CN109236282B - 注入液优势波及方向和长度的测量方法 - Google Patents

注入液优势波及方向和长度的测量方法 Download PDF

Info

Publication number
CN109236282B
CN109236282B CN201810592335.5A CN201810592335A CN109236282B CN 109236282 B CN109236282 B CN 109236282B CN 201810592335 A CN201810592335 A CN 201810592335A CN 109236282 B CN109236282 B CN 109236282B
Authority
CN
China
Prior art keywords
injection
liquid
measuring
attenuation
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810592335.5A
Other languages
English (en)
Other versions
CN109236282A (zh
Inventor
张鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810592335.5A priority Critical patent/CN109236282B/zh
Publication of CN109236282A publication Critical patent/CN109236282A/zh
Application granted granted Critical
Publication of CN109236282B publication Critical patent/CN109236282B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/113Locating fluid leaks, intrusions or movements using electrical indications; using light radiations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Business, Economics & Management (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Marketing (AREA)
  • Agronomy & Crop Science (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Animal Husbandry (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

本发明公开了一种注入液优势波及方向和长度的测量方法,其步骤:(1)确定注入井、电流返回井的位置;(2)采用环形布置多环测点的方式,布置多个地面测点;(3)布设测点到接收机的信号传输线;(4)通过注入井和电流返回井,向地层供电并记录回路电流,断电后测量各测点激电二次场电位差值,并计算衰减度DQ;(5)注入井注液施工;(6)注液施工中或结束后,向地层供电并记录回路电流,断电后测量各测点激电二次场电位差值,并计算衰减度DH;(7)计算各测点衰减度异常DS;(8)计算注入液波及带长度C;(9)绘制衰减度成果图。本发明可以解决在正常施工(不加高盐物质)的条件下,完成对注入液优势波及方向和长度的测量,即应用激电二次场的衰减特性参数描述注入液优势波及方向和长度的技术问题。

Description

注入液优势波及方向和长度的测量方法
技术领域
本发明属于电法勘探技术领域,尤其涉及激电二次场的测量方法和相应的激电二次衰减特性的应用技术。
背景技术
大港油田研究院从80年代初就开展了“电位法井间监测技术”的研究工作。该方法是利用被测井和周围另外一口井套管作为发射电极,地面布置测量电极,测量施工过程中一次场的电位变化来解释推断油井压裂裂缝方位及长度、注水井注水推进方向和波及前沿、调剖效果评价、蒸汽驱蒸汽扩散方向和波及范围等参数。该方法要求在压裂液中加入3%-5%Kcl或Nacl,对地层或井筒会造成伤害。
中国地质大学(武汉)师学明教授对井地电位异常进行了大量的数值模拟计算,这些都是基于充电法原理,在工作液中加入3%-5%Kcl或Nacl进行的。
现有技术均要求在注入的液体中,加入高盐物质,如Kcl或Nacl,人为改变与周围地层的电阻率差异,通过测量一次场电位差来解释推断注入液扩散范围等参数,但注入的高盐物质会对地层或井筒造成伤害(盐敏、卡管柱等隐患),该技术受到了很大限制;
发明内容
本发明的目的是提供一种注入液优势波及方向和长度的测量方法,以解决在正常施工(不加高盐物质)的条件下,完成对注入液优势波及方向和长度的测量,即应用激电二次场的衰减特性参数描述注入液优势波及方向和长度的技术问题。
为了实现上述发明目的,本发明所采用的技术方案步骤如下:
(1)确定注入井1的位置,注入井1的发射电极是钻井套管;
(2)确定电流返回井2的位置,电流返回井2的发射电极是钻井套管或固定长度的金属导线;
(3)采用环形布置多环测点的方式,布置M、N、P等多个地面测点;
(4)布设测点到接收机的信号传输线;
(5)通过注入井1和电流返回井2,向地层供电并记录回路电流I,断电后测量各测点激电二次场电位差值,并计算衰减度DQ
Figure BDA0001690980880000021
DQ—注液施工前衰减度初始值;
Figure BDA0001690980880000022
——注液施工前,断电后0.24秒到5.28秒二次电位差的平均值(mV);
Figure BDA0001690980880000023
——注液施工前,断电后0.24秒二次电位差的瞬时值(mV);
(6)注入井1注液施工,即注水井注入设计用量的液体、油井压裂泵入设计用量的压裂液;
(7)注液施工中或结束后,向地层供电并记录回路电流I,断电后测量各测点激电二次场电位差值,并计算衰减度DH
Figure BDA0001690980880000024
DH—注液施工后衰减度;
Figure BDA0001690980880000031
——注液施工后,断电后0.24秒到5.28秒二次电位差的平均值(mV);
Figure BDA0001690980880000032
——注液施工后,断电后0.24秒二次电位差的瞬时值(mV);
(8)计算各测点衰减度异常DS,即:
DS=DH-DQ
DS—衰减度异常;
DH—注液施工后衰减度;
DQ—注液施工前衰减度;
(9)计算注入液波及带长度C,即:
Figure BDA0001690980880000033
C—注入液波及带长度(m);
I—回路供电电流(A);
ρ—注入液波及带上覆地层的电阻率(Ω.m);
rN—注入井到测点N的距离(m);
rM—注入井到测点M的距离(m);
(10)绘制衰减度成果图:
数据处理后,给出了衰减度异常DS直角坐标曲线图和环形图;在衰减度异常DS曲线图中横坐标表示测点的方位角,纵坐标表示衰减度异常DS;在衰减度异常DS环形图中,圆点为注入井,矢径表示衰减度异常DS,环外标出测试点方位角,正北方向(N)为0°并顺时针旋转,90°为正东(E)方向、180°为正南(S)方向、270°为正西(W)方向。
本发明的优点及积极效果:
注入液优势波及方向和长度测量方法,在方法理论研究的基础上,进行了大量的数值计算和现场试验工作,到目前为止,现场测试16井次,注水井优势波及方向和长度测试5井次、压裂井压裂裂缝方向及裂缝长度测试11井次,该方法测量成果与生产动态的符合率达到93.8%。
与现有的电位(一次)测量方法相比,具有测量精度高、适应范围广等特点,特别是在注入液施工中不需要加入任何高盐物质,消除了对地层造成的各种伤害。
附图说明
图1是本发明的测量原理示意图。
图2是本发明的地层中岩石颗粒和周围溶液界面的双电层放电示意图。
图中编号:
1、注入井;2、电流返回井;3、激电接收机,测量激电二次电位差信号的测量仪;4、发射机,向地下供电的动力源;5、为地面上的M测量点;6、为地面上的N测量点;7、为地面上的P测量点;8、双电层放电区域,9、是注入井右侧裂缝形状示意形状C1;10、是注入井左侧裂缝形状示意形状C2;11、是注入液波及带上覆地层的电阻率ρ;12、是回路电流强度I;13、是放电电流密度j。
具体实施方式
本发明通过测量储层岩石颗粒和周围溶液界面的双电层因施工注入液体产生的形变,在断电后所产生的激电二次电位差,来达到解释推断注入液优势波及方向和长度的目的。
测试原理:地层中岩石颗粒表面的双电层,无激励时处于一个平衡状态;加外电流激励时,岩石颗粒表面双电层分散区中的阳离子发生移动,导致双电层形变;当外电流断电,堆积的离子产生放电过程,以恢复到平衡状态,从而观测到激发极化二次场电位差。
作业过程中,如注水井注水、油井压裂施工等,都要向地层注入大量的液体,这部分液体中的离子将会改变岩石颗粒和周围溶液界面双电层的平衡状态。因此,在注入井周围布置多个测点,采用高精度的激电接收机在注液施工前后,分别测量停止向地层供电后的激电二次场电位差,就可达到解释推断注入液优势波及方向和长度的目的。
参见图1、2所示,本发明的一种注入液优势波及方向和长度的测量方法步骤如下:
(1)确定注入井1的位置,注入井1的发射电极可以是钻井套管;
(2)确定电流返回井2的位置,电流返回井2的发射电极可以是钻井套管或固定长度的金属导线;
(3)布置M、N、P等多个地面测点,最好采用环形布置多环测点;
(4)布设测点到接收机的信号传输线;
(5)通过注入井1和电流返回井2,向地层供电并记录回路电流I,断电后测量各测点激电二次场电位差值,并计算衰减度DQ
Figure BDA0001690980880000051
DQ—注液施工前衰减度初始值;
Figure BDA0001690980880000052
——注液施工前,断电后0.24秒到5.28秒二次电位差的平均值(mV);
Figure BDA0001690980880000061
——注液施工前,断电后0.24秒二次电位差的瞬时值(mV)。
(6)注入井1注液施工,即注水井注入设计用量的液体、油井压裂泵入设计用量的压裂液;
(7)注液施工中或结束后,向地层供电并记录回路电流I,断电后测量各测点激电二次场电位差值,并计算衰减度DH
Figure BDA0001690980880000062
DH—注液施工后衰减度;
Figure BDA0001690980880000063
——注液施工后,断电后0.24秒到5.28秒二次电位差的平均值(mV);
Figure BDA0001690980880000064
——注液施工后,断电后0.24秒二次电位差的瞬时值(mV)。
(8)计算各测点衰减度异常DS,即:
DS=DH-DQ
DS—衰减度异常;
DH—注液施工后衰减度;
DQ—注液施工前衰减度。
(9)计算注入液波及带长度C,即:
Figure BDA0001690980880000065
C—注入液波及带长度(m);
I—回路供电电流(A);
ρ—注入液波及带上覆地层的电阻率(Ω.m);
rN—注入井到测点N的距离(m);
rM—注入井到测点M的距离(m)。
(10)绘制衰减度成果图:
数据处理后,给出了衰减度异常DS直角坐标曲线图和环形图。在衰减度异常DS曲线图中横坐标表示测点的方位角,纵坐标表示衰减度异常DS;在衰减度异常DS环形图中,圆点为注入井,矢径表示衰减度异常DS,环外标出测试点方位角,正北方向(N)为0°并顺时针旋转,90°为正东(E)方向、180°为正南(S)方向、270°为正西(W)方向。
本发明的适用条件:
(1)在所要测量的“目的层”至地面,没有低阻覆盖层;
(2)适应于泥砂岩地层。

Claims (1)

1.注入液优势波及方向和长度的测量方法,其步骤如下:
(1)确定注入井(1)的位置,注入井(1)的发射电极是钻井套管;
(2)确定电流返回井(2)的位置,电流返回井(2)的发射电极是钻井套管或固定长度的金属导线;
(3)采用环形布置多环测点的方式,布置M、N、P三个地面测点;
(4)布设测点到接收机的信号传输线;
(5)通过注入井(1)和电流返回井(2),向地层供电并记录回路电流I,断电后测量各测点激电二次场电位差值,并计算衰减度DQ
Figure FDA0003207812760000011
DQ—注液施工前衰减度初始值;
Figure FDA0003207812760000012
—注液施工前,断电后0.24秒到5.28秒二次电位差的平均值(mV);
Figure FDA0003207812760000013
——注液施工前,断电后0.24秒二次电位差的瞬时值(mV);
(6)注入井(1)注液施工,即注水井注入设计用量的液体、油井压裂泵入设计用量的压裂液;
(7)注液施工中或结束后,向地层供电并记录回路电流I,断电后测量各测点激电二次场电位差值,并计算衰减度DH
Figure FDA0003207812760000021
DH—注液施工后衰减度;
Figure FDA0003207812760000022
——注液施工后,断电后0.24秒到5.28秒二次电位差的平均值(mV);
Figure FDA0003207812760000024
——注液施工后,断电后0.24秒二次电位差的瞬时值(mV);
(8)计算各测点衰减度异常DS,即:
DS=DH-DQ
DS—衰减度异常;
DH—注液施工后衰减度;
DQ—注液施工前衰减度;
(9)计算注入液波及带长度C,即:
Figure FDA0003207812760000023
C—注入液波及带长度(m);
I—回路供电电流(A);
ρ—注入液波及带上覆地层的电阻率(Ω.m);
rN—注入井到测点N的距离(m);
rM—注入井到测点M的距离(m);
(10)绘制衰减度成果图:
数据处理后,给出了衰减度异常DS直角坐标曲线图和环形图;在衰减度异常DS曲线图中横坐标表示测点的方位角,纵坐标表示衰减度异常DS;在衰减度异常DS环形图中,圆点为注入井,矢径表示衰减度异常DS,环外标出测试点方位角,正北方向(N)为0°并顺时针旋转,90°为正东(E)方向、180°为正南(S)方向、270°为正西(W)方向。
CN201810592335.5A 2018-06-11 2018-06-11 注入液优势波及方向和长度的测量方法 Active CN109236282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810592335.5A CN109236282B (zh) 2018-06-11 2018-06-11 注入液优势波及方向和长度的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810592335.5A CN109236282B (zh) 2018-06-11 2018-06-11 注入液优势波及方向和长度的测量方法

Publications (2)

Publication Number Publication Date
CN109236282A CN109236282A (zh) 2019-01-18
CN109236282B true CN109236282B (zh) 2021-10-08

Family

ID=65083828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810592335.5A Active CN109236282B (zh) 2018-06-11 2018-06-11 注入液优势波及方向和长度的测量方法

Country Status (1)

Country Link
CN (1) CN109236282B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1136636A (zh) * 1995-04-05 1996-11-27 江汉石油管理局测井研究所 激发极化和自然电位组合测井仪及解释方法
US7962287B2 (en) * 2007-07-23 2011-06-14 Schlumberger Technology Corporation Method and apparatus for optimizing magnetic signals and detecting casing and resistivity
CN201843608U (zh) * 2010-09-01 2011-05-25 大港油田集团有限责任公司 随钻井间电位层析成像系统
US8756017B2 (en) * 2011-02-17 2014-06-17 Yangtze University Method for detecting formation resistivity outside of metal casing using time-domain electromagnetic pulse in well
CN106646635B (zh) * 2016-12-26 2018-06-19 张鑫 变线源电阻率连续测量方法

Also Published As

Publication number Publication date
CN109236282A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
RU2436924C2 (ru) Определение расстояния магнитными средствами при бурении параллельных скважин
US10227863B2 (en) Well ranging apparatus, methods, and systems
US10392932B2 (en) Through-casing fiber optic electrical system for formation monitoring
CN109143378B (zh) 一种在煤矿巷道内顺层超前探测含水构造的二次时差方法
Morin et al. Fractured‐aquifer hydrogeology from geophysical logs; the Passaic Formation, New Jersey
US10683747B2 (en) Directional monitoring of injection flood fronts
CA2928034C (en) Fiber optic current monitoring for electromagnetic ranging
WO2014098840A1 (en) Systems and methods for look ahead resistivity measurement with offset well information
Wallis et al. The nature of fracture permeability in the basement greywacke at Kawerau Geothermal Field, New Zealand
US20180274361A1 (en) Monitoring water flood location using potentials between casing and casing-mounted electrodes
EP3374600A1 (en) Resistivity imaging using combination capacitive and inductive sensors
CN109236282B (zh) 注入液优势波及方向和长度的测量方法
He et al. Numerical simulation of surface and downhole deformation induced by hydraulic fracturing
CN108387444B (zh) 一种基于井地电位成像的套管井压裂连续监测控制方法
US2354659A (en) Seismic surveying
RU2374438C2 (ru) Способ контроля развития трещины гидроразрыва пласта и ее геометрии
US20140266214A1 (en) Method and system for monitoring subsurface injection processes using a borehole electromagnetic source
Swarnanto et al. Downhole Sand-Production Evaluation for Sand-Management Applications
CN110865243B (zh) 断裂电场压电部位的检测系统及方法
Oberdorfer et al. A five spot well cluster for hydraulic and thermal tomography
Diao et al. Effect of downhole medium conductivity on active magnetic ranging technique for relief wells
Joo et al. Ground Condition Predictions for TBM using Electrical Resistivity
Jansen Spontaneous potential surveys around pumping wells
CN118709397A (zh) 钻井液侵入后沿侵入方向层理面缝宽计算方法
CN118815539A (zh) 煤矿工作面顶板老窑水疏放方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant