CN109250803B - Electroplating wastewater treatment device and treatment method - Google Patents

Electroplating wastewater treatment device and treatment method Download PDF

Info

Publication number
CN109250803B
CN109250803B CN201811441562.4A CN201811441562A CN109250803B CN 109250803 B CN109250803 B CN 109250803B CN 201811441562 A CN201811441562 A CN 201811441562A CN 109250803 B CN109250803 B CN 109250803B
Authority
CN
China
Prior art keywords
electroplating wastewater
tank
wastewater
cobalt
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811441562.4A
Other languages
Chinese (zh)
Other versions
CN109250803A (en
Inventor
刘洪波
菅浩然
黄志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yellow River Conservancy Technical Institute
Original Assignee
Yellow River Conservancy Technical Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yellow River Conservancy Technical Institute filed Critical Yellow River Conservancy Technical Institute
Priority to CN201811441562.4A priority Critical patent/CN109250803B/en
Publication of CN109250803A publication Critical patent/CN109250803A/en
Application granted granted Critical
Publication of CN109250803B publication Critical patent/CN109250803B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • C02F1/763Devices for the addition of such compounds in gaseous form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/206Manganese or manganese compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The invention provides an electroplating wastewater treatment device and a treatment method, which comprises a wastewater storage tank, wherein the wastewater storage tank is connected with an oxidation reaction tank, a stirring device is arranged in the oxidation reaction tank, the oxidation reaction tank is connected with a mixing reaction tank, the mixing reaction tank is connected with a filtering tank, and a carbon dioxide introducing device is arranged in the mixing reaction tank. Waste lithium batteries and electroplating wastewater are combined, the content of each metal in the wastewater is regulated and controlled, so that the waste lithium batteries meet the requirements of the lithium batteries, aluminum in the waste batteries is not required to be removed independently, carbon dioxide and sodium metaaluminate are used for reacting to coat the generated nickel-cobalt lithium manganate, the electrochemical performance of the lithium batteries is improved, and finally the electroplating wastewater is discharged up to the standard.

Description

Electroplating wastewater treatment device and treatment method
Technical Field
The invention relates to the field of electroplating wastewater treatment, in particular to an electroplating wastewater treatment device and a treatment method.
Background
The electroplating wastewater mainly comprises wastewater and waste liquid discharged from electroplating factories or workshops, such as plating part rinsing water, waste bath solution, equipment cooling water, ground washing water and the like. Because the plating species is more, the process is complicated, the water quality is complex, the components are not easy to control, the electroplating wastewater mainly contains heavy metal ions such as chromium, nickel, copper and the like, cyanide and the like, and belongs to carcinogenic, teratogenic and mutagenic highly toxic substances, thereby causing great harm to the living environment of human beings and other organisms.
The electroplating wastewater can be generally divided into three types, wherein the first type is chromium-containing electroplating wastewater, the chromium ion concentration in the electroplating wastewater is higher, the second type is cyanogen-containing electroplating wastewater, the cyanide ion concentration in the wastewater is higher, and the third type is general electroplating wastewater, and the wastewater mainly contains a large amount of heavy metal ions.
For example, chinese patent 201110431946X discloses a method for recycling heavy metals from a heavy metal-containing electroplating wastewater treatment agent, which comprises the steps of: the method comprises the steps of enabling the low-concentration electroplating wastewater containing heavy metal ions to pass through ion exchange resin, enabling the heavy metal ions contained in the electroplating wastewater to be completely adsorbed on the ion exchange resin, separating clean water until the adsorption of the ion exchange resin is saturated, adding eluent to enable the heavy metal ions adsorbed on the ion exchange resin to be separated from the ion exchange resin to produce high-concentration electroplating wastewater, then adding a reducing agent into the high-concentration electroplating wastewater to perform reduction reaction to obtain a water-insoluble reduction product containing the heavy metal ions, adding a flocculating agent to accelerate the coagulation of the reduction product, finally separating precipitates by a method such as filtration or centrifugation, and recovering heavy metal substances through high-temperature calcination to serve as useful industrial raw materials.
Alloy plating is an important field of electroplating processes because alloys can combine the advantages of a single metal and have new properties, such as hardness, corrosion resistance, functionality, etc., that a single metal does not possess.
The electroplating process for making diamond bit features that the loose diamond particles are solidified in electroplated layer by electrodeposition of metal, resulting in cutting function of diamond particles. The service life of the diamond drill bit depends on the property of the matrix to a great extent, so the diamond drill bit puts very strict requirements on the performance of the matrix material, and most of ternary alloy coatings used for the diamond drill bit at present are nickel-cobalt-manganese ternary alloys.
The annual average wastewater production amount of the electroplating wastewater industry in China is up to 40 hundred million tons, which accounts for 1/6 of the total industrial wastewater discharge amount, and the components of the generated wastewater are complicated and variable due to the complexity of the electroplating wastewater. At present, most electroplating plants adopt a lime chemical precipitation method as an actual treatment mode for phosphorus-containing wastewater, but the phosphorus concentration of effluent after precipitation treatment is still maintained at 5-10mg/L, which is difficult to reach the standard.
Aiming at electroplating wastewater containing heavy metals and a large amount of phosphorus, the main treatment method at present is a precipitation method, and the method mainly has the following defects: the process is complex, the requirements on subsequent treatment process and environment are high, the purification efficiency is not high, the national discharge standard of electroplating wastewater is difficult to achieve, the investment cost is high, more treatment process steps and treatment devices are needed, a large amount of chemical reagents are consumed in the treatment process, heavy metals in the wastewater are easy to waste, and waste cannot be changed into valuables.
Disclosure of Invention
The invention provides an electroplating wastewater treatment device and a treatment method, wherein electroplating wastewater containing phosphorus, aluminum, cobalt and manganese is treated and recycled with a waste nickel-cobalt-manganese ternary lithium battery, and an aluminum oxide coated nickel-cobalt lithium manganate material is finally prepared so as to improve the recovery rates of heavy metals in the electroplating wastewater and the waste battery.
The technical scheme for realizing the invention is as follows: the utility model provides an electroplating effluent treatment plant, includes the waste water hold up tank, the waste water hold up tank links to each other with the oxidation reaction pond, is equipped with agitating unit in the oxidation reaction pond, and the oxidation reaction pond links to each other with mixed reaction pond, and mixed reaction pond links to each other with the filtering ponds, it lets in the device to be equipped with carbon dioxide in the mixed reaction pond.
The oxidation reaction tank is connected with the chlorine dioxide tank, the hydrogen peroxide tank and the sodium hypochlorite tank.
The method for treating the wastewater of the electroplating wastewater treatment device comprises the following steps:
(a) collecting electroplating wastewater containing phosphorus, aluminum, cobalt and manganese, and storing the electroplating wastewater into a wastewater storage tank;
(b) adding a sodium hydroxide solution into the wastewater, adjusting the pH value of the wastewater, adding a compound oxidant, and performing an oxidation reaction in an oxidation reaction tank;
(c) immersing the waste nickel-cobalt-manganese ternary lithium battery positive electrode piece into acid liquor, taking out the aluminum foil after the positive active material is separated from the aluminum foil current collector, adding a reducing agent into the acid liquor, heating and stirring until the ternary positive electrode material is dissolved, and filtering to obtain filtrate;
(d) mixing the wastewater in the step (b) and the filtrate in the step (c), adjusting the pH value to 1.5-5.0 in a mixed reaction tank, and regulating and controlling the contents of nickel, cobalt and manganese in the mixed solution to make the mixed solution meet the molecular formula LiNixCoyMn1-x-yO2Wherein x is>0,y>0,x+y<1, obtaining a regulating stock solution;
(e) adding sodium hydroxide solution into the regulating stock solution in the step (d) for reaction, and introducing CO after the reaction2Gas, when the aluminum content in the mixed alkali liquor is less than 50ppm, stopping introducing CO2Gas to obtain solid material;
(f) and (e) filtering, washing and drying the solid material obtained in the step (e), adding lithium carbonate after drying, uniformly mixing, and calcining at high temperature to obtain the aluminum oxide coated nickel cobalt lithium manganate material.
The mass concentration of the sodium hydroxide solution in the step (b) is 15-25wt%, and the pH value is adjusted to 7-9.
The compound oxidant in the step (b) is a mixture of chlorine dioxide, hydrogen peroxide and a sodium hypochlorite solution, wherein the mass ratio of the chlorine dioxide to the hydrogen peroxide to the sodium hypochlorite is 1: (1-2): (2-5).
The acid solution in the step (c) comprises hydrochloric acid or sulfuric acid, and the concentration of the acid solution is 0.1-10 mol/L; taking 10g of the positive pole piece of the waste nickel-cobalt-manganese ternary lithium battery as a reference, and the using amount of the acid solution is 0.5-1L.
The reducing agent in the step (c) is hydrogen peroxide, sulfite, bisulfite and thiosulfate, and the concentration of the reducing agent is 0.1-5 mol/L; the method is characterized in that 10g of the waste nickel-cobalt-manganese ternary lithium battery positive pole piece is taken as a reference, and the addition amount of a reducing agent is 0.25-0.5L.
In the step (c), the heating temperature is 30-100 ℃, and the stirring time is 40-120 min.
In the step (e), the mass ratio of the stock solution to the sodium hydroxide solution is regulated to be (20-30) to (70-80), and the mass concentration of the sodium hydroxide solution is 15-25 wt%.
The calcination temperature in the step (e) is 680-720 ℃, and the calcination time is 9-12 h.
The invention has the beneficial effects that:
(1) the method comprises the steps of firstly removing phosphorus in the phosphorus-containing low-concentration wastewater by using a compound oxidant, so that the concentration of the phosphorus in the wastewater is reduced to 2-5mg/L, and adsorbing a part of P again by using sodium metaaluminate generated in the later stage in the process of adjusting by using sodium hydroxide, so that the total phosphorus concentration of effluent meets the discharge standard;
(2) according to the invention, the waste lithium battery and the electroplating wastewater are combined, the content of each metal in the wastewater is regulated and controlled to meet the requirements of the lithium battery, aluminum in the waste battery is not required to be removed independently, the generated nickel cobalt lithium manganate is coated by utilizing the reaction of carbon dioxide and sodium metaaluminate, the electrochemical performance of the lithium battery is improved, and the electroplating wastewater finally reaches the standard and is discharged.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only some embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the drawings without creative efforts.
FIG. 1 is a schematic view of the structure of the present invention.
Detailed Description
The technical solutions of the present invention will be described clearly and completely with reference to the following embodiments of the present invention, and it should be understood that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be obtained by a person skilled in the art without inventive effort based on the embodiments of the present invention, are within the scope of the present invention.
The utility model provides an electroplating effluent treatment plant, includes waste water hold up tank 1, waste water hold up tank 1 links to each other with oxidation reaction tank 2, is equipped with agitating unit in oxidation reaction tank 2, and oxidation reaction tank 2 links to each other with mixed reaction tank 3, and mixed reaction tank 3 links to each other with filtering ponds 4, it lets in device 5 to be equipped with carbon dioxide in the mixed reaction tank 3.
The oxidation reaction tank 2 is connected with a chlorine dioxide tank 6, a hydrogen peroxide tank 7 and a sodium hypochlorite tank 8.
Example 1
An electroplating wastewater comprehensive treatment process comprises the following steps:
(1) collecting electroplating wastewater containing phosphorus, aluminum, cobalt and manganese; wherein the phosphorus content in the electroplating wastewater is 48.9mg/L, the total manganese content is 18.2 mg/L, the total cobalt content is 6.3 mg/L, and the total aluminum content is 7.38 mg/L;
(2) adding a sodium hydroxide solution with the mass concentration of 15wt% in the morning into the wastewater, adjusting the pH value of the wastewater to 7, and adding a compound oxidant, wherein the compound oxidant is a mixture of chlorine dioxide, hydrogen peroxide and a sodium hypochlorite solution, and the mass ratio of the chlorine dioxide, the hydrogen peroxide and the sodium hypochlorite is 1: 1: 2, carrying out an oxidation reaction;
(3) immersing the positive pole piece of the waste nickel-cobalt-manganese ternary lithium battery into a hydrochloric acid solution with the concentration of 0.1mol/L, wherein the use amount of the hydrochloric acid solution is 0.5L on the basis of 10g of the positive pole piece of the waste nickel-cobalt-manganese ternary lithium battery; after the positive electrode active material is separated from the aluminum foil current collector, taking out the aluminum foil, adding hydrogen peroxide with the concentration of 0.1mol/L into acid liquor, heating to 30 ℃, stirring for 120 min until the ternary positive electrode material is dissolved, and filtering to obtain filtrate; taking 10g of the positive pole piece of the waste nickel-cobalt-manganese ternary lithium battery as a reference, wherein the addition amount of the reducing agent is 0.25L;
(4) mixing the wastewater obtained in the step (2) and the filtrate obtained in the step (3), adjusting the pH to 1.5, and regulating and controlling the contents of nickel, cobalt and manganese in the mixed solution to make the nickel, cobalt and manganese meet the molecular formula LiNi0.5Co0.2Mn0.3O2Is regulated and controlledStock solution;
(5) adding sodium hydroxide solution into the regulating stock solution in the step (4) for reaction, wherein the mass ratio of the regulating stock solution to the sodium hydroxide solution is 20:80, the mass concentration of the sodium hydroxide solution is 15wt%, and introducing CO after the reaction2Gas, when the aluminum content in the mixed alkali liquor is less than 50ppm, stopping introducing CO2Gas to obtain solid material;
(6) and (3) filtering, washing and drying the solid material obtained in the step (5), adding lithium carbonate after drying, uniformly mixing, and calcining at high temperature, wherein the calcining temperature is 680 ℃, the calcining time is 12 hours, so as to obtain the aluminum oxide coated nickel cobalt lithium manganate material, and the lithium content in the aluminum oxide coated nickel cobalt lithium manganate material reaches 8 wt%.
Properties of the alumina-coated lithium nickel cobalt manganese oxide Material prepared in example 1
Figure DEST_PATH_IMAGE001
In the embodiment, the content of phosphorus in the wastewater can be reduced to be below 0.5mg/L, the discharge standard of electroplating pollutants is reached, the content of metal ions in the wastewater can be recycled, and finally the wastewater is discharged up to the standard.
Example 2
An electroplating wastewater comprehensive treatment process comprises the following steps:
(1) collecting electroplating wastewater containing phosphorus, aluminum, cobalt and manganese; wherein the phosphorus content in the electroplating wastewater is 48.9mg/L, the total manganese content is 18.2 mg/L, the total cobalt content is 6.3 mg/L, and the total aluminum content is 7.38 mg/L;
(2) adding a sodium hydroxide solution with the mass concentration of 20wt% in the morning into the wastewater, adjusting the pH value of the wastewater to 8, and adding a compound oxidant, wherein the compound oxidant is a mixture of chlorine dioxide, hydrogen peroxide and a sodium hypochlorite solution, and the mass ratio of the chlorine dioxide, the hydrogen peroxide and the sodium hypochlorite is 1: 1.5: 3, carrying out oxidation reaction;
(3) immersing the waste nickel-cobalt-manganese ternary lithium battery positive pole piece into a hydrochloric acid or sulfuric acid solution with the concentration of 5 mol/L, taking out the aluminum foil after the positive active material is separated from the aluminum foil current collector, adding sodium sulfite with the concentration of 3 mol/L into an acid solution, heating to 80 ℃, stirring for 80 min until the ternary positive pole material is dissolved, and filtering to obtain a filtrate; taking 10g of the positive pole piece of the waste nickel-cobalt-manganese ternary lithium battery as a reference, wherein the addition amount of the reducing agent is 0.4L;
(4) mixing the wastewater obtained in the step (2) and the filtrate obtained in the step (3), adjusting the pH to 3.0, and regulating and controlling the contents of nickel, cobalt and manganese in the mixed solution to make the nickel, cobalt and manganese meet the molecular formula LiNi0.5Co0.2Mn0.3O2Obtaining a regulating and controlling stock solution;
(5) adding sodium hydroxide solution into the regulating stock solution in the step (4) for reaction, wherein the mass ratio of the regulating stock solution to the sodium hydroxide solution is 25:75, the mass concentration of the sodium hydroxide solution is 20wt%, and introducing CO after the reaction2Gas, when the aluminum content in the mixed alkali liquor is less than 50ppm, stopping introducing CO2Gas to obtain solid material;
(6) and (3) filtering, washing and drying the solid material obtained in the step (5), adding lithium carbonate after drying, uniformly mixing, and calcining at a high temperature of 700 ℃ for 10 hours to obtain the aluminum oxide coated nickel cobalt lithium manganate material, wherein the lithium content in the aluminum oxide coated nickel cobalt lithium manganate material reaches 7 wt%.
Properties of the alumina-coated lithium nickel cobalt manganese oxide Material prepared in example 2
Figure 334637DEST_PATH_IMAGE002
In the embodiment, the content of phosphorus in the wastewater can be reduced to be below 0.48mg/L, the discharge standard of electroplating pollutants is met, the content of metal ions in the wastewater can be recycled, and finally the wastewater is discharged up to the standard.
Example 3
An electroplating wastewater comprehensive treatment process comprises the following steps:
(1) collecting electroplating wastewater containing phosphorus, aluminum, cobalt and manganese; wherein the phosphorus content in the electroplating wastewater is 48.9mg/L, the total manganese content is 18.2 mg/L, the total cobalt content is 6.3 mg/L, and the total aluminum content is 7.38 mg/L;
(2) adding a sodium hydroxide solution with the mass concentration of 25wt% in the morning into the wastewater, adjusting the pH value of the wastewater to 9, and adding a compound oxidant, wherein the compound oxidant is a mixture of chlorine dioxide, hydrogen peroxide and a sodium hypochlorite solution, and the mass ratio of the chlorine dioxide, the hydrogen peroxide and the sodium hypochlorite is 1: 2: 5, carrying out oxidation reaction;
(3) immersing the anode piece of the waste nickel-cobalt-manganese ternary lithium battery into a hydrochloric acid or sulfuric acid solution with the concentration of 10 mol/L, taking out the aluminum foil after the anode active material is separated from the aluminum foil current collector, adding sodium bisulfite with the concentration of 5 mol/L into the acid solution, heating to 100 ℃, stirring for 40 min until the ternary anode material is dissolved, and filtering to obtain a filtrate; taking 10g of the positive pole piece of the waste nickel-cobalt-manganese ternary lithium battery as a reference, wherein the addition amount of the reducing agent is 0.5L;
(4) mixing the wastewater obtained in the step (2) and the filtrate obtained in the step (3), adjusting the pH to 5.0, and regulating and controlling the contents of nickel, cobalt and manganese in the mixed solution to make the nickel, cobalt and manganese meet the molecular formula LiNi0.6Co0.2Mn0.2O2Wherein x is>0,y>0,x+y<1, obtaining a regulating stock solution;
(5) adding sodium hydroxide solution into the regulating stock solution in the step (4) for reaction, wherein the mass ratio of the regulating stock solution to the sodium hydroxide solution is 30:70, the mass concentration of the sodium hydroxide solution is 25wt%, and introducing CO after the reaction2Gas, when the aluminum content in the mixed alkali liquor is less than 50ppm, stopping introducing CO2Gas to obtain solid material;
(6) and (3) filtering, washing and drying the solid material obtained in the step (5), adding lithium carbonate after drying, uniformly mixing, and calcining at high temperature, wherein the calcining temperature is 720 ℃, the calcining time is 9 hours, so that the nickel-cobalt lithium manganate material coated with the aluminum oxide is obtained, and the lithium content in the nickel-cobalt lithium manganate material coated with the aluminum oxide reaches 7.5 wt%.
Properties of the alumina-coated lithium nickel cobalt manganese oxide Material prepared in example 3
Figure DEST_PATH_IMAGE003
In the embodiment, the content of phosphorus in the wastewater can be reduced to be below 0.35mg/L, the discharge standard of electroplating pollutants is reached, the content of metal ions in the wastewater can be recycled, and finally the wastewater is discharged up to the standard.
The above description is only for the purpose of illustrating the preferred embodiments of the present invention and is not to be construed as limiting the invention, and any modifications, equivalents, improvements and the like that fall within the spirit and principle of the present invention are intended to be included therein.

Claims (9)

1. A method for treating electroplating wastewater is characterized by comprising the following steps: the method comprises the following steps:
(a) collecting electroplating wastewater containing phosphorus, aluminum, cobalt and manganese, and storing the electroplating wastewater into a wastewater storage tank (1);
(b) adding a sodium hydroxide solution into the wastewater, adjusting the pH value of the wastewater, adding a compound oxidant, and performing an oxidation reaction in an oxidation reaction tank (2);
(c) immersing the waste nickel-cobalt-manganese ternary lithium battery positive electrode piece into acid liquor, taking out the aluminum foil after the positive active material is separated from the aluminum foil current collector, adding a reducing agent into the acid liquor, heating and stirring until the ternary positive electrode material is dissolved, and filtering to obtain filtrate;
(d) mixing the wastewater in the step (b) and the filtrate in the step (c), adjusting the pH value in the mixed reaction tank (3) to be 1.5-5.0, and regulating and controlling the contents of nickel, cobalt and manganese in the mixed solution to enable the mixed solution to accord with the molecular formula LiNixCoyMn1-x-yO2Wherein x is>0,y>0,x+y<1, obtaining a regulating stock solution;
(e) adding sodium hydroxide solution into the regulating stock solution in the step (d) for reaction, and introducing CO after the reaction2Gas, when the aluminum content in the mixed alkali liquor is less than 50ppm, stopping introducing CO2Gas to obtain solid material;
(f) filtering, washing and drying the solid material obtained in the step (e), adding lithium carbonate after drying, uniformly mixing, and calcining at high temperature to obtain an aluminum oxide coated nickel cobalt lithium manganate material;
wherein electroplating effluent treatment plant, including waste water hold up tank (1), waste water hold up tank (1) links to each other with oxidation reaction pond (2), is equipped with agitating unit in oxidation reaction pond (2), and oxidation reaction pond (2) link to each other with mixed reaction pond (3), and mixed reaction pond (3) link to each other with filtering ponds (4), it lets in device (5) to be equipped with carbon dioxide in mixed reaction pond (3).
2. The method for treating electroplating wastewater according to claim 1, wherein: the oxidation reaction tank (2) is connected with a chlorine dioxide tank (6), a hydrogen peroxide tank (7) and a sodium hypochlorite tank (8).
3. The method for treating electroplating wastewater according to claim 1, wherein: the mass concentration of the sodium hydroxide solution in the step (b) is 15-25wt%, and the pH value is adjusted to 7-9.
4. The method for treating electroplating wastewater according to claim 1, wherein: the compound oxidant in the step (b) is a mixture of chlorine dioxide, hydrogen peroxide and a sodium hypochlorite solution, wherein the mass ratio of the chlorine dioxide to the hydrogen peroxide to the sodium hypochlorite is 1: (1-2): (2-5).
5. The method for treating electroplating wastewater according to claim 1, wherein: the acid solution in the step (c) comprises hydrochloric acid or sulfuric acid, and the concentration of the acid solution is 0.1-10 mol/L; taking 10g of the positive pole piece of the waste nickel-cobalt-manganese ternary lithium battery as a reference, and the using amount of the acid solution is 0.5-1L.
6. The method for treating electroplating wastewater according to claim 1, wherein: the reducing agent in the step (c) is hydrogen peroxide, sulfite, bisulfite and thiosulfate, and the concentration of the reducing agent is 0.1-5 mol/L; the method is characterized in that 10g of the waste nickel-cobalt-manganese ternary lithium battery positive pole piece is taken as a reference, and the addition amount of a reducing agent is 0.25-0.5L.
7. The method for treating electroplating wastewater according to claim 1, wherein: in the step (c), the heating temperature is 30-100 ℃, and the stirring time is 40-120 min.
8. The method for treating electroplating wastewater according to claim 1, wherein: in the step (e), the mass ratio of the stock solution to the sodium hydroxide solution is regulated to be (20-30) to (70-80), and the mass concentration of the sodium hydroxide solution is 15-25 wt%.
9. The method for treating electroplating wastewater according to claim 1, wherein: the calcination temperature in the step (f) is 680-720 ℃, and the calcination time is 9-12 h.
CN201811441562.4A 2018-11-29 2018-11-29 Electroplating wastewater treatment device and treatment method Active CN109250803B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811441562.4A CN109250803B (en) 2018-11-29 2018-11-29 Electroplating wastewater treatment device and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811441562.4A CN109250803B (en) 2018-11-29 2018-11-29 Electroplating wastewater treatment device and treatment method

Publications (2)

Publication Number Publication Date
CN109250803A CN109250803A (en) 2019-01-22
CN109250803B true CN109250803B (en) 2021-07-30

Family

ID=65042257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811441562.4A Active CN109250803B (en) 2018-11-29 2018-11-29 Electroplating wastewater treatment device and treatment method

Country Status (1)

Country Link
CN (1) CN109250803B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156056B (en) * 2019-04-18 2021-12-28 新疆众和股份有限公司 Method for preparing special alumina by using phosphorus-containing waste liquid generated by corroding aluminum foil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104071887A (en) * 2014-07-14 2014-10-01 南京大学 Compound oxidant for advanced treatment of electroplate phosphorate wastewater and wastewater treatment method
CN104480317A (en) * 2014-11-13 2015-04-01 朱蕾 Cobalt nickel metallurgy wastewater sludge recycling method
CN106785177A (en) * 2017-03-10 2017-05-31 中南大学 A kind of method for being reclaimed from waste and old nickel-cobalt-manganese ternary lithium ion battery, preparing nickel cobalt manganese aluminium quaternary positive electrode
JP2017115179A (en) * 2015-12-22 2017-06-29 日本リサイクルセンター株式会社 Recovery method of valuable substance
CN108172799A (en) * 2017-12-28 2018-06-15 清远佳致新材料研究院有限公司 A kind of tertiary cathode material of nucleocapsid structure lithium ion battery and preparation method thereof
CN108682915A (en) * 2018-05-29 2018-10-19 江苏理工学院 A kind of waste and old nickel-cobalt-manganese ternary lithium battery and silver-nickel are jointly processed by method
CN108862755A (en) * 2018-07-23 2018-11-23 师海荣 A kind of processing method of nickel cyano complex electroplating wastewater
CN108899604A (en) * 2018-06-28 2018-11-27 郑州中科新兴产业技术研究院 Utilize the method for waste lithium cell anode pole piece preparation ternary anode material precursor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104071887A (en) * 2014-07-14 2014-10-01 南京大学 Compound oxidant for advanced treatment of electroplate phosphorate wastewater and wastewater treatment method
CN104480317A (en) * 2014-11-13 2015-04-01 朱蕾 Cobalt nickel metallurgy wastewater sludge recycling method
JP2017115179A (en) * 2015-12-22 2017-06-29 日本リサイクルセンター株式会社 Recovery method of valuable substance
CN106785177A (en) * 2017-03-10 2017-05-31 中南大学 A kind of method for being reclaimed from waste and old nickel-cobalt-manganese ternary lithium ion battery, preparing nickel cobalt manganese aluminium quaternary positive electrode
CN108172799A (en) * 2017-12-28 2018-06-15 清远佳致新材料研究院有限公司 A kind of tertiary cathode material of nucleocapsid structure lithium ion battery and preparation method thereof
CN108682915A (en) * 2018-05-29 2018-10-19 江苏理工学院 A kind of waste and old nickel-cobalt-manganese ternary lithium battery and silver-nickel are jointly processed by method
CN108899604A (en) * 2018-06-28 2018-11-27 郑州中科新兴产业技术研究院 Utilize the method for waste lithium cell anode pole piece preparation ternary anode material precursor
CN108862755A (en) * 2018-07-23 2018-11-23 师海荣 A kind of processing method of nickel cyano complex electroplating wastewater

Also Published As

Publication number Publication date
CN109250803A (en) 2019-01-22

Similar Documents

Publication Publication Date Title
Chen et al. Recovery of precious metals by an electrochemical deposition method
CN109536720A (en) The removal methods of chlorine in a kind of copper-bath
CN101423309B (en) Electroplating waste water and heavy metal double recovery method
CN102851707B (en) The technique of a kind of alkaline leaching remanufacture electrolytic zinc powder and lead powder from smelting ash
CN104787928B (en) A kind of iron content, chromium, the recovery and treatment method of nickel and stainless steel pickle liquor
CN110510768B (en) Combined treatment method of chemical nickel plating wastewater
CN101428933B (en) Biological agent cooperated hydrolyzation-blowing off treatment process for nickel-ammonia wastewater
CN108101163A (en) It is a kind of that valuable metal is recycled from industrial wastewater and drops ammonia nitrogen and the method for COD
CN109439907A (en) A method of iron aluminium is removed from the pickle liquor during recycling used Li ion cell
CN102101733A (en) Method for treating electroplating comprehensive wastewater by scrap iron electrolysis and electrochemical technology
JP2022509811A (en) Battery recycling by injecting hydrogen gas into the leachate
CN103086550A (en) Method for treating desulfurization wastewater by electrolysis
CN107162276A (en) A kind of method for removing chromium of ferric trichloride etching waste liquor
CN103951017B (en) A kind of electrolysis treatment contains cyanogen copper-contained electroplating waste water and reclaims the method for copper
CN108503167B (en) Method for synthesizing water purifying agent by using steel pickling waste liquid
CN112708885A (en) Recycling method and system for copper-etching waste nitric acid
CN102115277A (en) Integral standard processing method of comprehensive electroplating wastewater
CN109250803B (en) Electroplating wastewater treatment device and treatment method
CN109250802B (en) Electroplating wastewater comprehensive treatment process
CN207238736U (en) The processing system of waste brine sludge in production of sodium chlorate
CN109809652A (en) A kind of chemical nickel Wastewater by Electric treatment by catalytic oxidation and system
CN112093818A (en) Method for preparing high-purity zinc sulfate from zinc-containing waste
CN112047546A (en) Treatment process for wastewater containing nitrate nitrogen through anodic oxidation
CN111807573B (en) Treatment device and method for thallium-containing wastewater
KR20040052844A (en) The nickel collecting method from waste nickel fluid and oxidic acid nickel sludge

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant