CN109254189B - 一种海底电缆耐压试验终端电压计算方法 - Google Patents

一种海底电缆耐压试验终端电压计算方法 Download PDF

Info

Publication number
CN109254189B
CN109254189B CN201811300793.3A CN201811300793A CN109254189B CN 109254189 B CN109254189 B CN 109254189B CN 201811300793 A CN201811300793 A CN 201811300793A CN 109254189 B CN109254189 B CN 109254189B
Authority
CN
China
Prior art keywords
cable
voltage
phase
submarine
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811300793.3A
Other languages
English (en)
Other versions
CN109254189A (zh
Inventor
黄烜城
储海军
刘涛
黄涛
潘文霞
朱正鼎
孙凯
谢晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Jiangsu Electric Power Co Ltd
Jiangsu Fangtian Power Technology Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Jiangsu Electric Power Co Ltd
Jiangsu Fangtian Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Jiangsu Electric Power Co Ltd, Jiangsu Fangtian Power Technology Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201811300793.3A priority Critical patent/CN109254189B/zh
Publication of CN109254189A publication Critical patent/CN109254189A/zh
Application granted granted Critical
Publication of CN109254189B publication Critical patent/CN109254189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本发明提供一种海底电缆耐压试验终端电压计算方法,由于容升效应,常用集总参数电路计算海底电缆末端电压时误差较大,因此选用分布参数电路来等效电缆模型。首先根据长线方程推导出计及电缆两端边界条件的沿线电压计算公式,然后考虑最外层铠装和另外两相电缆的影响,结合三相电缆不同层之间的电容等效模型,得到任一相电缆的线芯自电纳Bcc和线芯和护套之间的电纳Bcs的关系,最后提出一种在电缆末端并联一个等效电容C的方法来准确计算出电缆终端电压。

Description

一种海底电缆耐压试验终端电压计算方法
技术领域
本发明涉及海底电缆耐压试验时终端电压的测量领域,具体而言涉及一种海底电缆耐压试验过程电压计算方法。
背景技术
电缆终端电压是海底电缆耐压试验的重要指标,在长电缆交流耐压试验过程中,为避免由于容升效应导致的被试品受到过高的电压作用,需要准确计算海缆终端电压,以能够确保耐压试验的接线方案的安全性、有效性。
由于大长度、高电压海底电缆耐压试验时终端电压难以直接测量,而且在海底电缆中常用的集总参数电路计算法会产生较大误差,因此目前急需一种能够准确计算电缆终端电压的方法。
发明内容
本发明目的在于提供一种海底电缆耐压试验过程电压计算方法,能够准确计算海缆交流耐压试验时的终端电压。
为达成上述目的,结合图1至图3,本发明提出一种海底电缆耐压试验终端电压计算方法,所述方法包括以下步骤:
S1:根据海底电缆分布参数模型,求出电缆沿线电压计算公式为:
Figure BDA0001852337970000011
其中,将x看作电缆上任意一点距离末端的长度,设电缆始端接有内阻为Zin(s)的电压源Us(s),电缆末端接阻抗Z(s),λ为电缆的长度,Z0(s)为线路的特性阻抗,
Figure BDA0001852337970000012
Figure BDA0001852337970000013
γ(s)是线路传播传播常数,
Figure BDA0001852337970000014
G是电缆的电导,S=jω;
S2:根据三相电缆各层电压分布,结合不同层之间的电容等效模型,求出任一相电缆的线芯自电纳BCC
S3:根据BCC求出等效电容C,将等效电容并联到电缆终端,根据电缆沿线电压计算公式求出电缆末端电压。
进一步的实施例中,步骤S1中,根据海底电缆分布参数模型,求出电缆沿线电压计算公式的方法包括以下步骤:
S11:建立海底电缆分布参数模型,由于电缆中的漏电流非常小所以电导G可以忽略不计,分布参数计算公式为:
Figure BDA0001852337970000021
其中,ω=2πf为角频率,rc和rS分别为电缆的缆芯外半径和屏蔽层内半径,a和b是电缆的绝缘层的内半径和外半径,ρc是电缆的缆芯电阻率,μ0为真空磁导率,ε为绝缘层的介电常数;
S12:将x看作电缆上任意一点距离末端的长度,通过海底电缆分布参数模型,以得到均匀传输线的方程为:
Figure BDA0001852337970000022
在零初始条件下,对上述均匀传输线方程做拉普拉斯变换可得:
Figure BDA0001852337970000023
S13:求解步骤S12中的方程得到长线方程为:
Figure BDA0001852337970000024
其中,A和B由边界条件决定,Z0(s)为线路的特性阻抗,
Figure BDA0001852337970000025
γ(s)是线路传播传播常数,
Figure BDA0001852337970000026
S14:设电缆始端接有内阻为Zin(s)的电压源Us(s),电缆末端接阻抗Z(s),可以得到边界条件为:
Figure BDA0001852337970000027
S15:将边界条件代入到长线方程,由网络函数的定义及性质可知,如果传输线的激励源是一个正弦信号,那么用替换网络函数中的变量S,上述等式可用于分析线路上的正弦电压,其中ω是电源角频率ω=2πf,因此电缆沿线电压分布为:
Figure BDA0001852337970000028
其中,λ为电缆的长度。
进一步的实施例中,步骤S2中,所述任一相电缆的线芯自电纳BCC满足下述公式:
Bcc=10Bcs
其中,Bcs为单相电缆的电纳,Bcc为三相电缆中线芯的自纳电。
在步骤S02中,电缆的三个护套和铠装都是接地的,护套和铠装的电压为0,所以护套铠装之间的电容不考虑,电缆线芯的接地回路电流为:
Ic1=Ic1a1+Ic1a2+Ic1a3+Ic1c2+Ic1c3+Ic1s1+Ic1s2+Ic1s3
其中:Iciaj是电缆i和j的线芯和铠装之间的电流,Icisj是电缆i和j线芯和护套之间的电流,Icicj是电缆i和j的线芯之间的电流。
根据上式可得:
Figure BDA0001852337970000031
其中:Vci是电缆i线芯对地电压,Vsi是电缆i护套对地电压,Vai是电缆i铠装层对地电压,Bcicj是电缆i线芯和电缆j线芯的互电纳,Bcisj是电缆i线芯和电缆j护套的互电纳,Bciaj是电缆i线芯和电缆j铠装的互电纳。
因为电缆的护套和铠装对地电压为0,所以Vai和Vsi等于0。所以:
Figure BDA0001852337970000032
可以得到线芯1的自电纳为:
Bc1c1=Bc1a1+Bc1a2+Bc1a3+Bc1c2+Bc1c3+Bc1s1+Bc1s2+Bc1s3
因为电缆线芯和铠装之间的电容等于电缆线芯和任意外护套的电容,所以:
Bc1a1=Bc1a2=Bc1a3=Bc1s1=Bc1s2=Bc1s3=Bcs
任意两个电缆线芯之间的电容为:
Bcicj=2Bcs
所以,Bc1c1=10Bcs
进一步的实施例中,步骤S3中,根据BCC求出等效电容C,将等效电容并联到电缆终端,根据电缆沿线电压计算公式求出电缆末端电压的方法包括以下步骤:
由于单相电缆的电纳为Bcs,三相电缆中线芯的自电纳为Bc1c1=10Bcs,所以,在电缆每一相末端并联一个电容器C,C=9·Ccs·l,则电缆末端阻抗表示为:Z=1/jωC;
将末端阻抗代入到电缆沿线电压计算公式,得到终端电压为:
Figure BDA0001852337970000033
其中,λ为电缆的长度。
以上本发明的技术方案,与现有相比,其显著的有益效果在于,可以直接根据交流耐压时电缆试验电压和试验频率,准确计算耐压试验时电缆终端电压。
应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。另外,所要求保护的主题的所有组合都被视为本公开的发明主题的一部分。
结合附图从下面的描述中可以更加全面地理解本发明教导的前述和其他方面、实施例和特征。本发明的其他附加方面例如示例性实施方式的特征和/或有益效果将在下面的描述中显见,或通过根据本发明教导的具体实施方式的实践中得知。
附图说明
附图不意在按比例绘制。在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:
图1是本发明的海底电缆耐压试验终端电压计算方法的流程图。
图2是本发明的海底电缆耐压试验终端电压计算方法的原理图。
图3是本发明的三相电缆不同层电容等效模型图。
具体实施方式
为了更了解本发明的技术内容,特举具体实施例并配合所附图式说明如下。
在本公开中参照附图来描述本发明的各方面,附图中示出了许多说明的实施例。本公开的实施例不必定义在包括本发明的所有方面。应当理解,上面介绍的多种构思和实施例,以及下面更加详细地描述的那些构思和实施方式可以以很多方式中任意一种来实施,这是因为本发明所公开的构思和实施例并不限于任何实施方式。另外,本发明公开的一些方面可以单独使用,或者与本发明公开的其他方面的任何适当组合来使用。
三相220KV海底电缆长度分别为A相29.210km、B相28.913km、C相28.750km,耐压试验的试验频率为29Hz,试验电压为217KV,电缆的线芯外半径为0.0242m,屏蔽层内半径为0.05255m,电缆的绝缘层内半径为0.02652m,外半径为0.05155m,电缆的缆芯电阻率为1.75×10^(-8)Ω·m,真空磁导率为4π×10^(-7)H/m,绝缘层的介电常数为2.3×8.85×10^(-12)F/m。
采用上述海底电缆耐压试验终端电压计算方法,通过计算可以得到A相电缆末端并联的电容为50.59μF、B相电缆末端并联的电容为50.07μF、C相电缆末端并联的电容为49.79μF,根据终端电压计算公式可得A相电缆终端电压为221.71KV,B相电缆终端电压为221.61KV,C相电缆终端为221.56KV。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

Claims (4)

1.一种海底电缆耐压试验终端电压计算方法,其特征在于,所述方法包括以下步骤:
S1:根据海底电缆分布参数模型,求出电缆沿线电压计算公式为:
Figure FDA0003226352990000011
其中,将x看作电缆上任意一点距离末端的长度,设电缆始端接有内阻为Zin(s)的电压源Us(s),电缆末端接阻抗Z(s),λ为电缆的长度,Z0(s)为线路的特性阻抗,
Figure FDA0003226352990000012
γ(s)是线路传播传播常数,
Figure FDA0003226352990000013
G是电缆的电导,S=jω;
S2:根据三相电缆各层电压分布,结合不同层之间的电容等效模型,求出任一相电缆的线芯自电纳BCC
S3:根据BCC求出等效电容C,将等效电容并联到电缆终端,根据电缆沿线电压计算公式求出电缆末端电压。
2.根据权利要求1所述的海底电缆耐压试验终端电压计算方法,其特征在于,步骤S1中,根据海底电缆分布参数模型,求出电缆沿线电压计算公式的方法包括以下步骤:
S11:建立海底电缆分布参数模型,其中,分布参数计算公式为:
Figure FDA0003226352990000014
其中,ω=2πf为角频率,rc和rS分别为电缆的缆芯外半径和屏蔽层内半径,a和b是电缆的绝缘层的内半径和外半径,ρc是电缆的缆芯电阻率,μ0为真空磁导率,ε为绝缘层的介电常数;
S12:将x看作电缆上任意一点距离末端的长度,通过海底电缆分布参数模型,以得到均匀传输线的方程为:
Figure FDA0003226352990000015
在零初始条件下,对上述均匀传输线方程做拉普拉斯变换可得:
Figure FDA0003226352990000016
S13:求解步骤S12中的方程得到长线方程为:
Figure FDA0003226352990000021
其中,A和B由边界条件决定,Z0(s)为线路的特性阻抗,
Figure FDA0003226352990000022
γ(s)是线路传播传播常数,
Figure FDA0003226352990000023
S14:设电缆始端接有内阻为Zin(s)的电压源Us(s),电缆末端接阻抗Z(s),可以得到边界条件为:
Figure FDA0003226352990000024
S15:将边界条件代入到长线方程,用jω替换网络函数中的变量S,得到电缆沿线电压分布为:
Figure FDA0003226352990000025
其中,λ为电缆的长度。
3.根据权利要求1所述的海底电缆耐压试验终端电压计算方法,其特征在于,步骤S2中,所述任一相电缆的线芯自电纳BCC满足下述公式:
Bcc=10Bcs
其中,Bcs为单相电缆的电纳,Bcc为三相电缆中线芯的自电纳。
4.根据权利要求3所述的海底电缆耐压试验终端电压计算方法,其特征在于,步骤S3中,根据BCC求出等效电容C,将等效电容并联到电缆终端,根据电缆沿线电压计算公式求出电缆末端电压的方法包括以下步骤:
在电缆每一相末端并联一个电容器C’,C’=9·Ccs·l,则电缆末端阻抗表示为:Z=1/jωC’;
将末端阻抗代入到电缆沿线电压计算公式,得到终端电压为:
Figure FDA0003226352990000026
其中,λ为电缆的长度。
CN201811300793.3A 2018-11-02 2018-11-02 一种海底电缆耐压试验终端电压计算方法 Active CN109254189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811300793.3A CN109254189B (zh) 2018-11-02 2018-11-02 一种海底电缆耐压试验终端电压计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811300793.3A CN109254189B (zh) 2018-11-02 2018-11-02 一种海底电缆耐压试验终端电压计算方法

Publications (2)

Publication Number Publication Date
CN109254189A CN109254189A (zh) 2019-01-22
CN109254189B true CN109254189B (zh) 2021-10-08

Family

ID=65044737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811300793.3A Active CN109254189B (zh) 2018-11-02 2018-11-02 一种海底电缆耐压试验终端电压计算方法

Country Status (1)

Country Link
CN (1) CN109254189B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110046322B (zh) * 2019-04-02 2023-10-03 河海大学 一种长电缆耐压试验线芯电压解析计算方法
CN113253068A (zh) * 2021-05-13 2021-08-13 江苏方天电力技术有限公司 一种大长度高压电缆直流耐压试验后放电方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204651928U (zh) * 2015-04-08 2015-09-16 广西诺思贝电气股份有限公司 配电网低压线路的无功协同补偿系统
CN108614166A (zh) * 2016-12-09 2018-10-02 中国电力科学研究院 半波长输电线路稳态过电压最大值位置的计算方法及系统
CN107202937A (zh) * 2017-06-09 2017-09-26 中国南方电网有限责任公司超高压输电公司检修试验中心 一种海底电缆参数检测方法
CN107478954B (zh) * 2017-08-16 2019-08-06 河海大学 一种基于分布参数模型的超特高压系统电晕损耗计算方法

Also Published As

Publication number Publication date
CN109254189A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
CN106771627B (zh) 一种建立多芯屏蔽动力电缆频变多导体传输线模型的方法
Pagnetti et al. An improved method for the calculation of the internal impedances of solid and hollow conductors with the inclusion of proximity effect
CN105243197B (zh) 基于有限元仿真和等效电路的单芯电力电缆谐振分析方法
CN107005210B (zh) 用于改善车辆的电气驱动装置的组件的电磁兼容性的滤波器
CN109254189B (zh) 一种海底电缆耐压试验终端电压计算方法
Gustavsen et al. A finite-element approach for calculating electrical parameters of umbilical cables
Candela et al. A model for assessing the magnitude and distribution of sheath currents in medium and high-voltage cable lines
Wagenaars et al. Approximation of transmission line parameters of single-core and three-core XLPE cables
Aloui et al. Fault prelocalization of underground single-phase cables: Modeling and simulation
CN111157915A (zh) 电缆泄漏电流检测方法、装置、存储介质及处理器
CN115453266A (zh) 一种电缆护套环流计算方法、装置、电子设备及存储介质
CN116859182A (zh) 考虑电缆接头的频域反射谱高压电缆缺陷定位方法及系统
Palone et al. Field measurements and model comparison for a very long submarine HV AC three-core cable
Rotgerink et al. Crosstalk modelling of unshielded wire pairs
CN115291057A (zh) 多回路高压电缆故障计算方法、装置、电子设备及介质
Yang et al. On-line monitoring and trending analysis of dielectric losses in cross-bonded high voltage cable systems
Wang et al. A mathematical method for local defects and faults identification of 10 kV three‐core cable based on input impedance spectrum
KR102179618B1 (ko) 3상 송전선로의 절연 열화 진단 방법 및 그의 절연 열화 진단 장치
CN110472366B (zh) 一种载波信号在中压配电网地埋电缆线路传输的解耦方法
Wang et al. Leakage Currents Separation of Cross-bonded Cables Based on Sheath Current Vector Difference
Patel et al. A new transmission line parameter estimation technique and its impact on fault localization
Das et al. Investigations on feasibility of fault detection in underground power cables using SFRA
Kuwabara et al. Calculation of radiated emission from STP cable by chain-parameter-matrix
CN112668215B (zh) 一种船用中压电缆工作特性的建模与分析方法
Shi et al. Effect of the pigtail grounding position on crosstalk to aircraft shielded cables

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant