制方式。P偏振态的激光5入射到第一偏振片1,偏振态保持不变。电光晶体3未加1/2波长高压时,P偏振态的激光5完全透射通过第二偏振片4,得到P偏振光8。当向电光晶体3施加1/2波长高压时,P偏振态的激光5经过电光晶体3时,P偏振态的激光5变为S偏振光7,在第二偏振片4被全部反射出去。因此,通过对电光晶体3施加或撤销1/2波长高压可以实现激光方向的变化。以(3×3×20)mm3尺寸的BBO晶体为例,1064nm二分之一波长高压Vλ/2=8000V,这对于普克尔驱动器输出功率较高,很难在高重频下使用。
此外,还提供一实施方式的电光调制设备,包括沿光路设置的玻片和电光晶体,电光晶体包括相对设置的第一表面和第二表面。
发射激光依次通过玻片和电光晶体。
对电光晶体的第一表面进行正向加压,对电光晶体的第二表面进行反向加压,其中,对电光晶体的第一表面进行正向加压和对电光晶体的第二表面进行反向加压的两个步骤交替进行。
可以理解,玻片可以为四分之一玻片、八分之一玻片或十六分之一玻片等。
可以理解,电光晶体可以为BBO晶体、KTP晶体或RTP晶体等。
具体的,图4为一实施方式的改变激光输出方向,控制激光开关的调制方式的电光调制设备。P偏振态的激光5入射到第一偏振片1,偏振态保持不变,经过四分之一玻片2后,P偏振态的激光5变为圆偏振光6,将圆偏振光6分解为相互正交的线偏振态Ex和Ey,二者相位差δ=π/2。如果Ex相位超前Ey,则Ex=AxCos(ωt+π/2),Ey=AyCos(ωt),那么此时为右旋圆偏振光。当向电光晶体3施加正向四分之一波长电压时,圆偏振光6经过电光晶体3,偏振态发生右旋,也就是说Ex相对于Ey又增加π/2的相位,因此圆偏振光6变为S偏振光7,S偏振光7被第二偏振片4完全反射。
当向电光晶体3施加反向四分之一波长电压时,圆偏振光6经过电光晶体3,偏振态发生左旋,也就是说Ex相对于Ey减少π/2的相位,抵消了初始圆偏振光6产生的Ex相对于Ey超前的π/2相位,因此圆偏振光6变为P偏振光8,P偏振光8完全透射经过第二偏振片4。
可以看出,利用对电光晶体施加不同方向电压而产生的偏振态左旋和右旋的特点,通过在电光晶体的激光入射方向的前方设置四分之一玻片,并通过对电光晶体施加四分之一波长电压,就可以实现激光偏振态的从P偏振态到S偏振态的变化,从而改变激光输出方向。而无需施加更高的二分之一波长电压以实现上述激光输出方向的改变。对电光晶体施加的电压改为四分之一电压后,施加在BBO晶体上的高压值Vλ/4=4000V,对于现有的普克尔驱动及高压电路很容易实现。
上述电光调制设备可应用于电光调Q,电光腔倒空,再生放大,腔外电光开关中。
下面为一个具体实施例。
基于电光腔倒空原理的再生放大器在皮秒和飞秒激光的小信号放大过程中具有重要的应用价值,将信号脉冲导入再生腔内,经多次往返,可将脉冲能量为皮焦或纳焦量级的脉冲放大106倍左右。目前再生放大器多采用BBO晶体作为电光晶体,采用四分之一波长电压。图5为一实施方式的再生放大器,包括沿光路依次设置的第一偏振片11、隔离器12、第二偏振片13、玻片14、电光晶体15和第一腔镜16,以及沿第二偏振片13的反射光路方向依次设置的增益介质17和第二腔镜18,电光晶体15包括相对设置的第一表面和第二表面。
对电光晶体15的第一表面进行正向加压,对电光晶体15的第二表面进行反向加压,其中,对电光晶体15的第一表面进行正向加压和对电光晶体15的第二表面进行反向加压的两个步骤交替进行。在图5所示的再生放大器中的玻片14为八分之一玻片,施加于电光晶体15的电压为八分之一电压。可以理解,玻片14也可以为十六分之一等其他玻片,此时,施加于电光晶体15的电压也进行相应调整。
具体的,请参考图5,入射信号光21为P偏振光,依次经过第一偏振片11,隔离器12,第二偏振片13后偏振态保持不变,经过八分之一玻片14后,P偏振光变为椭圆偏振光,正交分解后的Ex和Ey相位差为π/4,通过合理放置八分之一玻片14的角度,使得Ex相位超前Ey相位π/4,此时到普克尔盒的电光晶体15之前的激光为右旋椭圆偏振光23。
第一阶段,未开始放大:请参考图5,此时电光晶体15加压为正向1/8波长电压,那么右旋椭圆偏振光23经过电光晶体15时,Ex相对于Ey又增加π/4的相位。此时Ex相对于Ey已经超前相位π/2。因此,从电光晶体15出射的激光为右旋圆偏振光24。经第一腔镜16反射后,再次到达电光晶体15。此时电光晶体15仍处于正向高压状态。右旋圆偏振光24经过普克尔盒的电光晶体15后,Ex相对于Ey第三次增加π/4的相位,变为右旋椭圆偏振光23。之后经过八分之一玻片14,Ex相对于Ey第四次增加π/4的相位,激光变为S偏振态的线偏振光25。此时,Ex相对Ey相位已经超前π。线偏振光25从第二偏振片13反射,经过激光增益介质17被放大一次,之后被第二腔镜18反射,再经过激光增益介质17第二次被放大。之后被第二偏振片13反射,依次经过八分之一玻片14,电光晶体15,经第一腔镜16反射后,再次到达电光晶体15,之后是八分之一玻片14。在整个往返过程中,电光晶体15始终处于正向加压状态,此时Ex相对Ey相位已经超前2π,因此从八分之一玻片14出射后的激光为P偏振光22,通过隔离器12后,变为S偏振光26,然后S偏振光26被第一偏振片11反射。因此在未放大阶段,入射信号光21两次经过激光增益介质17放大后,便从腔内反射出去。
第二阶段,再生放大:请参考图6,通过调节延时,腔内的信号光33第二次出射电光晶体15时(即参照于图6中的向右传播),电光晶体15撤掉正向1/8高压,同时加反向1/8波长电压。此时反射的信号光往返经过激光增益介质17,第二腔镜18后,再次经过第二偏振片13,经过八分之一玻片14后,Ex超前Ey相位为π/4,S偏振光变为右旋椭圆偏振光,此时电光晶体15已经为反向1/8波长电压,激光经过电光晶体15后,Ex超前Ey的π/4被完全抵消,因此从电光晶体15出射的激光为S偏振态的线偏振光24,经第一腔镜16反射后,依次经过电光晶体15,八分之一玻片14后,偏振态依然是S偏振态。
也就是说,加反向1/8高压的普克尔盒电光晶体15与八分之一玻片14的组合,等效为没有相位延迟的透明介质,不改变激光偏振态。因此S偏振态的信号光可以在腔内多次往返,实现再生放大。
第三阶段,放大脉冲的导出:请参考图7,在电光晶体15反向加压一定时间后,腔内信号脉冲被放大到足够的能量,因此可以将脉冲导出到腔外。同样,在腔内信号光43出射电光晶体15时(即参照于图7中的向右传播),电光晶体15撤掉反向1/8高压,同时加正向1/8波长电压。此时反射的信号光往返经过激光增益介质17,第二腔镜18后,再次经过第二偏振片13,经过八分之一玻片14后,Ex超前Ey相位为π/4,S偏振光变为右旋椭圆偏振光,此时电光晶体15已经为正向1/8波长电压,激光经过电光晶体15后,此时Ex再次超前Ey相位π/4,因此,从电光晶体15出射的激光44变为右旋的圆偏振光,经第一腔镜16反射后,依次经过电光晶体15、八分之一玻片14后,Ex已经超前Ey相位π,激光变为P偏振态,P偏振光42完全透射经过第二偏振片13,经过隔离器12后,变为S偏振态,然后被第一偏振片11完全反射出去。
以上三个阶段便完成了一个信号光脉冲的再生放大过程。图8是电光晶体加压时序及激光脉冲状态示意图。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种电光调制方法,其特征在于,包括以下步骤:
发射激光依次通过玻片和电光晶体,所述电光晶体包括相对设置的第一表面和第二表面;
对所述电光晶体的所述第一表面进行正向加压,对所述电光晶体的所述第二表面进行反向加压,其中,对所述电光晶体的所述第一表面进行正向加压和对所述电光晶体的所述第二表面进行反向加压的两个步骤交替进行。
2.如权利要求1所述的电光调制方法,其特征在于,所述玻片为四分之一玻片、八分之一玻片或十六分之一玻片。
3.如权利要求1所述的电光调制方法,其特征在于,所述电光晶体为BBO晶体、KTP晶体或RTP晶体。
4.如权利要求1所述的电光调制方法,其特征在于,对所述电光晶体的所述第一表面进行正向加压时,电光效应使得X方向偏振光相位超前Y方向偏振光相位,合成后的偏振光在经过所述电光晶体后表现为右旋;
对所述电光晶体的所述第二表面进行反向加压时,电光效应使得Y方向偏振光相位超前X方向偏振光相位,合成后的偏振光在经过所述电光晶体后表现为左旋。
5.一种电光调制设备,其特征在于,包括沿光路设置的玻片和电光晶体,所述电光晶体包括相对设置的第一表面和第二表面;
发射激光依次通过所述玻片和所述电光晶体;
对所述电光晶体的所述第一表面进行正向加压,对所述电光晶体的所述第二表面进行反向加压,其中,对所述电光晶体的所述第一表面进行正向加压和对所述电光晶体的所述第二表面进行反向加压的两个步骤交替进行。
6.如权利要求5所述的电光调制设备,其特征在于,所述玻片为四分之一玻片、八分之一玻片或十六分之一玻片。
7.如权利要求5所述的电光调制设备,其特征在于,所述电光晶体为BBO晶体、KTP晶体或RTP晶体。
8.一种如权利要求5至7任一项所述的电光调制设备在电光调Q、电光腔倒空、再生放大器或腔外电光开关中的应用。
9.一种再生放大器,其特征在于,包括沿光路依次设置的第一偏振片、隔离器、第二偏振片、玻片、电光晶体和第一腔镜,以及沿所述第二偏振片的反射光路方向依次设置的增益介质和第二腔镜,所述电光晶体包括相对设置的第一表面和第二表面;
对所述电光晶体的所述第一表面进行正向加压,对所述电光晶体的所述第二表面进行反向加压,其中,对所述电光晶体的所述第一表面进行正向加压和对所述电光晶体的所述第二表面进行反向加压的两个步骤交替进行。
10.如权利要求9所述的再生放大器,其特征在于,所述玻片为四分之一玻片、八分之一玻片或十六分之一玻片。
CN201811358128.XA 2018-11-15 2018-11-15 一种电光调制方法、电光调制设备及其应用和再生放大器 Pending CN109254424A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811358128.XA CN109254424A (zh) 2018-11-15 2018-11-15 一种电光调制方法、电光调制设备及其应用和再生放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811358128.XA CN109254424A (zh) 2018-11-15 2018-11-15 一种电光调制方法、电光调制设备及其应用和再生放大器

Publications (1)

Publication Number Publication Date
CN109254424A true CN109254424A (zh) 2019-01-22

Family

ID=65043052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811358128.XA Pending CN109254424A (zh) 2018-11-15 2018-11-15 一种电光调制方法、电光调制设备及其应用和再生放大器

Country Status (1)

Country Link
CN (1) CN109254424A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842014A (zh) * 2019-03-13 2019-06-04 山东大学 一种结构紧凑的单频脉冲拉曼激光器
CN111900607A (zh) * 2020-08-08 2020-11-06 苏州快光科技有限公司 一种利用电光驱动及电光晶体的分光系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752931A (en) * 1986-08-04 1988-06-21 Lightwave Electronics Co. Pulse shaper for an electro-optically Q-switched seeded laser
US5001716A (en) * 1990-03-28 1991-03-19 Spectra Physics, Inc. Tunable electro-optic Q-switch, and lasers using same
JPH08201743A (ja) * 1995-01-31 1996-08-09 Sony Corp 光変調方法及び装置
US5640239A (en) * 1994-06-27 1997-06-17 Canon Kabushiki Kaisha Optical device and displacement information measurement apparatus using the same
CN102646921A (zh) * 2012-04-16 2012-08-22 北京国科世纪激光技术有限公司 钕玻璃再生放大器
CN106025783A (zh) * 2016-06-06 2016-10-12 中国工程物理研究院应用电子学研究所 一种快速切换偏振态的调q脉冲激光器
CN106253043A (zh) * 2016-08-31 2016-12-21 中国科学院半导体研究所 一种时域包络形貌可调的猝发脉冲激光再生放大器
CN209297063U (zh) * 2018-11-15 2019-08-23 北京莱泽光电技术有限公司 一种电光调制设备和再生放大器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752931A (en) * 1986-08-04 1988-06-21 Lightwave Electronics Co. Pulse shaper for an electro-optically Q-switched seeded laser
US5001716A (en) * 1990-03-28 1991-03-19 Spectra Physics, Inc. Tunable electro-optic Q-switch, and lasers using same
US5640239A (en) * 1994-06-27 1997-06-17 Canon Kabushiki Kaisha Optical device and displacement information measurement apparatus using the same
JPH08201743A (ja) * 1995-01-31 1996-08-09 Sony Corp 光変調方法及び装置
CN102646921A (zh) * 2012-04-16 2012-08-22 北京国科世纪激光技术有限公司 钕玻璃再生放大器
CN106025783A (zh) * 2016-06-06 2016-10-12 中国工程物理研究院应用电子学研究所 一种快速切换偏振态的调q脉冲激光器
CN106253043A (zh) * 2016-08-31 2016-12-21 中国科学院半导体研究所 一种时域包络形貌可调的猝发脉冲激光再生放大器
CN209297063U (zh) * 2018-11-15 2019-08-23 北京莱泽光电技术有限公司 一种电光调制设备和再生放大器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842014A (zh) * 2019-03-13 2019-06-04 山东大学 一种结构紧凑的单频脉冲拉曼激光器
CN111900607A (zh) * 2020-08-08 2020-11-06 苏州快光科技有限公司 一种利用电光驱动及电光晶体的分光系统

Similar Documents

Publication Publication Date Title
US5640406A (en) Birefringence compensated laser architecture
KR101875992B1 (ko) 100 테라와트 초과의 피크 전력 및 고 콘트라스트를 갖는 레이저원
CN106415949B (zh) 法向入射安装多晶tm:ii-vi族材料的中红外克尔透镜锁模激光器和控制多晶tm:ii-vi族克尔透镜锁模激光器参数的方法
CN109254424A (zh) 一种电光调制方法、电光调制设备及其应用和再生放大器
CN112542761A (zh) 基于相位偏置的线型腔锁模光纤激光器及控制方法
CN209297063U (zh) 一种电光调制设备和再生放大器
CN102347585B (zh) 一种单向行波环形腔单频准三能级固体激光器
US11228153B2 (en) Pulse slicer in laser systems
CN108767650A (zh) 一种功能复合电光q开关
CN105932535B (zh) 一种具有首脉冲自抑制功能的再生放大器
US5136599A (en) Apparatus and method for increasing the bandwidth of a laser beam
CN106711751B (zh) 一种全固态双波长超快激光器及其工作方法
CN112968341B (zh) 用于宽带超短激光的能量衰减装置
CN213093554U (zh) 一种替代布儒斯特角切割的ln晶体的电光调q开关
CN102723661A (zh) 调q方式快速切变的电光、声光双调q脉冲激光器
Riesbeck et al. A high power laser system at 540 nm with beam coupling by second harmonic generation
CN110932081B (zh) 一种电光调q双波长激光交替同轴输出方法及激光器
US20110110386A1 (en) Q-Switched Laser with Passive Discharge Assembly
US11276980B2 (en) Method and apparatus for repetition rate synchronisation of mode-locked lasers
CN1555111A (zh) 波长可调谐4飞秒超短光脉冲发生器
CN113078540B (zh) 一种重频啁啾脉冲放大激光双压缩输出装置及其实现方法
US20240136784A1 (en) Divided-pulse laser regeneration amplification apparatus and method
CN112164970B (zh) 任意偏振态信号光的光参量放大装置
Phillips et al. Actively mode-locked fiber lasers
CN106773148B (zh) 光学隔离器及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination