CN109239895A - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
CN109239895A
CN109239895A CN201811466306.0A CN201811466306A CN109239895A CN 109239895 A CN109239895 A CN 109239895A CN 201811466306 A CN201811466306 A CN 201811466306A CN 109239895 A CN109239895 A CN 109239895A
Authority
CN
China
Prior art keywords
lens
optical imaging
object side
imaging lens
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811466306.0A
Other languages
English (en)
Other versions
CN109239895B (zh
Inventor
丁玲
闻人建科
贺凌波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sunny Optics Co Ltd
Original Assignee
Zhejiang Sunny Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sunny Optics Co Ltd filed Critical Zhejiang Sunny Optics Co Ltd
Priority to CN201811466306.0A priority Critical patent/CN109239895B/zh
Publication of CN109239895A publication Critical patent/CN109239895A/zh
Application granted granted Critical
Publication of CN109239895B publication Critical patent/CN109239895B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种光学成像镜头,该成像镜头沿光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜具有正光焦度,其物侧面为凸面;第三透镜具有负光焦度,其像侧面为凹面。光学成像镜头的总有效焦距f与第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL满足f/TTL>1。

Description

光学成像镜头
技术领域
本申请涉及一种光学成像镜头,更具体地,涉及一种包括七片透镜的光学成像镜头。
背景技术
近年来,随着诸如平板电脑、手机等便携式电子产品的高速更新换代,市场对这些产品的成像镜头的要求也越来越高。除了要求成像镜头具备大孔径和高分辨率,还希望镜头可对远处景象的细节做出较好的处理效果。
然而,在便携式电子产品小型化的趋势下,对配套镜头的尺寸提出越来越严苛的要求。如何在保证镜头小型化的同时,使其具有长焦距、大孔径、高成像质量是光学设计领域亟待解决的问题。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头,例如,长焦镜头。
一方面,本申请提供了这样一种光学成像镜头,该成像镜头沿光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面;第三透镜可具有负光焦度,其像侧面可为凹面。其中,光学成像镜头的总有效焦距f与第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL可满足f/TTL>1。
在一个实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD可满足f/EPD<2。
在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜的有效焦距f1可满足1<f/f1<2。
在一个实施方式中,第三透镜的有效焦距f3与光学成像镜头的总有效焦距f可满足-1<f3/f<0。
在一个实施方式中,第二透镜的有效焦距f2与第一透镜、第二透镜和第三透镜的组合焦距f123可满足1.5<|f2/f123|<2。
在一个实施方式中,光学成像镜头的总有效焦距f与第三透镜的像侧面的曲率半径R6可满足2<f/R6<3。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2可满足0<|R1/R2|<0.5。
在一个实施方式中,第六透镜的物侧面的曲率半径R11、第六透镜的像侧面的曲率半径R12与第六透镜的有效焦距f6可满足0<(R11+R12)/|f6|<2。
在一个实施方式中,第七透镜的有效焦距f7与第七透镜的像侧面的曲率半径R14可满足0<|f7/R14|<2.0。
在一个实施方式中,第二透镜在光轴上的中心厚度CT2与第七透镜在光轴上的中心厚度CT7可满足0.5<CT2/CT7<1。
在一个实施方式中,第四透镜和第五透镜在光轴上的间隔距离T45与第一透镜和第二透镜在光轴上的间隔距离T12可满足0<T45/T12<1.5。
在一个实施方式中,第四透镜的物侧面的最大有效半径DT41与第七透镜的物侧面的最大有效半径DT71可满足0<DT41/DT71<1。
在一个实施方式中,第七透镜的物侧面和光轴的交点至第七透镜的物侧面的有效半径顶点的轴上距离SAG71与第一透镜的物侧面和光轴的交点至第一透镜的物侧面的有效半径顶点的轴上距离SAG11可满足-1<SAG71/SAG11<0。
另一方面,本申请提供了这样一种光学成像镜头,该成像镜头沿光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面;第三透镜可具有负光焦度,其像侧面可为凹面。其中,第二透镜的有效焦距f2与第一透镜、第二透镜和第三透镜的组合焦距f123可满足1.5<|f2/f123|<2。
再一方面,本申请提供了这样一种光学成像镜头,该成像镜头沿光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面;第三透镜可具有负光焦度,其像侧面可为凹面。其中,第四透镜和第五透镜在光轴上的间隔距离T45与第一透镜和第二透镜在光轴上的间隔距离T12可满足0<T45/T12<1.5。
再一方面,本申请提供了这样一种光学成像镜头,该成像镜头沿光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面;第三透镜可具有负光焦度,其像侧面可为凹面。其中,第七透镜的物侧面和光轴的交点至第七透镜的物侧面的有效半径顶点的轴上距离SAG71与第一透镜的物侧面和光轴的交点至第一透镜的物侧面的有效半径顶点的轴上距离SAG11可满足-1<SAG71/SAG11<0。
再一方面,本申请提供了这样一种光学成像镜头,该成像镜头沿光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面;第三透镜可具有负光焦度,其像侧面可为凹面。其中,光学成像镜头的总有效焦距f与第三透镜的像侧面的曲率半径R6可满足2<f/R6<3。
再一方面,本申请提供了这样一种光学成像镜头,该成像镜头沿光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面;第三透镜可具有负光焦度,其像侧面可为凹面。其中,光学成像镜头的总有效焦距f与第一透镜的有效焦距f1可满足1<f/f1<2。
再一方面,本申请提供了这样一种光学成像镜头,该成像镜头沿光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面;第三透镜可具有负光焦度,其像侧面可为凹面。其中,第二透镜在光轴上的中心厚度CT2与第七透镜在光轴上的中心厚度CT7可满足0.5<CT2/CT7<1。
本申请采用了七片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像镜头具有长焦、小型化、大孔径、高成像质量等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像镜头的结构示意图;
图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其他特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括例如七片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七片透镜沿着光轴由物侧至像侧依序排列。在第一透镜至第七透镜中,任意相邻两透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面可为凸面;第二透镜具有正光焦度或负光焦度;第三透镜可具有负光焦度,其像侧面可为凹面;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度;第六透镜具有正光焦度或负光焦度;以及第七透镜具有正光焦度或负光焦度。通过合理分配光焦度,可以有效地矫正系统的球差和色差,同时可避免光焦度过度集中在单个镜片,可降低镜片的敏感性,为实际生产提供更宽松的公差条件。
在示例性实施方式中,第一透镜的像侧面可为凹面。
在示例性实施方式中,第二透镜可具有正光焦度,其物侧面可为凸面。
在示例性实施方式中,第四透镜的物侧面可为凹面,像侧面可为凸面。
在示例性实施方式中,第五透镜的物侧面可为凹面,像侧面可为凸面。
在示例性实施方式中,第六透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,第七透镜可具有正光焦度。
在示例性实施方式中,本申请的光学成像镜头可满足条件式f/TTL>1,其中,f为光学成像镜头的总有效焦距,TTL为第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离。更具体地,f和TTL进一步可满足1.02≤f/TTL≤1.12,例如,f/TTL=1.08。满足条件式f/TTL>1,可在维持镜头小型化条件下具有较长的焦距,并能够在远景拍摄时具有良好的成像效果。
在示例性实施方式中,本申请的光学成像镜头可满足条件式f/EPD<2,其中,f为光学成像镜头的总有效焦距,EPD为光学成像镜头的入瞳直径。更具体地,f和EPD进一步可满足1.8≤f/EPD<2,例如,f/EPD=1.90。满足条件式f/EPD<2,镜头具有大孔径特性,有效地增加了镜头单位时间内的通光量,使其拥有较高的相对照度,并可有效提升镜头在较暗环境下的成像质量,能保证边缘视场也具有较高的照度。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0<T45/T12<1.5,其中,T45为第四透镜和第五透镜在光轴上的间隔距离,T12为第一透镜和第二透镜在光轴上的间隔距离。更具体地,T45和T12进一步可满足0.27≤T45/T12≤1.12。满足条件式0<T45/T12<1.5,可以减小光线进入第二透镜和第五透镜的入射角,降低这两个镜片的敏感性,此外,还可以缩减光学成像镜头前端尺寸。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0<DT41/DT71<1,其中,DT41为第四透镜的物侧面的最大有效半径,DT71为第七透镜的物侧面的最大有效半径。更具体地,DT41和DT71进一步可满足0.2<DT41/DT71<0.6,例如,0.33≤DT41/DT71≤0.47。合理控制第四透镜物侧面和第七透镜物侧面的最大有效半径,既可以减小镜头后端尺寸,还可以减缓光线在第四透镜和第七透镜之间的偏折角度,避免因偏折角度较大而产生的全反射鬼像。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-1<SAG71/SAG11<0,其中,SAG71为第七透镜的物侧面和光轴的交点至第七透镜的物侧面的有效半径顶点的轴上距离,SAG11为第一透镜的物侧面和光轴的交点至第一透镜的物侧面的有效半径顶点的轴上距离。更具体地,SAG71和SAG11进一步可满足-0.5<SAG71/SAG11<-0.1,例如,-0.44≤SAG71/SAG11≤0.15。合理控制SAG71与SAG11的比值范围,可以减小配合镜筒的前端和后端尺寸,保证镜头小型化,同时保证这两个镜片实际加工的可行性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.5<|f2/f123|<2,其中,f2为第二透镜的有效焦距,f123为第一透镜、第二透镜和第三透镜的组合焦距。更具体地,f2和f123进一步可满足1.60≤|f2/f123|≤1.85。满足条件式1.5<|f2/f123|<2,可以有效地平衡前端三个透镜产生的球差、彗差和像散,同时避免光焦度集中在第二透镜,降低第二透镜的敏感性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式2<f/R6<3,其中,f为光学成像镜头的总有效焦距,R6为第三透镜的像侧面的曲率半径。更具体地,f和R6进一步可满足2.35≤f/R6≤2.75。合理控制第三透镜像侧面的曲率半径,可以减缓光线在该透镜像侧面的偏折角度,降低镜片敏感性。此外,还可以减小第三透镜所产生的畸变和垂轴色差。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1<f/f1<2,其中,f为光学成像镜头的总有效焦距,f1为第一透镜的有效焦距。更具体地,f和f1进一步可满足1.4<f/f1<1.7,例如,1.53≤f/f1≤1.55。合理控制第一透镜的有效焦距,既可以有效地汇聚光线,也可以避免光线在第一透镜中的偏折角度过大,从而可以在降低第一透镜敏感性的同时规避因大偏折角度而产生的全反射鬼像。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.5<CT2/CT7<1,其中,CT2为第二透镜在光轴上的中心厚度,CT7为第七透镜在光轴上的中心厚度。更具体地,CT2和CT7进一步可满足0.69≤CT2/CT7≤0.88。合理配置第二透镜和第七透镜在光轴上的中心厚度,既可以在保证工艺性前提下减小这两个镜片的尺寸,也可以有效地平衡这两个镜片产生的高级彗差。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0<|R1/R2|<0.5,其中,R1为第一透镜的物侧面的曲率半径,R2为第一透镜的像侧面的曲率半径。更具体地,R1和R2进一步可满足0.1<|R1/R2|<0.3,例如,0.20≤|R1/R2|≤0.21。合理分配第一透镜物侧面和像侧面的曲率半径,可有效地减小第一透镜产生的高级子午场曲和高级像散。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-1<f3/f<0,其中,f3为第三透镜的有效焦距,f为光学成像镜头的总有效焦距。更具体地,f3和f进一步可满足-0.8<f3/f<-0.4,例如,-0.66≤f3/f≤-0.58。合理控制第三透镜的有效焦距,能有效地平衡前两个透镜产生的色差、高级球差和彗差。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0<(R11+R12)/|f6|<2,其中,R11为第六透镜的物侧面的曲率半径,R12为第六透镜的像侧面的曲率半径,f6为第六透镜的有效焦距。更具体地,R11、R12和f6进一步可满足0.5<(R11+R12)/|f6|<1.5,例如,0.78≤(R11+R12)/|f6|≤1.27。满足条件式0<(R11+R12)/|f6|<2,能有效地减缓光线在第六透镜中的偏折角度,同时可以有效地平衡前面五个镜片产生的球差和彗差,使系统的成像品质更佳。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0<|f7/R14|<2.0,其中,f7为第七透镜的有效焦距,R14为第七透镜的像侧面的曲率半径。更具体地,f7和R14进一步可满足0.13≤|f7/R14|≤1.82。合理分配第七透镜的有效焦距和像侧面的曲面半径,可以让系统主光线角度与芯片更匹配,提升像面成像品质和相对照度,此外,还可以有效地平衡前面镜片未完全消除的场曲、畸变和色差。
在示例性实施方式中,上述光学成像镜头还可包括光阑,以提升镜头的成像质量。可选地,光阑可设置在第三透镜与第四透镜之间。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的七片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。通过上述配置的光学成像镜头还可具有长焦距、小型化、大孔径、高分辨率、高成像质量等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是该光学成像镜头不限于包括七个透镜。如果需要,该光学成像镜头还可包括其他数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表1
由表1可知,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S14的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20.。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -5.5429E-03 -5.5408E-04 -4.9967E-03 1.0518E-02 -1.4299E-02 1.0643E-02 -4.5365E-03 1.0046E-03 -8.9599E-05
S 2.2363E-02 1.8879E-02 -4.9908E-02 5.1799E-02 -3.1949E-02 1.0880E-02 -1.6653E-03 2.4696E-06 1.9140E-05
S3 2.6292E-02 2.4514E-02 -6.1217E-02 7.3306E-02 -5.6501E-02 2.9906E-02 -1.1478E-02 3.0867E-03 -4.2615E-04
S4 1.5481E-02 -6.4336E-04 -2.3217E-02 5.3421E-02 -6.6059E-02 4.8198E-02 -2.0692E-02 4.7663E-03 -4.5592E-04
S5 2.6610E-02 -5.8893E-02 1.5701E-01 -2.4566E-01 2.8030E-01 -2.2343E-01 1.1973E-01 -3.8861E-02 5.9385E-03
S6 4.0761E-02 -7.2653E-02 4.6691E-01 -1.9193E+00 5.8501E+00 -1.1362E+01 1.3375E+01 -8.6792E+00 2.4003E+00
S7 -2.6063E-02 -2.5555E-02 -9.6047E-01 3.4095E+00 -6.7506E+00 6.4954E+00 -1.1504E+00 -2.4824E+00 1.3150E+00
S8 1.4692E-01 1.8112E-01 -4.3326E+00 1.6366E+01 -3.3589E+01 4.1835E+01 -3.1509E+01 1.3199E+01 -2.3574E+00
S9 5.5143E-02 8.1685E-02 -2.8248E+00 1.0678E+01 -1.9003E+01 1.9519E+01 -1.2002E+01 4.1310E+00 -6.1426E-01
S10 -7.0826E-02 -9.3022E-03 -5.1892E-02 4.7524E-01 -4.0984E-01 -3.8296E-02 1.6420E-01 -5.8336E-02 4.6174E-03
S11 -2.3256E-01 1.0174E-01 -5.6575E-02 6.5603E-02 -5.5195E-02 2.7072E-02 -7.5253E-03 1.1016E-03 -6.6108E-05
S12 -2.5872E-01 1.2595E-01 -5.4962E-02 1.5970E-02 -2.9260E-03 1.7884E-04 6.6802E-05 -1.6663E-05 1.0686E-06
S13 -6.4943E-03 1.6831E-02 -2.4575E-02 1.6692E-02 -7.7780E-03 2.3974E-03 -4.4518E-04 4.4785E-05 -1.8803E-06
S14 -5.1807E-02 2.0705E-02 -1.3602E-02 8.6209E-03 -4.0345E-03 1.1753E-03 -2.0053E-04 1.8630E-05 -7.3492E-07
表2
表3给出了实施例1中光学成像镜头的总有效焦距f、各透镜的有效焦距f1至f7、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
f(mm) 6.22 f6(mm) -5.87
f1(mm) 4.03 f7(mm) 16.65
f2(mm) 8.80 TTL(mm) 5.77
f3(mm) -3.58 ImgH(mm) 2.92
f4(mm) 55.30 HFOV(°) 24.8
f5(mm) 148.48
表3
实施例1中的光学成像镜头满足:
f/TTL=1.08,其中,f为光学成像镜头的总有效焦距,TTL为第一透镜E1的物侧面S1至成像面S17在光轴上的距离;
f/EPD=1.90,其中,f为光学成像镜头的总有效焦距,EPD为光学成像镜头的入瞳直径;
T45/T12=0.32,其中,T45为第四透镜E4和第五透镜E5在光轴上的间隔距离,T12为第一透镜E1和第二透镜E2在光轴上的间隔距离;
DT41/DT71=0.44,其中,DT41为第四透镜E4的物侧面S7的最大有效半径,DT71为第七透镜E7的物侧面S13的最大有效半径;
SAG71/SAG11=-0.15,其中,SAG71为第七透镜E7的物侧面S13和光轴的交点至第七透镜E7的物侧面S13的有效半径顶点的轴上距离,SAG11为第一透镜E1的物侧面S1和光轴的交点至第一透镜E1的物侧面S1的有效半径顶点的轴上距离;
|f2/f123|=1.60,其中,f2为第二透镜E2的有效焦距,f123为第一透镜E1、第二透镜E2和第三透镜E3的组合焦距;
f/R6=2.68,其中,f为光学成像镜头的总有效焦距,R6为第三透镜E3的像侧面S6的曲率半径;
f/f1=1.54,其中,f为光学成像镜头的总有效焦距,f1为第一透镜E1的有效焦距;
CT2/CT7=0.74,其中,CT2为第二透镜E2在光轴上的中心厚度,CT7为第七透镜E7在光轴上的中心厚度;
|R1/R2|=0.21,其中,R1为第一透镜E1的物侧面S1的曲率半径,R2为第一透镜E1的像侧面S2的曲率半径;
f3/f=-0.58,其中,f3为第三透镜E3的有效焦距,f为光学成像镜头的总有效焦距;
(R11+R12)/|f6|=0.91,其中,R11为第六透镜E6的物侧面S11的曲率半径,R12为第六透镜E6的像侧面S12的曲率半径,f6为第六透镜E6的有效焦距;
|f7/R14|=0.50,其中,f7为第七透镜E7的有效焦距,R14为第七透镜E7的像侧面S14的曲率半径。
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凹面,像侧面S14为凸面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表4
由表4可知,在实施例2中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表5
表6给出了实施例2中光学成像镜头的总有效焦距f、各透镜的有效焦距f1至f7、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
f(mm) 6.22 f6(mm) -7.26
f1(mm) 4.02 f7(mm) 21.15
f2(mm) 9.60 TTL(mm) 5.77
f3(mm) -4.08 ImgH(mm) 2.90
f4(mm) 68.65 HFOV(°) 24.6
f5(mm) -56.90
表6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凹面,像侧面S14为凸面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表7
由表7可知,在实施例3中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.0369E-03 8.3525E-04 -8.1329E-03 1.4745E-02 -1.7779E-02 1.2373E-02 -5.0359E-03 1.0825E-03 -9.4842E-05
S2 2.3285E-02 8.8368E-03 -2.7521E-02 2.3541E-02 -1.0421E-02 9.0135E-04 1.0654E-03 -3.9715E-04 4.2514E-05
S3 3.1947E-02 1.2850E-02 -3.9109E-02 4.8625E-02 -4.1938E-02 2.6832E-02 -1.2625E-02 3.8647E-03 -5.5327E-04
S4 1.5895E-02 9.5312E-04 -3.0534E-02 6.4963E-02 -7.8924E-02 5.7802E-02 -2.4968E-02 5.7913E-03 -5.5877E-04
S5 1.5690E-02 -3.1829E-02 1.3699E-01 -2.7369E-01 3.8981E-01 -3.7671E-01 2.3561E-01 -8.5547E-02 1.3844E-02
S6 2.8399E-02 -1.5609E-02 1.2697E-01 -2.2707E-01 4.6883E-01 -8.6186E-01 1.1340E+00 -8.4386E-01 2.7282E-01
S7 4.1120E-02 -7.3210E-01 2.7214E+00 -7.9616E+00 1.5727E+01 -2.0294E+01 1.6409E+01 -7.5322E+00 1.4810E+00
S8 1.9967E-01 -1.0714E+00 3.2162E+00 -7.7033E+00 1.3370E+01 -1.6053E+01 1.2440E+01 -5.5197E+00 1.0576E+00
S9 1.0648E-01 -4.8967E-01 1.0312E+00 -1.1059E+00 6.6150E-01 -2.3262E-01 4.7944E-02 -5.3673E-03 2.5219E-04
S10 -1.9535E-02 -8.2126E-02 2.7295E-01 -4.2220E-01 7.5174E-01 -7.8768E-01 3.4523E-01 -2.0799E-02 -1.6189E-02
S11 -1.0172E-01 -1.0370E-01 1.7953E-01 -1.2126E-01 4.6998E-02 -1.1007E-02 1.5260E-03 -1.1487E-04 3.6136E-06
S12 -1.9285E-01 4.9054E-02 1.1915E-02 -2.2327E-02 1.1950E-02 -3.6200E-03 6.5548E-04 -6.5590E-05 2.7461E-06
S13 9.8013E-03 9.3779E-03 -1.7891E-02 8.0605E-03 -1.9496E-03 3.0845E-04 -3.2762E-05 2.0470E-06 -5.4530E-08
S14 -4.2188E-02 5.9597E-03 4.9067E-03 -4.8069E-03 1.6239E-03 -2.7338E-04 2.4551E-05 -1.1189E-06 2.0288E-08
表8
表9给出了实施例3中光学成像镜头的总有效焦距f、各透镜的有效焦距f1至f7、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
f(mm) 6.22 f6(mm) -6.18
f1(mm) 4.04 f7(mm) 21.88
f2(mm) 8.72 TTL(mm) 5.77
f3(mm) -3.87 ImgH(mm) 2.93
f4(mm) -23.30 HFOV(°) 24.9
f5(mm) 19.79
表9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表10
由表10可知,在实施例4中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.3220E-03 1.3666E-04 -6.1480E-03 1.1538E-02 -1.5027E-02 1.1050E-02 -4.7282E-03 1.0726E-03 -9.9874E-05
S2 1.5007E-02 2.4915E-02 -4.8668E-02 3.6864E-02 -1.1577E-02 -2.0422E-03 2.8098E-03 -8.1704E-04 8.0466E-05
S3 1.9895E-02 3.2904E-02 -6.7430E-02 6.5118E-02 -4.0293E-02 2.0041E-02 -8.9432E-03 2.9448E-03 -4.6003E-04
S4 1.6981E-02 4.8633E-03 -6.4042E-02 1.2699E-01 -1.3800E-01 9.1388E-02 -3.6422E-02 7.9492E-03 -7.3258E-04
S5 3.4305E-02 -6.8695E-02 1.0669E-01 -4.3695E-02 -5.7152E-02 9.6008E-02 -5.8869E-02 1.6504E-02 -1.4574E-03
S6 4.2374E-02 -7.3196E-02 3.2286E-01 -1.1638E+00 3.6727E+00 -7.3832E+00 8.8359E+00 -5.7588E+00 1.5937E+00
S7 4.5206E-02 -6.4866E-01 2.1095E+00 -5.4823E+00 1.0267E+01 -1.4638E+01 1.4652E+01 -8.6800E+00 2.2190E+00
S8 2.3773E-01 -1.4370E+00 3.5311E+00 -5.4700E+00 4.7356E+00 -1.4446E+00 -1.0423E+00 1.0562E+00 -2.7271E-01
S9 1.7651E-01 -1.2159E+00 2.9570E+00 -4.8742E+00 7.1571E+00 -8.0642E+00 5.7252E+00 -2.2244E+00 3.6025E-01
S10 -5.2041E-03 -3.0503E-01 7.6936E-01 -1.3146E+00 2.3797E+00 -2.8823E+00 1.9361E+00 -6.6798E-01 9.3287E-02
S11 -1.5956E-01 -3.8957E-02 8.9527E-02 -2.2520E-02 -2.5839E-02 2.3305E-02 -8.1815E-03 1.3768E-03 -9.1838E-05
S12 -2.0852E-01 1.5998E-02 7.1638E-02 -7.5590E-02 4.1180E-02 -1.4020E-02 2.9950E-03 -3.6551E-04 1.9279E-05
S13 -2.5981E-03 2.3719E-02 -4.0826E-02 3.0130E-02 -1.3539E-02 3.7323E-03 -6.0387E-04 5.2342E-05 -1.8727E-06
S14 -5.1236E-02 2.2645E-02 -1.5107E-02 8.1435E-03 -3.1932E-03 8.2286E-04 -1.3420E-04 1.2908E-05 -5.5796E-07
表11
表12给出了实施例4中光学成像镜头的总有效焦距f、各透镜的有效焦距f1至f7、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
f(mm) 6.22 f6(mm) -6.11
f1(mm) 4.03 f7(mm) 16.53
f2(mm) 8.96 TTL(mm) 5.77
f3(mm) -3.72 ImgH(mm) 2.94
f4(mm) -33.51 HFOV(°) 24.9
f5(mm) 22.58
表12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表13
由表13可知,在实施例5中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表14
表15给出了实施例5中光学成像镜头的总有效焦距f、各透镜的有效焦距f1至f7、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
f(mm) 6.22 f6(mm) -6.45
f1(mm) 4.05 f7(mm) 20.05
f2(mm) 8.76 TTL(mm) 5.77
f3(mm) -3.75 ImgH(mm) 2.94
f4(mm) 52.37 HFOV(°) 24.9
f5(mm) -180.97
表15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表16
由表16可知,在实施例6中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.3581E-03 4.1252E-03 -1.8193E-02 3.1340E-02 -3.3752E-02 2.1726E-02 -8.3043E-03 1.7067E-03 -1.4494E-04
S2 2.6753E-02 -5.8183E-03 8.1212E-03 -2.5639E-02 3.1303E-02 -2.1315E-02 8.2869E-03 -1.7013E-03 1.4252E-04
S3 3.3832E-02 -4.9712E-03 1.2128E-02 -3.5374E-02 4.0883E-02 -2.3898E-02 6.2372E-03 -1.3807E-05 -2.1313E-04
S4 1.6525E-02 3.3906E-03 -4.5244E-02 9.3980E-02 -1.1043E-01 7.8627E-02 -3.3184E-02 7.5696E-03 -7.2190E-04
S5 1.0883E-02 -2.9299E-02 9.8772E-02 -1.3309E-01 1.2432E-01 -7.7649E-02 3.0637E-02 -6.7600E-03 8.3228E-04
S6 6.7973E-03 1.3561E-01 -1.2016E+00 6.2050E+00 -1.8101E+01 3.1966E+01 -3.3651E+01 1.9412E+01 -4.7065E+00
S7 -5.1331E-02 -1.0501E-01 -7.8731E-01 4.9394E+00 -1.3332E+01 2.0027E+01 -1.7251E+01 7.7923E+00 -1.3882E+00
S8 2.8567E-01 -1.2637E+00 1.7334E+00 1.7916E+00 -1.0853E+01 1.8888E+01 -1.7307E+01 8.3499E+00 -1.6593E+00
S9 2.1134E-01 -1.2681E+00 2.5024E+00 -2.4690E+00 1.3139E+00 -3.6103E-01 3.6871E-02 3.1505E-03 -7.1756E-04
S10 2.1297E-02 -2.2719E-01 1.5292E-01 6.1535E-01 -1.3572E+00 1.3347E+00 -7.4801E-01 2.3023E-01 -3.0087E-02
S11 -1.8698E-01 5.6677E-02 3.9040E-03 -1.6340E-02 2.0308E-02 -1.6640E-02 7.4984E-03 -1.6781E-03 1.4667E-04
S12 -2.5160E-01 2.0393E-01 -1.5985E-01 9.9591E-02 -4.6006E-02 1.4731E-02 -3.0378E-03 3.5827E-04 -1.8154E-05
S13 -1.2230E-02 1.8068E-02 -1.8305E-02 8.0095E-03 -2.8097E-03 9.1616E-04 -2.0156E-04 2.3285E-05 -1.0541E-06
S14 -4.9331E-02 1.0231E-02 4.8273E-03 -8.1951E-03 4.7858E-03 -1.6421E-03 3.4255E-04 -3.9251E-05 1.8691E-06
表17
表18给出了实施例6中光学成像镜头的总有效焦距f、各透镜的有效焦距f1至f7、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
f(mm) 6.22 f6(mm) -5.25
f1(mm) 4.02 f7(mm) 12.38
f2(mm) 8.55 TTL(mm) 5.77
f3(mm) -3.70 ImgH(mm) 2.94
f4(mm) -32.87 HFOV(°) 24.9
f5(mm) 23.78
表18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表19
由表19可知,在实施例7中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.6855E-03 3.6164E-03 -1.4469E-02 2.3206E-02 -2.4800E-02 1.6032E-02 -6.1927E-03 1.2845E-03 -1.0975E-04
S2 2.3846E-02 5.8363E-03 -2.2087E-02 1.7384E-02 -5.5832E-03 -1.5513E-03 1.8000E-03 -5.1223E-04 4.9533E-05
S3 3.2778E-02 8.3173E-03 -2.8095E-02 3.1292E-02 -2.3438E-02 1.4128E-02 -7.3066E-03 2.6165E-03 -4.2635E-04
S4 1.7055E-02 -3.8021E-03 -1.7028E-02 4.1909E-02 -5.3838E-02 4.0134E-02 -1.7312E-02 3.9599E-03 -3.7466E-04
S5 1.5705E-02 -2.9183E-02 1.4846E-01 -3.1214E-01 4.4531E-01 -4.2404E-01 2.5913E-01 -9.1401E-02 1.4272E-02
S6 2.5338E-02 -2.3688E-02 2.1639E-01 -5.5393E-01 1.1172E+00 -1.5706E+00 1.4686E+00 -8.1083E-01 2.0773E-01
S7 4.8194E-02 -8.5189E-01 3.0904E+00 -8.4459E+00 1.5759E+01 -1.9505E+01 1.5321E+01 -6.8964E+00 1.3378E+00
S8 2.4403E-01 -1.4001E+00 4.0826E+00 -8.8621E+00 1.3975E+01 -1.5496E+01 1.1281E+01 -4.7707E+00 8.8189E-01
S9 1.5032E-01 -7.4823E-01 1.6323E+00 -1.8325E+00 1.1590E+00 -4.3335E-01 9.5258E-02 -1.1395E-02 5.7286E-04
S10 -1.1015E-02 -1.2194E-01 3.2256E-01 -2.7278E-01 2.1844E-01 -1.1171E-01 -8.3761E-02 1.1481E-01 -3.2934E-02
S11 -1.1161E-01 -9.5128E-02 1.8135E-01 -1.2814E-01 5.1577E-02 -1.2486E-02 1.7826E-03 -1.3779E-04 4.4418E-06
S12 -2.1382E-01 6.8700E-02 2.6949E-03 -2.1891E-02 1.3808E-02 -4.6997E-03 9.4869E-04 -1.0571E-04 4.9470E-06
S13 1.1958E-02 -6.0493E-03 -2.0243E-03 2.7703E-05 3.3581E-04 -6.7021E-05 2.2308E-06 3.4416E-07 -2.1251E-08
S14 -4.5692E-02 1.5791E-02 -1.1929E-02 8.9423E-03 -4.6251E-03 1.4148E-03 -2.4674E-04 2.2964E-05 -8.9177E-07
表20
表21给出了实施例7中光学成像镜头的总有效焦距f、各透镜的有效焦距f1至f7、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
f(mm) 6.22 f6(mm) -5.99
f1(mm) 4.04 f7(mm) 18.81
f2(mm) 8.43 TTL(mm) 5.78
f3(mm) -3.74 ImgH(mm) 2.90
f4(mm) -29.33 HFOV(°) 24.6
f5(mm) 22.55
表21
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表22示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表22
由表22可知,在实施例8中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表23
表24给出了实施例8中光学成像镜头的总有效焦距f、各透镜的有效焦距f1至f7、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
f(mm) 6.22 f6(mm) -6.23
f1(mm) 4.04 f7(mm) 24.74
f2(mm) 9.03 TTL(mm) 5.78
f3(mm) -3.88 ImgH(mm) 2.90
f4(mm) -122.78 HFOV(°) 24.6
f5(mm) 40.12
表24
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例8分别满足表25中所示的关系。
条件式\实施例 1 2 3 4 5 6 7 8
f/TTL 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08
f/EPD 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90
T45/T12 0.32 0.27 0.59 0.54 0.81 0.49 0.57 1.12
DT41/DT71 0.44 0.47 0.33 0.43 0.46 0.44 0.43 0.46
SAG71/SAG11 -0.15 -0.27 -0.30 -0.33 -0.44 -0.23 -0.27 -0.34
|f2/f123| 1.60 1.85 1.69 1.66 1.63 1.63 1.61 1.70
f/R6 2.68 2.35 2.46 2.59 2.67 2.65 2.35 2.75
f/f1 1.54 1.55 1.54 1.54 1.53 1.55 1.54 1.54
CT2/CT7 0.74 0.88 0.71 0.73 0.80 0.69 0.73 0.81
|R1/R2| 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20
f3/f -0.58 -0.66 -0.62 -0.60 -0.60 -0.59 -0.60 -0.62
(R11+R12)/f6 0.91 0.78 0.96 0.88 0.81 1.27 0.97 0.83
|f7/R14| 0.50 1.82 1.48 0.64 0.48 0.51 1.11 0.13
表25
本申请还提供一种摄像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的摄像模块。该摄像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其他技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (14)

1.光学成像镜头,沿光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其特征在于,
所述第一透镜具有正光焦度,其物侧面为凸面;
所述第三透镜具有负光焦度,其像侧面为凹面;
所述光学成像镜头的总有效焦距f与所述第一透镜的物侧面至所述光学成像镜头的成像面在光轴上的距离TTL满足f/TTL>1。
2.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD<2。
3.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜的有效焦距f1满足1<f/f1<2。
4.根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜的有效焦距f3与所述光学成像镜头的总有效焦距f满足-1<f3/f<0。
5.根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜的有效焦距f2与所述第一透镜、所述第二透镜和所述第三透镜的组合焦距f123满足1.5<|f2/f123|<2。
6.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第三透镜的像侧面的曲率半径R6满足2<f/R6<3。
7.根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足0<|R1/R2|<0.5。
8.根据权利要求1所述的光学成像镜头,其特征在于,所述第六透镜的物侧面的曲率半径R11、所述第六透镜的像侧面的曲率半径R12与所述第六透镜的有效焦距f6满足0<(R11+R12)/|f6|<2。
9.根据权利要求1所述的光学成像镜头,其特征在于,所述第七透镜的有效焦距f7与所述第七透镜的像侧面的曲率半径R14满足0<|f7/R14|<2.0。
10.根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第七透镜在所述光轴上的中心厚度CT7满足0.5<CT2/CT7<1。
11.根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足0<T45/T12<1.5。
12.根据权利要求1至11中任一项所述的光学成像镜头,其特征在于,所述第四透镜的物侧面的最大有效半径DT41与所述第七透镜的物侧面的最大有效半径DT71满足0<DT41/DT71<1。
13.根据权利要求1至11中任一项所述的光学成像镜头,其特征在于,所述第七透镜的物侧面和所述光轴的交点至所述第七透镜的物侧面的有效半径顶点的轴上距离SAG71与所述第一透镜的物侧面和所述光轴的交点至所述第一透镜的物侧面的有效半径顶点的轴上距离SAG11满足-1<SAG71/SAG11<0。
14.光学成像镜头,沿光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其特征在于,
所述第一透镜具有正光焦度,其物侧面为凸面;
所述第三透镜具有负光焦度,其像侧面为凹面;
所述第二透镜的有效焦距f2与所述第一透镜、所述第二透镜和所述第三透镜的组合焦距f123满足1.5<|f2/f123|<2。
CN201811466306.0A 2018-12-03 2018-12-03 光学成像镜头 Active CN109239895B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811466306.0A CN109239895B (zh) 2018-12-03 2018-12-03 光学成像镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811466306.0A CN109239895B (zh) 2018-12-03 2018-12-03 光学成像镜头

Publications (2)

Publication Number Publication Date
CN109239895A true CN109239895A (zh) 2019-01-18
CN109239895B CN109239895B (zh) 2024-04-02

Family

ID=65074457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811466306.0A Active CN109239895B (zh) 2018-12-03 2018-12-03 光学成像镜头

Country Status (1)

Country Link
CN (1) CN109239895B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034203A (zh) * 2006-03-09 2007-09-12 松下电器产业株式会社 变焦透镜系统,成像装置和拍摄设备
CN101354474A (zh) * 2007-07-23 2009-01-28 一品光学工业股份有限公司 一种三镜片式取像镜头
JP2012211934A (ja) * 2011-03-30 2012-11-01 Fujifilm Corp 撮像レンズおよび撮像装置
CN107621682A (zh) * 2017-10-25 2018-01-23 浙江舜宇光学有限公司 光学成像镜头
CN108873252A (zh) * 2018-07-02 2018-11-23 浙江舜宇光学有限公司 光学成像镜头
CN108919463A (zh) * 2018-08-02 2018-11-30 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034203A (zh) * 2006-03-09 2007-09-12 松下电器产业株式会社 变焦透镜系统,成像装置和拍摄设备
CN101354474A (zh) * 2007-07-23 2009-01-28 一品光学工业股份有限公司 一种三镜片式取像镜头
JP2012211934A (ja) * 2011-03-30 2012-11-01 Fujifilm Corp 撮像レンズおよび撮像装置
CN107621682A (zh) * 2017-10-25 2018-01-23 浙江舜宇光学有限公司 光学成像镜头
CN108873252A (zh) * 2018-07-02 2018-11-23 浙江舜宇光学有限公司 光学成像镜头
CN108919463A (zh) * 2018-08-02 2018-11-30 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN109239895B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
CN109085693A (zh) 光学成像镜头
CN109031629A (zh) 摄像光学系统
CN108873253A (zh) 摄像镜头
CN108919464A (zh) 光学成像镜片组
CN208705559U (zh) 光学成像镜头
CN108732724A (zh) 光学成像系统
CN109613684A (zh) 光学成像镜头
CN208705549U (zh) 光学成像镜片组
CN208506350U (zh) 摄像镜头
CN109782418A (zh) 光学成像镜头
CN209102995U (zh) 光学成像透镜组
CN109752826A (zh) 光学成像镜头
CN109239891A (zh) 光学成像透镜组
CN108919463A (zh) 光学成像镜头
CN109491047A (zh) 光学成像镜头
CN209044159U (zh) 摄像光学系统
CN109116520A (zh) 光学成像镜头
CN109254385A (zh) 光学成像镜头
CN109358416A (zh) 摄像镜头
CN209148942U (zh) 光学成像镜头
CN209215719U (zh) 光学成像镜头
CN209327660U (zh) 摄像镜头
CN108802972A (zh) 光学成像系统
CN109358415A (zh) 光学成像镜头
CN108279483A (zh) 摄像镜头组

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant