CN109238247B - 一种面向大空间复杂现场的六自由度测量方法 - Google Patents

一种面向大空间复杂现场的六自由度测量方法 Download PDF

Info

Publication number
CN109238247B
CN109238247B CN201810787050.7A CN201810787050A CN109238247B CN 109238247 B CN109238247 B CN 109238247B CN 201810787050 A CN201810787050 A CN 201810787050A CN 109238247 B CN109238247 B CN 109238247B
Authority
CN
China
Prior art keywords
space
measuring
coordinate system
coordinates
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810787050.7A
Other languages
English (en)
Other versions
CN109238247A (zh
Inventor
杨凌辉
邾继贵
林嘉睿
任永杰
史慎东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810787050.7A priority Critical patent/CN109238247B/zh
Publication of CN109238247A publication Critical patent/CN109238247A/zh
Application granted granted Critical
Publication of CN109238247B publication Critical patent/CN109238247B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • G01C15/008Active optical surveying means combined with inclination sensor

Abstract

本发明公开了一种面向大空间复杂现场的六自由度测量方法,包括以下步骤:在测量空间地基上布置多个固定的基准点,在多个不同站位分别测量多个基准点在各个站位局部坐标系下的空间坐标;对多站位下的基准点坐标联合平差得到优化后的基准点坐标,建立基准点全局坐标系;在测量空间顶部布置由多台发射站组成的测量场,利用基准点标定方法求解测量场的外部定向参数;测量六自由度测量靶标上至少两个光电接收器在全局坐标系下的空间坐标及倾角仪实时输出;利用加权方法得到靶标的三维空间位置,航向角通过分段函数确定,倾角仪输出滚转角和俯仰角。本方法相比于传统的激光跟踪测量方法和摄影测量方法,具有高精度、高效率等优点。

Description

一种面向大空间复杂现场的六自由度测量方法
技术领域
本发明涉及室内空间测量定位领域,尤其涉及一种面向大空间复杂现场的六自由度测量方法,特别涉及基于wMPS(室内空间测量定位系统)和倾角传感相结合的六自由度测量方法。
背景技术
在航空、航天领域多部件、大空间、实时协同的智能制造背景下,以AGV(自动导引运输车)、智能机器人为代表的可移动柔性平台和集成测量、定位功能的智能工具已成为公认的发展方向;具备多目标、多自由度、实时信息同步获取能力的动态测量技术及装备将成为大型装备数字化制造的核心支撑,对于转变大型制造生产模式,提升工艺水平和生产效率有着重要的现实意义。以智能机器人协作加工平台为代表,不仅需要实时测量机器人与工件之间的相对位置及姿态关系,为AGV移动导航、末端工具路径规划提供定位依据;还需要测量参与协作的两台或数台机器人间的实时相对位姿,为精准协作提供测量支持。诸如此类大型装备制造场景,因部件三维尺寸庞大,往往具有精度要求高、测量范围大,光线遮挡严重,杂光干扰强等诸多的不利条件,对现场测量方法及设备提出了严峻的挑战。
传统的六自由度测量方法主要包括:激光跟踪法、摄影测量方法。激光跟踪法利用激光跟踪仪(laser tracker)和辅助测量设备T-mac完成多自由度同步测量。激光跟踪系统利用高精度干涉距离、角度编码器测量水平角、俯仰角,虽然具有较高的测量精度,但要求保证绝对通视条件,即激光跟踪仪本体和反射球之间不能存在任何遮挡,同时系统测量精度随测量距离线性衰减,在大尺寸测量空间内往往需要进行多站位转换或多台跟踪仪协同使用,以保证测量精度,大大增加了测量时间和测量成本。摄影测量方法通常利用相机与合作标靶实现被测物体多自由度测量,包括:单目视觉方法、多目立体视觉方法等。摄影测量方法多基于图像处理及配准算法,利用相机内参数和外参数将二维图像信息转化为三维坐标信息,对系统硬件要求较高,测量效率低;同时,摄影测量方法易受视场范围和测量现场的杂光干扰,影响成像质量,同时测量距离限制较大,实现大空间内测量需要复杂的多相机标定过程。
针对上述测量系统的不足,需要寻找一种面向大空间复杂现场的高精度、高效率、高稳定性的六自由度测量方法,进一步满足大型装备制造现场复杂环境和严苛的测量需求、具有重要应用价值。
发明内容
本发明提供了一种面向大空间复杂现场的六自由度测量方法,本发明可在大空间复杂现场内实现待测目标的六自由度高精度连续测量;该方法避免了场地内通视条件的制约,对杂光干扰有较强抑制,鲁棒性强;同时凭借室内空间定位系统良好的网络伸缩性,克服了精度与量程之间的矛盾,灵活高效,具有较强的现场适用性和稳定性,详见下文描述:
一种面向大空间复杂现场的六自由度测量方法,所述方法包括以下步骤:
1)在测量空间地基上布置多个固定的基准点,在多个不同站位分别测量多个基准点在各个站位局部坐标系下的空间坐标;
2)对多站位下的基准点坐标联合平差得到优化后的基准点坐标,建立基准点全局坐标系;在测量空间顶部布置由多台发射站组成的测量场,利用基准点标定方法求解测量场的外部定向参数;
3)测量六自由度测量靶标上至少两个光电接收器在全局坐标系下的空间坐标及倾角仪实时输出;
4)利用加权方法得到靶标的三维空间位置,航向角通过分段函数确定,倾角仪输出滚转角和俯仰角。
其中,所述利用基准点标定方法求解测量场的外部定向参数具体为:
每个发射站与基准点全局坐标系的旋转矩阵和平移矩阵,通过标定可实现测量场坐标系与基准点全局坐标系的统一,使测量场坐标系的Z轴与全局坐标系Z轴平行。
进一步地,所述利用加权方法得到靶标的三维空间位置具体为:
Figure BDA0001730908620000021
其中,[XO YO ZO]为标靶的三维位置信息,[X1 Y1 Z1]……[X6 Y6 Z6]分别为每个光电接收器的三维坐标。
其中,所述分段函数具体为:六个光电接收器的航向角,航向角可通过任意两个接收器的空间坐标进行解算。
进一步地,所述航向角可通过任意两个接收器的空间坐标进行解算具体为:
每个航向角为任意两个接收器的空间位置坐标的反正切;或,
每个航向角为任意两个接收器的空间位置坐标的反正切与π的和;或,
每个航向角由任意两个接收器的空间位置坐标的反正切与2π的和。
进一步地,所述方法的整体测量频率可达20Hz,位置测量精度0.2mm+0.01mm/m,俯仰角和滚转角测量精度2角秒,航向角测量精度20角秒。
本发明提供的技术方案的有益效果是:
1、本方法可以实时测量标靶的位置和姿态信息:
即,测量靶标上周向均匀分布六个光电接收器,双轴倾角仪与标靶上表面精密贴合,六个光电接收器可实现靶标空间位置和航向角的精确测量,倾角仪可实现俯仰角和滚转角的精确测量,系统整体测量频率可达20Hz,位置测量精度0.2mm+0.01mm/m,俯仰角和滚转角测量精度2角秒,航向角测量精度20角秒。
2、本方法合理布置了室内空间测量系统的测量场,该方法可有效平衡量程与测量精度的矛盾,其不受水平空间障碍物的遮挡,抗干扰能力强,稳定性和可靠性好,工业现场应用价值高。
3、本方法相比于传统的激光跟踪测量方法和摄影测量方法,具有高精度、高效率等优点。
附图说明
图1为一种面向大空间复杂现场的六自由度测量方法的流程图;
图2为测量场布局及基准点标定的示意图;
图3为六自由度测量标靶的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明实施方式作进一步地详细描述。
实施例1
一种面向大空间复杂现场的六自由度测量方法,参见图1,该方法包括以下步骤:
101:在测量空间地基上布置多个固定的基准点,在多个不同站位分别测量多个基准点在各个站位局部坐标系下的空间坐标;
102:对多站位下的基准点坐标联合平差得到优化后的基准点坐标,建立基准点全局坐标系;在测量空间顶部布置由多台发射站组成的测量场,利用基准点标定方法求解测量场的外部定向参数;
103:测量六自由度测量靶标上至少两个光电接收器在全局坐标系下的空间坐标及倾角仪实时输出;
104:利用加权方法得到靶标的三维空间位置,航向角通过分段函数确定,倾角仪输出滚转角和俯仰角。
其中,步骤104中的分段函数具体为:六个光电接收器的航向角,航向角可通过任意两个接收器的空间坐标进行解算。
进一步地,步骤104中的航向角可通过任意两个接收器的空间坐标进行解算具体为:
每个航向角为任意两个接收器的空间位置坐标的反正切;或,
每个航向角为任意两个接收器的空间位置坐标的反正切与π的和;或,
每个航向角由任意两个接收器的空间位置坐标的反正切与2π的和。
综上所述,本发明实施例避免了场地内通视条件的制约,对杂光干扰有较强抑制,鲁棒性强;同时凭借室内空间定位系统良好的网络伸缩性,克服了精度与量程之间的矛盾,灵活高效,具有较强的现场适用性和稳定性。
实施例2
下面结合具体的计算公式、实例对实施例1中的方案进行进一步地介绍,详见下文描述:
室内空间测量定位系统(wMPS)由发射站、光电接收器、信号处理器和终端计算机组成。发射站安装在测量空间顶部桁架上,向下发射两个激光平面,激光平面随发射站旋转头旋转并扫描空间内的光电接收器,同步光以固定周期发射出同步光信号,光电接收器接收扫描光和同步光后,经信号处理、光电转换等处理模块,将结果传输到上位机,上位机通过时间积分,结合发射站旋转周期,得到光电接收器的扫描角,从而建立发射站与光电接收器的空间位置关系。
其中,激光平面模型可用如下等式表示:
Figure BDA0001730908620000041
其中,i代表发射站编号,j代表激光扇面编号,k表示全局坐标系下的待求点编号。a、b、c和d分别代表激光平面参数,θ代表积分运算得到的扫描角,R和T表示发射站坐标系与全局坐标系的旋转和平移矩阵,[xk yk zk]代表待求坐标参量。
空间内的两个或以上发射站扫描同一个接收器,即可得到四个如公式(1)的线性方程,联立多个线性方程构成的方程组,利用最小二乘方法即可求解三个未知数[xk yk zk]T,实现接收器三维坐标的精确测量。在一定范围内,坐标测量精度与接收到的发射站信号数量存在正相关关系。
本发明实施例以上述测量系统为基础,加入双轴倾角仪进行姿态辅助测量,以六自由度周向标靶作为测量工具,实时测量标靶的六自由度信息。标靶采用殷钢材质构成,标靶上以圆周方向间隔60°均匀分布六个共面的光电接收器安装底座,接收器可通过磁铁吸附在底座上。标靶形心位于六个光电接收器的几何中心。经精密机械加工和影像仪调节后,六个光电接收器的感光单元中心到标靶几何中心的距离相等,误差小于0.02mm。
其中,测量靶标坐标系定义如下:原点位于标靶几何中心处,x轴正方向与原点指向1号接收器的方向重合,z轴垂直于六个接收器所在平面向上,y轴通过右手定则确定。倾角仪安装于标靶上表面,该表面经过精密机械加工后与倾角仪基准面实现紧密贴合,倾角仪的敏感轴与标靶坐标系x轴和y轴平行且同向。
其中,wMPS测量场通过精确基准点标定实现外参定向,基准点坐标可通过具有大地基准的测量设备得到,如双经纬仪系统、带有调平功能的激光跟踪仪(Laser trackerAT401等)、具有倾角调节功能的发射站等。
上述具备大地基准的测量设备经过调平后其Z轴与当地重力方向平行,因此,室内空间测量定位系统测量场全局坐标系Z轴也与重力方向平行。双轴倾角仪可以精确感知x轴和y轴分别与重力方向的夹角,因此,靶标在全局坐标系中的滚转角α和俯仰角β可通过倾角仪直接测量得到,航向角γ可通过任意一个接收器坐标与原点之间的方向矢量得到。标靶的三维位置信息可通过六个光电接收器的三维坐标加权得到,因此,三维位置信息[XO YOZO]T可表示为:
Figure BDA0001730908620000051
其中,[XO YO ZO]为标靶的三维位置信息,[X1 Y1 Z1]……[X6 Y6 Z6]分别为每个光电接收器的三维坐标。
航向角γ可通过任意一个接收器的空间坐标进行解算,各接收器对应具体方法如下:
接收器1:
Figure BDA0001730908620000061
接收器2:
Figure BDA0001730908620000062
接收器3:
Figure BDA0001730908620000063
接收器4:
Figure BDA0001730908620000064
接收器5:
Figure BDA0001730908620000071
接收器6:
Figure BDA0001730908620000072
至此,三个轴向位置自由度和姿态自由度,即六自由度,全部测量得到。
具体实现时,通过合理布置wMPS测量场发射站位置即可实现待测区域全覆盖,该方案可适应大空间复杂现场环境,6个光电接收器可接收来自全周方向的发射站信号进行坐标结算,系统根据实际测量结果灵活选择冗余测量信息实现解算,测量精度高,鲁棒性好,具备较好的工程现场应用价值。
实施例3
下面结合具体的实例、图2-图3对实施例1和2中的方案进行进一步地介绍,详见下文描述:
该方法通过测量六自由度标靶上周向分布的六个光电接收器三维位置坐标,结合倾角仪输出的角度信息,即可实现被测目标的六自由度实时同步测量,具体地:
1)在测量空间地基上布置多个固定的基准点(图2),点位间隔3-5m(具体取值根据实际应用中的精度、测量范围、成本等需要进行设定),数量以覆盖测量范围为宜。通过具备大地基准的三维测量系统,例如:双经纬仪系统、具有调平功能的激光跟踪仪Lasertracker AT401、具有倾角调节功能的发射站等,在多个不同站位分别测量多个基准点在各个站位局部坐标系LOCAL-XYZ下的空间坐标[xLi yLi zLi]T
2)对多站位下的基准点坐标联合平差(本领域公知的技术术语,在此不做赘述)得到优化后的基准点坐标,建立基准点全局坐标系GLOBAL-XYZ。在测量空间顶部布置由多台发射站组成的测量场,利用基准点标定方法求解测量场的外部定向参数,即每个发射站与基准点全局坐标系的旋转矩阵和平移矩阵,通过标定可实现测量场坐标系与基准点全局坐标系的统一,使测量场坐标系的Z轴与全局坐标系Z轴平行。
3)测量六自由度测量靶标(图3)上六个光电接收器在全局坐标系下的空间坐标(Xi Yi Zi)T,i=1,2,3,4,5,6及倾角仪实时输出α和β。在测量场布置受限的情况下,发射站只能布置在特定位置,不能确保解算得到全部六个接收器的三维坐标,此时只需得到两个接收器的空间坐标和倾角仪输出。
4)利用加权方法得到靶标的三维空间位置(Xo Yo Zo)T(公式2,即得到3个自由度),航向角通过分段函数(公式3-8,即得到一个自由度)确定,倾角仪输出α和β为滚转角和俯仰角(即得到二个自由度),至此,靶标在全局坐标系下三个轴向的位置和姿态,即六自由度信息全部测量得到。
本发明实施例对各器件的型号除做特殊说明的以外,其他器件的型号不做限制,只要能完成上述功能的器件均可。
本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种面向大空间复杂现场的六自由度测量方法,其特征在于,所述方法包括以下步骤:
1)在测量空间地基上布置多个固定的基准点,在多个不同站位分别测量多个基准点在各个站位局部坐标系下的空间坐标;
2)对多站位下的基准点坐标联合平差得到优化后的基准点坐标,建立基准点全局坐标系;在测量空间顶部布置由多台发射站组成的测量场,利用基准点标定方法求解测量场的外部定向参数;
3)测量六自由度测量靶标上至少两个光电接收器在全局坐标系下的空间坐标及倾角仪实时输出;
4)利用加权方法得到靶标的三维空间位置,航向角通过分段函数确定,倾角仪输出滚转角和俯仰角;
其中,所述利用基准点标定方法求解测量场的外部定向参数具体为:
每个发射站与基准点全局坐标系的旋转矩阵和平移矩阵,通过标定可实现测量场坐标系与基准点全局坐标系的统一,使测量场坐标系的Z轴与全局坐标系Z轴平行;
测量场全局坐标系Z轴与重力方向平行,双轴倾角仪感知x轴和y轴分别与重力方向的夹角,靶标在全局坐标系中的滚转角α和俯仰角β通过倾角仪直接测量得到,航向角γ通过任意一个接收器坐标与原点之间的方向矢量得到;标靶的三维位置信息通过六个光电接收器的三维坐标加权得到,
所述利用加权方法得到靶标的三维空间位置具体为:
Figure FDA0003023843950000011
其中,[XO YO ZO]为标靶的三维位置信息,[X1 Y1 Z1]……[X6 Y6 Z6]分别为每个光电接收器的三维坐标;
所述分段函数具体为:六个光电接收器的航向角,航向角可通过任意两个接收器的空间坐标进行解算;
所述航向角可通过任意两个接收器的空间坐标进行解算具体为:
每个航向角为任意两个接收器的空间位置坐标的反正切;或,
每个航向角为任意两个接收器的空间位置坐标的反正切与π的和;或,
每个航向角由任意两个接收器的空间位置坐标的反正切与2π的和;
其中,
所述方法的整体测量频率可达20Hz,位置测量精度0.2mm+0.01mm/m,俯仰角和滚转角测量精度2角秒,航向角测量精度20角秒。
CN201810787050.7A 2018-07-15 2018-07-15 一种面向大空间复杂现场的六自由度测量方法 Active CN109238247B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810787050.7A CN109238247B (zh) 2018-07-15 2018-07-15 一种面向大空间复杂现场的六自由度测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810787050.7A CN109238247B (zh) 2018-07-15 2018-07-15 一种面向大空间复杂现场的六自由度测量方法

Publications (2)

Publication Number Publication Date
CN109238247A CN109238247A (zh) 2019-01-18
CN109238247B true CN109238247B (zh) 2021-07-02

Family

ID=65071965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810787050.7A Active CN109238247B (zh) 2018-07-15 2018-07-15 一种面向大空间复杂现场的六自由度测量方法

Country Status (1)

Country Link
CN (1) CN109238247B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736165B (zh) * 2020-07-07 2023-08-25 清华大学 一种位姿参数测量方法和装置
CN113063354B (zh) * 2021-04-09 2022-01-07 天津大学 用于空间测量定位的合作靶标定向装置及其定向方法
CN113449448B (zh) * 2021-05-31 2022-02-15 天津大学 一种光学分布式测量系统布局优化方法
CN113739699B (zh) * 2021-07-27 2022-10-25 西安交通大学 一种多角度的传感器阵列测量装置、系统及工作方法
CN113503856A (zh) * 2021-07-30 2021-10-15 中铁工程装备集团有限公司 一种隧道用台车定位测量方法及系统
CN113686319B (zh) * 2021-08-25 2022-05-27 天津大学 分布式测量系统基站姿态补偿装置及方法
CN115675784B (zh) * 2022-10-28 2023-05-26 天津大学 一种基于数字化测量场的船舶总段对接系统和对接方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782293A (zh) * 2017-11-09 2018-03-09 北京卫星环境工程研究所 基于六自由度激光跟踪靶的航天器设备位姿信息测量方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102395898A (zh) * 2009-02-17 2012-03-28 绝对机器人技术有限公司 对机器人臂的位置信息的测量
CN102288106B (zh) * 2010-06-18 2013-03-27 合肥工业大学 大空间视觉跟踪6d测量系统及测量方法
CN102374847B (zh) * 2011-09-14 2013-07-24 天津大学 工作空间六自由度位姿动态测量设备及方法
DE112015003734T5 (de) * 2014-08-11 2017-06-14 Faro Technologies, Inc. Triangulationsscanner mit sechs Freiheitsgraden und Kamera für erweiterte Realität

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782293A (zh) * 2017-11-09 2018-03-09 北京卫星环境工程研究所 基于六自由度激光跟踪靶的航天器设备位姿信息测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
激光标靶六自由度测量技术;孟祥瑞;《光电工程》;20150531;全文 *

Also Published As

Publication number Publication date
CN109238247A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
CN109238247B (zh) 一种面向大空间复杂现场的六自由度测量方法
US11441899B2 (en) Real time position and orientation tracker
CN109341535B (zh) 一种高效高精度大型卫星天线装配测量系统
CN102706277B (zh) 一种基于全方位点约束的工业机器人在线零位标定装置及方法
CN111811483B (zh) 一种用于飞机数字化装配的多相机组网定位标定方法
CN104858870A (zh) 基于末端编号靶球的工业机器人测量方法
CN109712201B (zh) 一种广域相机的定位能力标定装置及标定方法
CN108489382B (zh) 一种基于空间多点约束的agv动态位姿测量方法
CN106226780A (zh) 基于激光扫描雷达的多旋翼室内定位系统及实现方法
CN112629431B (zh) 土木结构变形监测方法及相关设备
CN108151698B (zh) 一种基于轴线相交法的天线旋转中心标校方法
CN107817003B (zh) 一种分布式大尺寸空间定位系统的外参数标定方法
CN110926479A (zh) 自动生成室内三维导航地图模型的方法和系统
CN107727118B (zh) 大型飞行器中的gnc分系统设备姿态测量系统标定方法
CN110211175B (zh) 准直激光器光束空间位姿标定方法
CN111486867A (zh) 一种视觉和惯性混合跟踪组件安装参数的标定装置及方法
Cai et al. A novel measurement system based on binocular fisheye vision and its application in dynamic environment
CN109238246A (zh) 基于全周角度约束的多站多点自适应六自由度测量方法
CN113702994A (zh) 一种基于刚性约束的激光跟踪仪测量精度提升方法
CN113587819A (zh) 一种基于三路激光跟踪的大尺度空间位姿动态测量方法与测量精度验证方法
CN111220118B (zh) 基于视觉惯性导航系统的激光测距仪及测距方法
CN107991684B (zh) 大型飞行器中的gnc分系统设备姿态测量系统
CN111561867A (zh) 一种飞机表面形貌数字化测量方法
El-Sheimy et al. Kinematic positioning in three dimensions using CCD technology
CN110871824A (zh) 一种轨道周围环境监测方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant