CN109241636B - Finite element-based road surface structure multi-physical field coupling numerical simulation method - Google Patents
Finite element-based road surface structure multi-physical field coupling numerical simulation method Download PDFInfo
- Publication number
- CN109241636B CN109241636B CN201811066512.2A CN201811066512A CN109241636B CN 109241636 B CN109241636 B CN 109241636B CN 201811066512 A CN201811066512 A CN 201811066512A CN 109241636 B CN109241636 B CN 109241636B
- Authority
- CN
- China
- Prior art keywords
- temperature
- module
- parameters
- load
- equation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 26
- 238000010168 coupling process Methods 0.000 title claims abstract description 26
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000004088 simulation Methods 0.000 title claims abstract description 12
- 239000007787 solid Substances 0.000 claims abstract description 11
- 238000012805 post-processing Methods 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 34
- 230000004907 flux Effects 0.000 claims description 30
- 238000006073 displacement reaction Methods 0.000 claims description 26
- 230000005855 radiation Effects 0.000 claims description 21
- 239000011148 porous material Substances 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 238000004364 calculation method Methods 0.000 claims description 12
- 239000012530 fluid Substances 0.000 claims description 12
- 230000005484 gravity Effects 0.000 claims description 6
- 239000003190 viscoelastic substance Substances 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 230000001133 acceleration Effects 0.000 claims description 3
- 239000013013 elastic material Substances 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 239000011343 solid material Substances 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 13
- 239000002344 surface layer Substances 0.000 description 5
- 239000010426 asphalt Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/13—Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/06—Power analysis or power optimisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Computational Mathematics (AREA)
- Civil Engineering (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Architecture (AREA)
- Road Paving Structures (AREA)
Abstract
Description
技术领域technical field
本发明涉及路面结构的数值模拟,更具体地说是一种基于有限元的路面结构多物理场耦合数值模拟方法。The invention relates to the numerical simulation of pavement structure, more specifically, a multi-physics coupling numerical simulation method of pavement structure based on finite element.
背景技术Background technique
一直以来,沥青路面的路用性能是道路工程领域的研究热点之一,研究人员可以借助有限元软件便捷地进行路面结构分析,从而节省人力物力。For a long time, the road performance of asphalt pavement has been one of the research hotspots in the field of road engineering. Researchers can easily analyze the pavement structure with the help of finite element software, thereby saving manpower and material resources.
路面结构路用性能的改变往往是多个物理场共同作用的结果,包括应力场、温度场和水力场等,现有技术中未能综合考虑应力场、温度场和水力场耦合的路面结构的分析,其在分析结果上必然存在偏差。The change of road performance of pavement structure is often the result of the joint action of multiple physical fields, including stress field, temperature field and hydraulic field. analysis, there must be deviations in the analysis results.
发明内容Contents of the invention
本发明是为避免上述现有技术所存在的不足,提供一种基于有限元的路面结构多物理场耦合数值模拟方法,利用气象数据建立路面结构瞬态温度场和水力场,施加车辆移动荷载,实现路面结构的多物理场耦合数值模拟,以期更加准确地分析路面结构的路用性能,为路面材料和结构的选择提供指导。In order to avoid the shortcomings of the above-mentioned prior art, the present invention provides a finite element-based multi-physics coupling numerical simulation method for pavement structure, using meteorological data to establish the transient temperature field and hydraulic field of pavement structure, and applying vehicle moving load, Realize the multi-physics coupling numerical simulation of pavement structure, in order to analyze the road performance of pavement structure more accurately, and provide guidance for the selection of pavement materials and structures.
本发明为解决技术问题采用如下技术方案:The present invention adopts following technical scheme for solving technical problems:
本发明基于有限元的路面结构多物理场耦合数值模拟方法的特点是在多物理场耦合有限元软件中按如下步骤进行:The present invention is based on the characteristic of multi-physics coupling numerical simulation method of pavement structure in multi-physics coupling finite element software according to the following steps:
步骤1:定义道路材料的力学参数、热力学参数和水力学参数;Step 1: Define the mechanical parameters, thermodynamic parameters and hydraulic parameters of road materials;
所述力学参数包括杨氏模量、泊松比和密度,对于黏弹性材料还包括黏弹性参数;The mechanical parameters include Young's modulus, Poisson's ratio and density, and also include viscoelastic parameters for viscoelastic materials;
所述热力学参数包括导热系数、比热容和热膨胀系数;Described thermodynamic parameter comprises thermal conductivity, specific heat capacity and thermal expansion coefficient;
所述水力学参数包括水力传导率、孔隙率和Biot弹性参数;The hydraulic parameters include hydraulic conductivity, porosity and Biot elastic parameters;
步骤2:定义车辆荷载函数,以及基于当地气象数据定义气象函数;Step 2: Define the vehicle load function, and define the weather function based on local meteorological data;
所述车辆荷载函数F(t)由式(1)所表征,所述车辆荷载包括静荷载和动荷载,所述动荷载为半正弦荷载:Described vehicle load function F (t) is characterized by formula (1), and described vehicle load comprises static load and dynamic load, and described dynamic load is half-sine load:
式(1)中,A为荷载幅值,t为时间,t0为单周期内荷载作用时长,T为相邻两荷载作用的时间间隔,k=0,1,2…;In the formula (1), A is the load amplitude, t is the time, t0 is the duration of the load in a single cycle, T is the time interval between two adjacent loads, k=0,1,2...;
所述气象函数包括由式(2)所表征的太阳辐射日变化函数q(t)、由式(3)所表征的大气温度日变化函数Ta,以及根据气象数据设定的降雨日变化函数;The meteorological functions include the daily variation function q(t) of solar radiation represented by formula (2), the daily variation function T a of atmospheric temperature represented by formula (3), and the daily variation function of rainfall set according to meteorological data ;
其中:in:
q0为日最大辐射强度,q0=0.131mQ,m=12/c;Q为日太阳辐射总量;c为实际日照时间;ω为角频率;为日平均气温,/>Tm为日气温变化幅度, 为日最高气温,/>为日最低气温;T0为初相位;q 0 is the maximum daily radiation intensity, q 0 =0.131mQ, m=12/c; Q is the total daily solar radiation; c is the actual sunshine time; ω is the angular frequency; is the daily average temperature, /> T m is the daily temperature variation range, is the daily maximum temperature, /> is the daily minimum temperature; T 0 is the initial phase;
步骤3:添加固体力学模块,针对所述固体力学模块指定各结构层的材料性质,并添加边界条件;Step 3: Add a solid mechanics module, specify the material properties of each structural layer for the solid mechanics module, and add boundary conditions;
所述固体力学模块的控制方程由式(4)所表征:The governing equation of described solid mechanics module is represented by formula (4):
其中:in:
S为总应力,F为外力向量,ρs为固体材料密度,u为位移向量,▽·S为S的散度,为位移向量的二阶时间导数;S is the total stress, F is the external force vector, ρ s is the density of solid material, u is the displacement vector, ▽·S is the divergence of S, is the second-order time derivative of the displacement vector;
所述指定各结构层的材料性质包括:指定各结构层道路材料为弹性或黏弹性材料,设定各结构层道路材料的热膨胀属性,所述热膨胀属性为热膨胀系数和应变参考温度;The specified material properties of each structural layer include: specifying the road material of each structural layer as an elastic or viscoelastic material, setting the thermal expansion properties of the road material of each structural layer, and the thermal expansion properties are thermal expansion coefficient and strain reference temperature;
所述边界条件包括:各方向位移均为0的固定约束、令某方向位移为0的指定位移,以及边界载荷;The boundary conditions include: a fixed constraint that the displacement in each direction is 0, a specified displacement that makes the displacement in a
步骤4:添加多孔介质传热模块,针对所述多孔介质传热模块指定材料性质,并定义路表的热通量;Step 4: Add a porous media heat transfer module, specify material properties for the porous media heat transfer module, and define the heat flux of the road surface;
所述多孔介质传热模块的控制方程由式(5)所表征:The governing equation of the porous media heat transfer module is characterized by formula (5):
其中:ρl为流体密度,Cp为流体恒压热容,(ρlCp)eff为有效体积恒压热容,Ttem为温度,为温度一阶时间导数,ul为流体速度场,▽Ttem为温度梯度,q为传导热通量,q=-keff▽Ttem,keff为有效导热系数,▽·q为q的散度,Qh为热源;Wherein: ρ l is fluid density, C p is heat capacity of fluid at constant pressure, (ρ l C p ) eff is heat capacity of effective volume at constant pressure, T tem is temperature, is the first-order time derivative of temperature, u l is the fluid velocity field, ▽T tem is the temperature gradient, q is the conduction heat flux, q=-k eff ▽T tem , k eff is the effective thermal conductivity, ▽·q is the Divergence, Q h is the heat source;
所述指定材料性质是指将步骤1中定义的热力学参数赋予到材料中;The specified material properties refer to giving the thermodynamic parameters defined in
所述定义路表的热通量是指在多孔介质传热模块中添加热通量接口,并输入由步骤2中定义的太阳辐射日变化函数q(t)和大气温度日变化函数Ta,其中太阳辐射日变化函数q(t)的热通量类型为广义向内热通量,大气温度日变化函数Ta的热通量类型为对流热通量,对于大气温度日变化函数Ta所属的对流热通量定义传热系数hc:hc=3.7vw+9.4,vw为风速;The definition of the heat flux of the path table refers to adding the heat flux interface in the porous media heat transfer module, and inputting the solar radiation diurnal variation function q(t) and the atmospheric temperature diurnal variation function T a defined in
步骤5:添加达西定律模块,针对所述达西定律模块指定材料性质,并添加边界条件;Step 5: Add a Darcy's law module, specify material properties for the Darcy's law module, and add boundary conditions;
所述达西定律模块的控制方程由式(6)所表征:The governing equation of described Darcy's law module is represented by formula (6):
式(6)中,Sp为存储系数,pl为孔隙水压力,为pl的一阶时间导数,▽·ρl为ρl的散度,K为水力传导率,g为重力加速度,▽pl为流体压力梯度,▽D重力方向上的单位向量,Qm为质量源项;In formula (6), S p is the storage coefficient, p l is the pore water pressure, is the first-order time derivative of p l , ▽·ρ l is the divergence of ρ l , K is the hydraulic conductivity, g is the acceleration of gravity, ▽p l is the fluid pressure gradient, ▽D is the unit vector in the gravity direction, Q m is the quality source item;
所述指定材料性质是指将步骤1定义的水力学参数中的水力传导率和孔隙率赋予到材料中;The specified material properties refer to the hydraulic conductivity and porosity in the hydraulic parameters defined in
所述边界条件包括边界上的孔隙水压力和雨水法向流入速度;The boundary conditions include pore water pressure and rainwater normal inflow velocity on the boundary;
步骤6:添加多物理场耦合模块,并在其中输入Biot弹性参数;Step 6: Add the multiphysics coupling module and enter the Biot elastic parameters in it;
所述多物理场耦合模块的的控制方程由式(7)所表征:The governing equation of the multiphysics coupling module is represented by formula (7):
其中:αB为Biot-Willis系数,I为单位矩阵,εvol为体积应变,为εvol的一阶时间导数,▽·(S-αBplI)为S-αBplI的散度,▽·(ρlul)为ρlul的散度;Among them: α B is the Biot-Willis coefficient, I is the identity matrix, ε vol is the volume strain, is the first-order time derivative of ε vol , ▽·(S-α B p l I) is the divergence of S-α B p l I, and ▽·(ρ l u l ) is the divergence of ρ l u l ;
步骤7:计算并进行后处理分析Step 7: Calculate and perform post-processing analysis
所述计算是指针对所构建的路面结构体划分有限元网格,利用有限元方法对各模块的控制方程进行耦合求解;The calculation refers to dividing the finite element grid for the constructed pavement structure, and using the finite element method to couple and solve the control equations of each module;
所述后处理分析包括对路面结构进行应力场分析、位移场分析、温度场分析和孔隙水压力场分析,获得应力云图、位移云图、温度云图和孔隙水压力云图等,从而完成路面结构的多物理场耦合分析。The post-processing analysis includes carrying out stress field analysis, displacement field analysis, temperature field analysis and pore water pressure field analysis on the pavement structure, and obtaining stress cloud maps, displacement cloud maps, temperature cloud maps, and pore water pressure cloud maps, etc., thereby completing multiple pavement structure analysis. Physics coupling analysis.
与已有技术相比,本发明有益效果体现在:Compared with the prior art, the beneficial effects of the present invention are reflected in:
1、本发明将路面结构与应力场、温度场和水力场进行耦合,实现路面结构的多场耦合数值模拟,从而准确分析路面结构的路用性能,对路面材料和结构的选择具有良好的指导意义;1. The present invention couples the pavement structure with the stress field, temperature field and hydraulic field to realize multi-field coupling numerical simulation of the pavement structure, thereby accurately analyzing the pavement performance of the pavement structure and providing good guidance for the selection of pavement materials and structures significance;
2、本发明考虑温度场对路面结构的影响,引入温度应力,对研究路面结构的抗车辙等性能具有良好的指导意义;2. The present invention considers the influence of the temperature field on the pavement structure and introduces temperature stress, which has good guiding significance for the research on the anti-rutting performance of the pavement structure;
3、本发明考虑水力场对路面结构影响,从而可以分析孔隙水压力对沥青剥落程度的影响;3. The present invention considers the influence of the hydraulic field on the pavement structure, so that the influence of the pore water pressure on the peeling degree of the asphalt can be analyzed;
4、本发明给出的基于有限元分析路面结构的方法,丰富了有限元在道路工程领域的应用。4. The method for analyzing the pavement structure based on finite elements provided by the present invention enriches the application of finite elements in the field of road engineering.
附图说明Description of drawings
图1为本发明方法流程图;Fig. 1 is a flow chart of the method of the present invention;
图2为本发明实施例中参数化路面结构模型;Fig. 2 is the parametric pavement structure model in the embodiment of the present invention;
图3为本发明实施例中计算结果在荷载区域中点处温度随时间的变化图;Fig. 3 is the change diagram of temperature with time at the middle point of the load region of the calculation results in the embodiment of the present invention;
图4为本发明实施例中计算结果在荷载区域中点处竖向位移随时间的变化图;Fig. 4 is the change diagram of the vertical displacement with time at the middle point of the load region of the calculation results in the embodiment of the present invention;
图5为本发明实施例中计算结果在荷载区域中点处孔隙水压力随时间的变化图。Fig. 5 is a diagram showing the variation of pore water pressure with time at the middle point of the load region in the calculation results in the embodiment of the present invention.
图中标号:1面层,2基层,3垫层,4土基;Labels in the figure: 1 surface layer, 2 base layer, 3 cushion layer, 4 soil foundation;
具体实施方式Detailed ways
参见图1,本实施例中基于有限元的路面结构多物理场耦合数值模拟方法是在多物理场耦合有限元软件中按如下步骤进行:Referring to Fig. 1, the finite element-based multi-physics coupling numerical simulation method of pavement structure in this embodiment is carried out in the multi-physics coupling finite element software as follows:
步骤1:定义道路材料的力学参数、热力学参数和水力学参数:力学参数包括杨氏模量、泊松比和密度,对于黏弹性材料还包括黏弹性参数;热力学参数包括导热系数、比热容和热膨胀系数;水力学参数包括水力传导率、孔隙率和Biot弹性参数。此外,还需定义变量αT,αT为时温等效原理位移因子,用以描述松弛时间与温度的关系,可采用WLF方程的形式进行定义:log10αT=c1T2+c2T+c3,其中c1、c2和c3分别为常数,T为面层温度。各参数和变量如表2。Step 1: Define the mechanical parameters, thermodynamic parameters, and hydraulic parameters of the road material: mechanical parameters include Young's modulus, Poisson's ratio, and density, and viscoelastic parameters for viscoelastic materials; thermodynamic parameters include thermal conductivity, specific heat capacity, and thermal expansion Coefficients; hydraulic parameters include hydraulic conductivity, porosity and Biot elastic parameters. In addition, a variable α T needs to be defined. α T is the displacement factor of the time-temperature equivalent principle, which is used to describe the relationship between relaxation time and temperature. It can be defined in the form of WLF equation: log 10 α T =c 1 T 2 +c 2 T+c 3 , where c 1 , c 2 and c 3 are constants, and T is the surface layer temperature. The parameters and variables are listed in Table 2.
步骤2:定义车辆荷载函数,以及基于当地气象数据定义气象函数:Step 2: Define the vehicle load function, and define the weather function based on local weather data:
车辆荷载函数F(t)由式(1)所表征,车辆荷载包括静荷载和动荷载,动荷载可为半正弦荷载:The vehicle load function F(t) is represented by formula (1). The vehicle load includes static load and dynamic load, and the dynamic load can be half-sine load:
式(1)中,A为荷载幅值,t为时间,t0为单周期内荷载作用时长,T为相邻两荷载作用的时间间隔,k=0,1,2…,k为非负整数。In the formula (1), A is the load amplitude, t is the time, t0 is the duration of the load in a single cycle, T is the time interval between two adjacent loads, k=0,1,2..., k is the non-load integer.
气象函数包括由式(2)所表征的太阳辐射日变化函数q(t)、由式(3)所表征的大气温度日变化函数Ta,以及根据气象数据设定的降雨日变化函数;Meteorological functions include the daily variation function q(t) of solar radiation represented by formula (2), the daily variation function T a of atmospheric temperature represented by formula (3), and the daily variation function of rainfall set according to meteorological data;
其中:in:
q0为日最大辐射强度,q0=0.131mQ,m=12/c;Q为日太阳辐射总量;c为实际日照时间;ω为角频率;为日平均气温,/>Tm为日气温变化幅度,/> 为日最高气温,/>为日最低气温;T0为初相位。q 0 is the maximum daily radiation intensity, q 0 =0.131mQ, m=12/c; Q is the total daily solar radiation; c is the actual sunshine time; ω is the angular frequency; is the daily average temperature, /> T m is the daily temperature variation range, /> is the daily maximum temperature, /> is the daily minimum temperature; T 0 is the initial phase.
由于路表吸收太阳辐射能力有限,因此太阳辐射日变化函数q(t)需要乘以折减系数,一般将折减系数取为0.85;式(3)中的初相位T0可取为9,这样就使得该式(3)是从凌晨零点开始计算,与一天的时间起点相一致,以便于理解。Due to the limited ability of the road surface to absorb solar radiation, the solar radiation diurnal variation function q(t) needs to be multiplied by the reduction factor, which is generally taken as 0.85; the initial phase T 0 in formula (3) can be taken as 9, so This makes the formula (3) be calculated from midnight in the morning, which is consistent with the time starting point of a day, so as to be easy to understand.
步骤3:添加固体力学模块,针对所述固体力学模块指定各结构层的材料性质,并添加边界条件:Step 3: Add a solid mechanics module, specify the material properties of each structural layer for the solid mechanics module, and add boundary conditions:
固体力学模块的控制方程由式(4)所表征:The governing equation of the solid mechanics module is represented by formula (4):
其中:in:
S为总应力,F为外力向量,ρs为固体材料密度,u为位移向量,▽·S为S的散度,为位移向量的二阶时间导数。S is the total stress, F is the external force vector, ρ s is the density of solid material, u is the displacement vector, ▽·S is the divergence of S, is the second order time derivative of the displacement vector.
指定各结构层的材料性质包括:在面层中新建“黏弹性”接口,选择“广义麦克斯韦模型”,输入杨氏模量和松弛时间,即将面层指定为黏弹性材料,同时其余各层均为弹性材料;在各层中新建“热膨胀”接口,输入温度、热膨胀系数和应变参考温度,一般取路面结构的初始温度作为应变参考温度。Designating the material properties of each structural layer includes: creating a new "Viscoelasticity" interface in the surface layer, selecting "Generalized Maxwell Model", inputting Young's modulus and relaxation time, that is, specifying the surface layer as a viscoelastic material, and the other layers are It is an elastic material; create a new "thermal expansion" interface in each layer, input the temperature, thermal expansion coefficient and strain reference temperature, and generally take the initial temperature of the pavement structure as the strain reference temperature.
边界条件包括:将底面设为各方向位移均为0的固定约束、将右侧面设为x方向位移为0的指定位移、将前面和后面设为y方向位移为0的指定位移,以及在加载区域设置边界载荷,为简化计算还可以在左侧面添加对称边界条件。Boundary conditions include: set the bottom surface as a fixed constraint that the displacement in all directions is 0, set the right side as a specified displacement in the x direction, set the front and rear sides as a specified displacement in the y direction, and Boundary loads are set in the loading area, and symmetrical boundary conditions can also be added on the left side to simplify the calculation.
步骤4:添加多孔介质传热模块,针对所述多孔介质传热模块指定材料性质,并定义路表的热通量:Step 4: Add the heat transfer in porous media module, specify the material properties for the heat transfer in porous media module, and define the heat flux of the path table:
多孔介质传热模块的控制方程由式(5)所表征:The governing equation of the porous media heat transfer module is represented by equation (5):
其中:ρl为流体密度,Cp为流体恒压热容,(ρlCp)eff为有效体积恒压热容,Ttem为温度,为温度一阶时间导数,ul为流体速度场,▽Ttem为温度梯度,q为传导热通量,q=-keff▽Ttem,keff为有效导热系数,▽·q为q的散度,Qh为热源。Wherein: ρ l is fluid density, C p is heat capacity of fluid at constant pressure, (ρ l C p ) eff is heat capacity of effective volume at constant pressure, T tem is temperature, is the first-order time derivative of temperature, u l is the fluid velocity field, ▽T tem is the temperature gradient, q is the conduction heat flux, q=-k eff ▽T tem , k eff is the effective thermal conductivity, ▽·q is the Divergence, Q h is the heat source.
指定材料性质是指将步骤1中定义的热力学参数赋予到材料中。Specifying material properties means assigning the thermodynamic parameters defined in
定义路表的热通量是指在多孔介质传热模块中添加热通量接口,并输入由步骤2中定义的太阳辐射日变化函数q(t)和大气温度日变化函数Ta,其中太阳辐射日变化函数q(t)的热通量类型为广义向内热通量,大气温度日变化函数Ta的热通量类型为对流热通量,对于大气温度日变化函数Ta所属的对流热通量需定义传热系数hc:hc=3.7vw+9.4,vw为风速。To define the heat flux of the path table means to add the heat flux interface in the porous media heat transfer module, and input the solar radiation diurnal variation function q(t) and atmospheric temperature diurnal variation function T a defined in
太阳辐射日变化函数q(t)所属的广义向内热通量和大气温度日变化函数Ta所属的对流热通量均需定义在路面结构体的顶面上,为简化计算还可以在左侧面添加对称边界条件。The generalized inward heat flux to which the solar radiation diurnal variation function q(t) belongs and the convective heat flux to which the atmospheric temperature diurnal variation function T a belongs must be defined on the top surface of the pavement structure. To simplify the calculation, it can also be defined on the left side Add a symmetric boundary condition to the face.
步骤5:添加达西定律模块,针对所述达西定律模块指定材料性质,并添加边界条件:Step 5: Add a Darcy's Law module, specify material properties for said Darcy's Law module, and add boundary conditions:
达西定律模块的控制方程由式(6)所表征:The governing equation of Darcy's law module is represented by equation (6):
式(6)中,Sp为存储系数,pl为孔隙水压力,为pl的一阶时间导数,▽·ρl为ρl的散度,K为水力传导率,g为重力加速度,▽pl为流体压力梯度,▽D重力方向上的单位向量,Qm为质量源项。In formula (6), S p is the storage coefficient, p l is the pore water pressure, is the first-order time derivative of p l , ▽·ρ l is the divergence of ρ l , K is the hydraulic conductivity, g is the acceleration of gravity, ▽p l is the fluid pressure gradient, ▽D is the unit vector in the gravity direction, Q m is the quality source item.
指定材料性质是指将步骤1定义的水力学参数中的水力传导率和孔隙率赋予到材料中。Specifying material properties refers to assigning the hydraulic conductivity and porosity in the hydraulic parameters defined in
边界条件包括边界上的孔隙水压力和雨水法向流入速度。其中孔隙水压力定义在右侧面上,可取函数pl=-15×(Z+2),Z为结构体深度,即孔隙水压力随深度线性变化;雨水法向流入速度即为步骤2中定义的降雨日变化函数,需定义在顶面上。The boundary conditions include the pore water pressure and the normal inflow velocity of rainwater on the boundary. Among them, the pore water pressure is defined on the right side, and the desirable function p l =-15×(Z+2), Z is the depth of the structure, that is, the pore water pressure changes linearly with the depth; the normal inflow velocity of rainwater is the The defined rainfall diurnal variation function needs to be defined on the top surface.
步骤6:添加多物理场耦合模块,并在其中输入Biot弹性参数:Step 6: Add the multiphysics coupling module and enter the Biot elasticity parameters in it:
多物理场耦合模块的的控制方程由式(7)所表征:The governing equation of the multiphysics coupling module is represented by equation (7):
其中:αB为Biot-Willis系数,I为单位矩阵,εvol为体积应变,为εvol的一阶时间导数,▽·(S-αBplI)为S-αBplI的散度,▽·(ρlul)为ρlul的散度。Among them: α B is the Biot-Willis coefficient, I is the identity matrix, ε vol is the volume strain, is the first-order time derivative of ε vol , ▽·(S-α B p l I) is the divergence of S-α B p l I, and ▽·(ρ l u l ) is the divergence of ρ l u l .
步骤7:计算并进行后处理分析Step 7: Calculate and perform post-processing analysis
计算是指针对所构建的路面结构体划分有限元网格,利用有限元方法对各模块的控制方程进行耦合求解;后处理分析包括对路面结构进行应力场分析、位移场分析、温度场分析和孔隙水压力场分析,获得应力云图、位移云图、温度云图和孔隙水压力云图等,从而完成路面结构的多物理场耦合分析。Calculation refers to dividing the finite element grid for the constructed pavement structure, and using the finite element method to couple and solve the control equations of each module; post-processing analysis includes stress field analysis, displacement field analysis, temperature field analysis and The analysis of the pore water pressure field obtains the stress cloud map, displacement cloud map, temperature cloud map and pore water pressure cloud map, etc., so as to complete the multi-physics field coupling analysis of the pavement structure.
仿真过程:Simulation process:
第1步:设定由表1所示的路面结构几何尺寸:Step 1: Set the geometric dimensions of the pavement structure shown in Table 1:
表1几何尺寸(m)Table 1 Geometric Dimensions (m)
构建路面结构几何模型如图2所示,由上至下分别为:面层1、基层2、垫层3和土基4。The geometric model of the pavement structure is shown in Figure 2. From top to bottom, they are:
第2步:定义各层的力学参数、热力学参数和水力学参数如表2所示:Step 2: Define the mechanical parameters, thermodynamic parameters and hydraulic parameters of each layer as shown in Table 2:
表2力学、热力学和水力学参数Table 2 Mechanical, thermodynamic and hydraulic parameters
(续表2)(Continued from Table 2)
按本发明方法在多物理场耦合有限元软件中定义车辆荷载函数,基于当地气象数据定义气象函数,添加固体力学模块,施加荷载并设置边界条件,添加多孔介质传热模块,添加达西定律模块添加达西定律模块;添加多物理场耦合模块,将多物理场耦合,通过计算和后处理分析,获得如图3所示的本实施例中计算结果在荷载区域中点处温度随时间的变化图,如图4所示的本实施例中计算结果在荷载区域中点处竖向位移随时间的变化图,以及如图5所示的本实施例中计算结果在荷载区域中点处孔隙水压力随时间的变化图,据此还可以根据需求分析获得更多的数据。According to the method of the present invention, the vehicle load function is defined in the multi-physics coupling finite element software, the meteorological function is defined based on the local meteorological data, the solid mechanics module is added, the load is applied and the boundary conditions are set, the porous medium heat transfer module is added, and the Darcy's law module is added. Add the Darcy's Law module; add the multi-physics field coupling module to couple the multi-physics fields, and through calculation and post-processing analysis, the calculation results in this embodiment shown in Figure 3 change with time at the midpoint of the load region. Fig. 4 shows the variation diagram of the vertical displacement with time at the midpoint of the load region in the calculation results of this embodiment, and the pore water at the midpoint of the load region of the calculation results in the present embodiment as shown in Fig. 5 A graph of pressure over time, from which additional data can be obtained for analysis on demand.
图3示出,在太阳辐射和大气温度热交换的双重作用下,路表温度在凌晨0点到6点之间逐渐降低,这是因为该时间段太阳辐射几乎为0,气温较低;由于太阳辐射和气温升高,导致路表温度在6点到12点之间逐渐升高。Figure 3 shows that under the dual effects of solar radiation and atmospheric temperature heat exchange, the road surface temperature gradually decreases between 0:00 and 6:00 in the morning, because the solar radiation is almost zero and the temperature is low during this time period; The increase in solar radiation and air temperature causes the road surface temperature to gradually increase between 6 o'clock and 12 o'clock.
图4示出,在车辆载荷的作用下,荷载区域中点的竖向位移逐渐增加,在载荷达到峰值时,位移达到了0.17mm。Figure 4 shows that under the action of the vehicle load, the vertical displacement of the midpoint of the load area gradually increases, and when the load reaches the peak value, the displacement reaches 0.17mm.
图5示出,在车辆载荷的作用下,当载荷达到峰值时,孔隙水压力升至223kPa;在卸除载荷后,孔隙水压力达到-50kPa。正是这种抽吸作用对沥青混合料造成了强烈的冲击,使得沥青从集料剥离。Figure 5 shows that under the action of the vehicle load, when the load reaches its peak value, the pore water pressure rises to 223kPa; after the load is removed, the pore water pressure reaches -50kPa. It is this suction that creates such a strong impact on the asphalt mix that the bitumen is stripped from the aggregate.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811066512.2A CN109241636B (en) | 2018-09-11 | 2018-09-11 | Finite element-based road surface structure multi-physical field coupling numerical simulation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811066512.2A CN109241636B (en) | 2018-09-11 | 2018-09-11 | Finite element-based road surface structure multi-physical field coupling numerical simulation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109241636A CN109241636A (en) | 2019-01-18 |
CN109241636B true CN109241636B (en) | 2023-03-24 |
Family
ID=65057974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811066512.2A Active CN109241636B (en) | 2018-09-11 | 2018-09-11 | Finite element-based road surface structure multi-physical field coupling numerical simulation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109241636B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111625984B (en) * | 2020-05-29 | 2024-01-30 | 合肥工业大学 | Finite element-based bituminous pavement water damage numerical simulation method |
CN111678829B (en) * | 2020-06-11 | 2021-10-15 | 北京科技大学 | A temperature control method for a linear road accelerated loading test device based on operating energy consumption |
CN111693380B (en) * | 2020-07-15 | 2022-12-06 | 合肥工业大学 | Asphalt pavement fatigue damage prediction method based on finite elements |
CN113158408B (en) * | 2021-01-19 | 2023-12-19 | 西安交通大学 | A calculation method for predicting high temperature thermodynamic properties using specific constant pressure heat capacity |
CN114707210B (en) * | 2022-03-24 | 2023-02-10 | 东南大学 | A Numerical Simulation Method for Complicated Service Conditions of Steel Bridge Deck Pavement |
CN117594170B (en) * | 2024-01-17 | 2024-04-26 | 中国石油大学(华东) | Guided wave dispersion analysis method and system for plate and shell structures under temperature-stress coupling |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107576782A (en) * | 2017-08-23 | 2018-01-12 | 南京林业大学 | Half-flexible pavement meso-mechanical analysis method under vehicle-temperature load coupling |
CN107885933A (en) * | 2017-11-07 | 2018-04-06 | 东南大学 | A kind of pavement structure fatigue cracking method for numerical simulation based on extension finite element |
CN107908847A (en) * | 2017-11-08 | 2018-04-13 | 东南大学 | It is a kind of to consider load and the asphalt pavement rut resisting performance simulation method in high temperature gap |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3008789B1 (en) * | 2013-07-22 | 2023-05-12 | Commissariat Energie Atomique | METHOD FOR CHARACTERIZING MECHANICAL PARAMETERS OF A PAVEMENT |
-
2018
- 2018-09-11 CN CN201811066512.2A patent/CN109241636B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107576782A (en) * | 2017-08-23 | 2018-01-12 | 南京林业大学 | Half-flexible pavement meso-mechanical analysis method under vehicle-temperature load coupling |
CN107885933A (en) * | 2017-11-07 | 2018-04-06 | 东南大学 | A kind of pavement structure fatigue cracking method for numerical simulation based on extension finite element |
CN107908847A (en) * | 2017-11-08 | 2018-04-13 | 东南大学 | It is a kind of to consider load and the asphalt pavement rut resisting performance simulation method in high temperature gap |
Non-Patent Citations (1)
Title |
---|
基于无网格法的沥青路面三维瞬态温度场和车辆荷载耦合;姚莉莉等;《公路交通科技》;20111115(第11期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109241636A (en) | 2019-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109241636B (en) | Finite element-based road surface structure multi-physical field coupling numerical simulation method | |
Daniels et al. | A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model | |
Klemp et al. | Conservative split-explicit time integration methods for the compressible nonhydrostatic equations | |
Salciarini et al. | Thermo-hydro-mechanical response of a large piled raft equipped with energy piles: a parametric study | |
Yan et al. | A 2D FDEM-based moisture diffusion–fracture coupling model for simulating soil desiccation cracking | |
Hemmati et al. | Thermo-hydro-mechanical modelling of soil settlements induced by soil-vegetation-atmosphere interactions | |
CN106934185B (en) | A Fluid-Structure Interaction Multiscale Flow Simulation Method for Elastic Media | |
CN107561252B (en) | Method for calculating temperature circulating stress of asphalt concrete pavement | |
Anquetin et al. | The formation and destruction of inversion layers within a deep valley | |
Nishikawa et al. | Effects of mesoscale eddies on subduction and distribution of subtropical mode water in an eddy-resolving OGCM of the western North Pacific | |
Karvounis et al. | Adaptive hierarchical fracture model for enhanced geothermal systems | |
CN108090268B (en) | An Integrated Addition Method for Seismic Time History Waves under Viscoelastic Boundaries | |
Kwak et al. | Computational fluid dynamics modelling of the diurnal variation of flow in a street canyon | |
Tang et al. | An analytical model for heat extraction through multi-link fractures of the enhanced geothermal system | |
CN112364543A (en) | Seepage simulation method based on soft plastic loess tunnel double-row type cluster well precipitation model | |
CN105184010A (en) | High-frequency seismic wave scattering simulating method based on fast multipole indirect boundary element method | |
Ringler et al. | The ZM grid: an alternative to the Z grid | |
Konor | Design of a dynamical core based on the nonhydrostatic “unified system” of equations | |
Lotfi et al. | Dynamic analysis of concrete gravity dam-reservoir systems by wavenumber approach in the frequency domain | |
Rao et al. | Pore-pressure diffusion during water injection in fractured media | |
Hu et al. | Boolean‐Based Surface Procedure for the External Heat Transfer Analysis of Dams during Construction | |
Ghorbani et al. | Application of the generalised-α method in dynamic analysis of partially saturated media | |
Ren et al. | A multirheology ice model: formulation and application to the Greenland ice sheet | |
CN112733242A (en) | Method for determining large slope deformation based on material point method | |
Chi et al. | Von Neumann stability analysis of the u–p reproducing kernel formulation for saturated porous media |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |