CN109247924B - 基于柔性应变传感器的脉搏检测器件及脉搏检测方法 - Google Patents

基于柔性应变传感器的脉搏检测器件及脉搏检测方法 Download PDF

Info

Publication number
CN109247924B
CN109247924B CN201811408354.4A CN201811408354A CN109247924B CN 109247924 B CN109247924 B CN 109247924B CN 201811408354 A CN201811408354 A CN 201811408354A CN 109247924 B CN109247924 B CN 109247924B
Authority
CN
China
Prior art keywords
pulse
strain sensor
flexible strain
module
conductive sponge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811408354.4A
Other languages
English (en)
Other versions
CN109247924A (zh
Inventor
孙士斌
刘一潜
常雪婷
唐成吉
孙思华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN201811408354.4A priority Critical patent/CN109247924B/zh
Publication of CN109247924A publication Critical patent/CN109247924A/zh
Application granted granted Critical
Publication of CN109247924B publication Critical patent/CN109247924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明公开了一种基于柔性应变传感器的脉搏检测器件及脉搏检测方法,该脉搏检测器件,其包括:柔性应变传感器、与柔性应变传感器连接的信号放大电路、与信号放大电路连接的单片机、与单片机连接的通讯模块、与通讯模块无线连接的视觉检测模块,及,用于对脉搏检测器件供电的电源模块,其分别与柔性应变传感器、信号放大电路、单片机、通讯模块和视觉检测模块连接;所述视觉检测模块包括脉搏计数系统和OpenCV跨平台计算机视觉库。本发明在人体状态监测方面有良好的性能和有线性,更为安全、环保,不仅能够计算出脉搏跳动数来监测人体健康状态,还能够还原出脉搏的波动形态。

Description

基于柔性应变传感器的脉搏检测器件及脉搏检测方法
技术领域
本发明涉及脉搏检测领域,具体涉及一种基于柔性应变传感器的脉搏检测器件及脉搏检测方法。
背景技术
近几年来,在通信、医疗、电子、环境、军事、能源等方面,高性能柔性电子技术有着举足轻重的作用,尤其是在可穿戴设备、军事武装设备、可伸展传感器等领域,高性能柔性电子技术有着至关重要的影响。柔性应变传感器在健康监护、电子皮肤、植入式医疗设备等方面有许多潜在应用。
在医疗体系中,脉搏是一项非常重要的生理健康参数。可以直观的检测到心跳状态,通过诊测的心跳状态可以了解病人身体的基本状况。随着医疗水平的发展和生活质量的提高,传统汞柱式脉搏血压仪越来越不能满足大众的需求,橡皮材料的部件容易老化需要及时更换,操作步骤繁杂,听辩容易出差错,测量时对患人衣着要求较高。所以现在亟需一种性能可靠、操作简便、价格合理且维护便捷的新型人体脉搏检测仪,可以用于检测人体脉搏的状态。然而,使用单片机对脉搏信号进行计数过程较为复杂,在人体脉搏检测时,环境因素、信号漂移、人体运动产生的杂波等问题都会对最终的结果产生影响。
发明内容
本发明的目的是提供一种基于柔性应变传感器的脉搏检测器件及脉搏检测方法,以解决上述现有技术的问题。
为达到上述目的,本发明提供了一种基于柔性应变传感器的脉搏检测器件,其包括:
柔性应变传感器、与柔性应变传感器连接的信号放大电路、与信号放大电路连接的单片机、与单片机连接的通讯模块、与通讯模块无线连接的视觉检测模块,及,用于对脉搏检测器件供电的电源模块,其分别与柔性应变传感器、信号放大电路、单片机、通讯模块和视觉检测模块连接;所述视觉检测模块包括脉搏计数系统和OpenCV跨平台计算机视觉库;
所述信号放大电路将所述柔性应变传感器所采集到的脉搏变化的电阻模拟信号进行放大,进而通过集成在所述单片机上的AD数据采集模块将电阻模拟信号转换为电阻数字信号,再由通讯传送至所述视觉检测模块;所述视觉检测模块将检测得到的电阻值和时间值传输进脉搏计数系统中,用以绘制出以横坐标为时间值,纵坐标为电阻值的脉搏波动图,并通过角点探测算法来确定脉搏波动图中角点的放置位置,进而利用OpenCV跨平台计算机视觉库检测出放置的角点来完成对脉搏的计算。
上述的基于柔性应变传感器的脉搏检测器件,其中,所述通讯模块为蓝牙模块。
上述的基于柔性应变传感器的脉搏检测器件,其中,所述视觉检测模块设置在计算机上。
本发明还提供了一种基于柔性应变传感器的脉搏检测方法,其包括以下步骤:
步骤1:利用柔性应变传感器采集脉搏变化的电阻模拟信号;
步骤2:将所述电阻模拟信号放大后转换为电阻数字信号;
步骤3:根据所述电阻数字信号,制出以横坐标为时间值,纵坐标为电阻值的脉搏波动图,并通过角点探测算法来确定脉搏波动图中角点的放置位置;
步骤4:利用OpenCV跨平台计算机视觉库检测出放置的角点来完成对脉搏的计算。
上述的基于柔性应变传感器的脉搏检测方法,其中,所述柔性应变传感器的制备方法包括以下步骤:
步骤1:将导电海绵裁剪成一定形状;
步骤2:将制备好的氧化钨用去离子水超声后,分次逐量滴至导电海绵上;每次完全浸湿导电海绵后,将导电海绵放置于烘箱里烘干,数次后确保氧化钨均匀地附着在导电海绵上;
步骤3:待附着了氧化钨的导电海绵干燥后,用导电银浆将导线固定于附着氧化钨的导电海绵两端,静置;待导电银浆干燥后,用导电胶带再次固定导线和导电海绵;
步骤4:将附着氧化钨的导电海绵放置在容器里,将前驱体浆料倒置于模具中进行封装,常温静置。
上述的基于柔性应变传感器的脉搏检测方法,其中,所述前驱体浆料的制备方法包含以下步骤:
步骤1:将硫化硅橡胶、正己烷按一定的质量量取,加入到同一容器中;
步骤2:搅拌后,再将容器进行密封超声,超声完成后得到超声前驱体浆料;
步骤3:按比例量取一定剂量的固化剂,将固化剂加入到所述超声前驱体浆料中,搅拌均匀后,准备封装。
相对于现有技术,本发明具有以下有益效果:
(1)本发明制备的柔性应变传感器,在纯导电海绵上附着氧化坞制作传感器,比纯导电海绵传感器的灵敏度高,响应时间更短。
(2)本发明制备的柔性应变传感器比一般复合材料的传感器滞后性低,稳定性强,且制备便易,循环测量时重复性优秀,成本不高,使用寿命长,在人体状态检测方面有良好的性能和有线性,制备方法非常环保、安全便捷。
(3)本发明不仅能够计算出脉搏跳动数来监测人体健康状态,还能够还原出脉搏的波动形态,直观的显示脉搏的强弱、快慢情况。
(4)本发明没有沿用一贯的单片机阈值激发脉搏计数系统的模式,采用了视觉检测的方法,该方法使用C++进行编译设计了一套脉搏计数系统,实现了脉搏的可视化,绘制了脉搏的波动图。通过角点探测算法来确定脉搏波动图中角点的放置位置,利用OpenCV跨平台计算机视觉库检测出标注的角点来完成对脉搏的计算。通过这种方法减轻了电路设计时的难度,比传统的单片机算法要简单、稳定,具有良好的准确度,在实际操作中更为简便。
附图说明
图1为本发明的基于柔性应变传感器的脉搏检测器件的系统结构框图;
图2为本发明的信号放大电路的跨阻电路输入部分;
图3为本发明的信号放大电路的跨阻电路输出部分;
图4为本发明中单片机的引脚结构图;
图5为本发明中柔性应变传感器的引脚结构图;
图6为本发明中电源模块的引脚结构图;
图7为本发明中蓝牙模块的引脚结构图;
图8为本发明制备的柔性应变传感器的伏安特性曲线;
图9为纯导电海绵制备的传感器在按压时的灵敏度;
图10为本发明制备的柔性应变传感器在按压时的灵敏度。
具体实施方式
以下结合附图通过具体实施例对本发明作进一步的描述,这些实施例仅用于说明本发明,并不是对本发明保护范围的限制。
请参阅图1,本发明提供一种技术方案,一种基于柔性应变传感器1的脉搏检测器件及其方法,包括:电源模块6、柔性应变传感器1、信号放大电路2、单片机3、蓝牙模块4和视觉检测模块5;电源模块6,其采用TL431元器件模组,对于总成的标准供电电压为15V,其他模块所需要的电压均由标准供电电压分压,所述电源模块6分别对应的给上述柔性应变传感器1、信号放大电路2、单片机3、蓝牙模块4、视觉检测模块5供电。选择一个直流电源对脉搏测量仪进行供电,使上述的柔性应变传感器1得到分压。脉搏跳动致使上述的柔性应变传感器1发生形变,形变致使柔性应变传感器1的电压电阻发生改变。通过上述放大电路对柔性应变传感器1采集得到的脉搏变化的电阻信号进行放大,信号通过单片机3中的AD数据采集模块将模拟信号转换为数字信号。采集的信号通过蓝牙传输至电脑端,将检测得到的电阻值和时间值传输进基于C++设计的脉搏计数系统中,将数据图像化,绘制出脉搏的波动图,通过角点探测算法来确定脉搏波动图中角点的放置位置,利用OpenCV跨平台计算机视觉库检测出放置的角点来完成对脉搏的计算。
优选地,视觉检测模块5运用OpenCV可以对角点进行检测的功能来进行脉搏计数。其中,使用C++进行编译设计一套脉搏计数系统,此系统可以读取上述蓝牙模块4实时传输的数据,数据包括柔性应变传感器1测量脉搏时,柔性应变传感器1在相同时间间隔下不同的时间值与该时间点对应的电阻值。柔性应变传感器1随脉搏的跳动发生相应的形变,脉搏跳起时使柔性应变传感器1受到按压,电阻值变大,脉搏落下时,柔性应变传感器1恢复初始电阻。上述脉搏计数系统为了使脉搏可视化,令横坐标为时间值,纵坐标为电阻值,即可绘制出脉搏波动图。OpenCV是一个跨平台计算机视觉库,可以在许多操作系统上运行,其中,计算机在判断是否要标注角点时需要运用到角点探测算法,该算法将角点定义为,在像素点的邻域内,有足够多的像素点与该像素点处于不同区域。根据此算法可以判定该像素点是否为角点。计算机通过上述方法对上述脉搏波动图放置角点,一个角点对应一个脉搏,上述OpenCV可以检测出标注的角点来完成对脉搏的计算。在系统标注角点的过程中,系统会将不完整的波峰直接排除,这样增加了脉搏计数的准确性。
请参阅图2、图3,优选地,所述信号放大电路2设有OPA2188运算放大器、电容、电阻,所述信号放大电路2分为跨阻电路输入部分与跨阻电路输出部分,由5个OPA2188运算放大器构架了一整套放大电路。所述跨阻电路输入部分主要由4个OPA2188运算放大器与电阻和电容构成,其中U2A与U2B并联组成,上述组成部分与U1A、U1B串联。所述跨阻电路输出部分主要由1个OPA2188运算放大器与电阻和电容构成,其中U2A的输出端与U3A的负输入端相连,U2B的输出端与U3A的正输入端相连。该信号放大电路2VIN端与上述柔性应变传感器1的其中一个导线相连,VOUT端与单片机3P1.5口相连。
请参阅图4-图7,本发明使用的是STC12C5A60S2系列单片机3,该单片机3集成的AD数据采集模块将所述信号放大电路2所处理的信息从模拟信号转换至数字信号。
优选地,经由STC12C5A60S2单片机3采集得到的信号通过蓝牙模块4输送至电脑端,数据传送到电脑端后会被存放在设定好的文件中。所述蓝牙数据传输模块,该蓝牙型号为ATK-HC05-V11,将蓝牙模块4的工作电流设置为30mA-40mA,工作电压设置为3.3V-5.0V,其1引脚与单片机3P0.0口相连,2引脚与单片机3P0.1口相连,3引脚与单片机3P3.1口相连,4引脚与单片机3P3.0口相连,5引脚接地,6引脚与电源相连。
请参阅图8, 图8是本发明制备的柔性应变传感器1在不同应变下的伏安特性曲线,呈良好的线性关系。
请参阅图9, 图9是纯导电海绵制备的传感器在按压时所呈现的灵敏度。R0是柔性应变传感器1的初始电阻,ΔR是柔性应变传感器1的电阻变化量,即实时电阻值与初始电阻的差值。ΔR越大表示电阻变化率越大,即柔性应变传感器1的灵敏度越高。
请参阅图10, 图10是本发明制备的柔性应变传感器1在按压时所呈现的灵敏度,R0是柔性应变传感器1的初始电阻,ΔR是柔性应变传感器1的电阻变化量,即实时电阻值与初始电阻的差值。ΔR越大表示电阻变化率越大,即柔性应变传感器1的灵敏度越高。本发明制备的柔性应变传感器1的灵敏度明显高于纯导电海绵制备的传感器的灵敏度。
根据以上方案,所述柔性应变传感器1的制备方法包含:
S1、将导电海绵裁剪为1cm*4cm的规格;
S2、将制备好的氧化钨用去离子水超声20min后,用胶头滴管将超声好的氧化钨溶液分次逐量滴至导电海绵上。每次完全浸湿导电海绵后,将导电海绵放置于烘箱里烘干,数次后确保氧化钨均匀的附着在导电海绵上;
S3、待所述附着了氧化钨的导电海绵干燥后,用导电银浆将导线固定于附着氧化钨的导电海绵两端,静置6h。待导电银浆干燥后,用导电胶带再次固定导线和导电海绵;
S4、将附着氧化钨的导电海绵放置在容器里,将前驱体浆料倒置于模具中进行封装,常温静置1天;
优选地,所述前驱体浆料的制备方法包含:
S41、将硫化硅橡胶、正己烷按一定的质量量取,加入到同一烧杯中;
S42、用玻璃棒搅拌2min,再将烧杯进行密封超声,超声完成后得到超声前驱体浆料;
S43、按比例量取一定剂量固化剂,将固化剂加入到所述超声前驱体浆料中,再用玻璃棒均匀搅拌1min,准备封装。
工作原理:该系统可分为安装准备工作和实际工作两部分,在安装准备工作中,所述电源模块6分别对应的给上述柔性应变传感器1、信号放大电路2、单片机3、蓝牙模块4、视觉检测模块5供电。将上述柔性应变传感器1贴至手臂脉搏处,传感器与信号放大模块连接,信号放大模块与单片机3连接,单片机3将信号转化为数字信号,通过蓝牙模块4传送至电脑端。
实际工作时,电源模块6给上述柔性应变传感器1、信号放大电路2、单片机3、蓝牙模块4、视觉检测模块5供电。选择一个直流电源对脉搏测量仪进行供电,使上述的柔性应变传感器1得到分压。脉搏跳动致使上述的柔性应变传感器1发生形变,形变致使柔性应变传感器1的电压电阻发生改变。通过上述放大电路对柔性应变传感器1采集得到的脉搏变化的电阻信号进行放大,信号通过单片机3中的AD数据采集模块将模拟信号转换为数字信号。采集的信号通过蓝牙传输至电脑端,将检测得到的电阻值和时间值传输进基于C++设计的脉搏计数系统中,将数据图像化,绘制出脉搏的波动图,通过角点探测算法来确定脉搏波动图中角点的放置位置,利用OpenCV跨平台计算机视觉库检测出标注的角点来完成对脉搏的计算。
综上所述,本发明制备的柔性应变传感器具有滞后性低,稳定性强,且制备便易,循环测量时重复性优秀,成本不高,使用寿命长的优点,在人体状态监测方面有良好的性能和有线性,更为安全、环保,不仅能够计算出脉搏跳动数来监测人体健康状态,还能够还原出脉搏的波动形态。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (4)

1.一种基于柔性应变传感器的脉搏检测器件,其特征在于,包括:
柔性应变传感器、与柔性应变传感器连接的信号放大电路、与信号放大电路连接的单片机、与单片机连接的通讯模块、与通讯模块无线连接的视觉检测模块,及用于对脉搏检测器件供电的电源模块,其分别与柔性应变传感器、信号放大电路、单片机、通讯模块和视觉检测模块连接;所述视觉检测模块包括脉搏计数系统和OpenCV跨平台计算机视觉库;
所述信号放大电路将所述柔性应变传感器所采集到的脉搏变化的电阻模拟信号进行放大,进而通过集成在所述单片机上的AD数据采集模块将电阻模拟信号转换为电阻数字信号,再由通讯传送至所述视觉检测模块;所述视觉检测模块将检测得到的电阻值和时间值传输进脉搏计数系统中,用以绘制出以横坐标为时间值,纵坐标为电阻值的脉搏波动图,并通过角点探测算法来确定脉搏波动图中角点的放置位置,进而利用OpenCV跨平台计算机视觉库检测出放置的角点来完成对脉搏的计算;
所述柔性应变传感器由导电海绵上均匀分布着氧化钨并用前驱体浆料封装制成;
所述前驱体浆料的制备方法包含以下步骤:
步骤1:将硫化硅橡胶、正己烷按一定的质量量取,加入到同一容器中;
步骤2:搅拌后,再将容器进行密封超声,超声完成后得到超声前驱体浆料;
步骤3:按比例量取一定剂量的固化剂,将固化剂加入到所述超声前驱体浆料中,搅拌均匀后,准备封装。
2.如权利要求1所述的基于柔性应变传感器的脉搏检测器件,其特征在于,所述通讯模块为蓝牙模块。
3.如权利要求1所述的基于柔性应变传感器的脉搏检测器件,其特征在于,所述视觉检测模块设置在计算机上。
4.一种基于柔性应变传感器的脉搏检测方法,其特征在于,包括以下步骤:
步骤1:利用柔性应变传感器采集脉搏变化的电阻模拟信号;
所述柔性应变传感器的制备方法包括以下步骤:
步骤1-1:将导电海绵裁剪成一定形状;
步骤1-2:将制备好的氧化钨用去离子水超声后,分次逐量滴至导电海绵上;每次完全浸湿导电海绵后,将导电海绵放置于烘箱里烘干,数次后确保氧化钨均匀地附着在导电海绵上;
步骤1-3:待附着了氧化钨的导电海绵干燥后,用导电银浆将导线固定于附着氧化钨的导电海绵两端,静置;待导电银浆干燥后,用导电胶带再次固定导线和导电海绵;
步骤1-4:将附着氧化钨的导电海绵放置在容器里,将前驱体浆料倒置于模具中进行封装,常温静置;
步骤2:将所述电阻模拟信号放大后转换为电阻数字信号;
步骤3:根据所述电阻数字信号,制出以横坐标为时间值,纵坐标为电阻值的脉搏波动图,并通过角点探测算法来确定脉搏波动图中角点的放置位置;
步骤4:利用OpenCV跨平台计算机视觉库检测出放置的角点来完成对脉搏的计算;
所述前驱体浆料的制备方法包含以下步骤:
步骤1-4-1:将硫化硅橡胶、正己烷按一定的质量量取,加入到同一容器中;
步骤1-4-2:搅拌后,再将容器进行密封超声,超声完成后得到超声前驱体浆料;
步骤1-4-3:按比例量取一定剂量的固化剂,将固化剂加入到所述超声前驱体浆料中,搅拌均匀后,准备封装。
CN201811408354.4A 2018-11-23 2018-11-23 基于柔性应变传感器的脉搏检测器件及脉搏检测方法 Active CN109247924B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811408354.4A CN109247924B (zh) 2018-11-23 2018-11-23 基于柔性应变传感器的脉搏检测器件及脉搏检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811408354.4A CN109247924B (zh) 2018-11-23 2018-11-23 基于柔性应变传感器的脉搏检测器件及脉搏检测方法

Publications (2)

Publication Number Publication Date
CN109247924A CN109247924A (zh) 2019-01-22
CN109247924B true CN109247924B (zh) 2021-11-23

Family

ID=65042056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811408354.4A Active CN109247924B (zh) 2018-11-23 2018-11-23 基于柔性应变传感器的脉搏检测器件及脉搏检测方法

Country Status (1)

Country Link
CN (1) CN109247924B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108388308A (zh) * 2017-02-03 2018-08-10 三星电子株式会社 能够测量生物特征信息的电子器件

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032392A2 (en) * 2001-10-09 2003-04-17 Axon Technologies Corporation Programmable microelectronic device, structure, and system, and method of forming the same
WO2003079463A2 (en) * 2002-03-15 2003-09-25 Axon Technologies Corporation Programmable structure, an array including the structure, and methods of forming the same
AU2006306422B2 (en) * 2005-10-24 2011-02-03 Marcio Marc Aurelio Martins Abreu Apparatus and method for measuring biologic parameters
US7747551B2 (en) * 2007-02-21 2010-06-29 Neurovista Corporation Reduction of classification error rates and monitoring system using an artificial class
US20120200488A1 (en) * 2010-02-28 2012-08-09 Osterhout Group, Inc. Ar glasses with sensor and user action based control of eyepiece applications with feedback
CN102646277B (zh) * 2012-03-05 2015-06-10 上海海事大学 一种具有实时参数监控和在线标定功能的视觉系统
CN104706335B (zh) * 2013-12-17 2018-03-20 中国科学院苏州纳米技术与纳米仿生研究所 电子皮肤在脉搏检测上的应用、脉搏检测系统和方法
CN104258539B (zh) * 2014-09-04 2016-06-15 燕山大学 一种基于虚拟现实和肢体动作交互的老人康复与监护系统
CN105496388A (zh) * 2014-09-26 2016-04-20 纳米新能源(唐山)有限责任公司 脉搏监测装置
WO2017104056A1 (ja) * 2015-12-17 2017-06-22 オリンパス株式会社 生体情報計測装置、生体情報計測方法および生体情報計測プログラム
CN107464264A (zh) * 2016-06-02 2017-12-12 南京理工大学 一种基于gps的相机参数标定方法
CN106214135A (zh) * 2016-09-20 2016-12-14 浙江理工大学 基于柔性电子皮肤的家用脉搏测量系统
CN106667451B (zh) * 2016-10-14 2020-03-10 国家纳米科学中心 一种柔性脉搏传感器及其制备方法
CN106562767B (zh) * 2016-11-04 2020-09-22 深圳大学 一种汗液检测系统及制备方法
CN107271084A (zh) * 2017-06-22 2017-10-20 五邑大学 一种柔性应力传感器及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108388308A (zh) * 2017-02-03 2018-08-10 三星电子株式会社 能够测量生物特征信息的电子器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于碳材料的柔性压力传感器研究进展;何崟等;《化工进展》;20180705(第07期);全文 *

Also Published As

Publication number Publication date
CN109247924A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
CN102207415B (zh) 基于导电橡胶的柔性阵列片式压力传感器及制造方法
CN103637787B (zh) 血压实时测量装置以及实时测量脉搏波传输时间差的方法
CN106901702B (zh) 基于柔性力敏传感元件的定量脉搏波监测装置
CN104729769A (zh) 基于电活性聚合物的分布式柔性压力传感器
CN103637788B (zh) 血压实时测量装置
CN109141696B (zh) 一种基于压电薄膜的柔性触觉传感器及其信号处理系统
CN107811616A (zh) 一种柔性多参量人体体征探测器及其使用方法
CN110940708A (zh) 湿度传感器及其制备方法、可穿戴湿度传感系统和应用
CN108289619A (zh) 睡眠监测系统
CN103637789B (zh) 血压实时测量装置
US11060927B2 (en) Strain sensor comprising a viscous piezoresistive element
CN109247924B (zh) 基于柔性应变传感器的脉搏检测器件及脉搏检测方法
Zhang et al. Plantar Pressure Monitoring System Based on a Flexible Pressure Sensor Array for Human Walking Feature Recognition
CN107898464B (zh) 一种测量足底压力分布的系统和方法
CN112504110B (zh) 一种高灵敏度的可穿戴弹性物质形变量的测量装置
CN210095721U (zh) 一种可穿戴柔性生物磁场检测装置
CN114652278A (zh) 一种高灵敏柔性脉搏传感器及其制备方法
KR102353059B1 (ko) 생체정보의 측정장치
CN110202613B (zh) 一种机器人手指用的多功能检测装置
CN110200634B (zh) 一种修正频率影响的足底压力传感器及相应的修正方法
CN211066622U (zh) 一种负重量检测系统
CN105852821A (zh) 一种体温测量装置及其测量方法
CN206166924U (zh) 一种防抖腿系统
CN109662704A (zh) 一种柔性可穿戴生物磁场检测装置
CN219699901U (zh) 一种脉诊压力双重检测装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant