CN109234294B - Method for synthesizing fatty alcohol acetate in microorganism based on fatty acyl-ACP - Google Patents

Method for synthesizing fatty alcohol acetate in microorganism based on fatty acyl-ACP Download PDF

Info

Publication number
CN109234294B
CN109234294B CN201811031769.4A CN201811031769A CN109234294B CN 109234294 B CN109234294 B CN 109234294B CN 201811031769 A CN201811031769 A CN 201811031769A CN 109234294 B CN109234294 B CN 109234294B
Authority
CN
China
Prior art keywords
leu
ala
gly
val
fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811031769.4A
Other languages
Chinese (zh)
Other versions
CN109234294A (en
Inventor
郭道义
潘虹
李勋
李永东
范小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gannan Normal University
Original Assignee
Gannan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gannan Normal University filed Critical Gannan Normal University
Priority to CN201811031769.4A priority Critical patent/CN109234294B/en
Publication of CN109234294A publication Critical patent/CN109234294A/en
Application granted granted Critical
Publication of CN109234294B publication Critical patent/CN109234294B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a method for synthesizing pheromone fatty alcohol acetate by using three intermediate products as precursor molecules based on fatty acid metabolic pathways in microorganisms, which comprises the following steps: firstly, respectively obtaining engineering bacteria capable of reducing fatty acyl-ACP, fatty acid or fatty acyl-CoA to produce fatty alcohol by highly expressing fatty acyl-ACP reductase AAR, carboxylic acid reductase CAR, fatty acyl-CoA reductase FAR and aldehyde reductase AHR in microorganisms. And finally, highly expressing alcohol acetyltransferase ATF1 in the fatty alcohol production engineering bacteria for catalyzing the reaction of fatty alcohol and acetyl coenzyme A to synthesize pheromone fatty alcohol acetate. The invention can realize the microbial conversion from glucose to fatty alcohol acetate, and provides a feasible way for large-scale biosynthesis of fatty alcohol acetate.

Description

Method for synthesizing fatty alcohol acetate in microorganism based on fatty acyl-ACP
Technical Field
The invention belongs to the field of microbial genetic engineering, and particularly relates to a method for directly synthesizing pheromone fatty alcohol acetate from monosaccharide by modifying a microbial metabolic pathway.
Background
1. Insect sex pheromones, also known as sex pheromones (artificially synthesized to control pests and are also known as sex attractants), are trace chemical substances secreted in vitro by specific organs of individuals of a certain sex of the same insect, accepted by receptors of the individuals of the same sex and enable the individuals of the same sex to generate corresponding behavioral responses or physiological effects (such as foraging, directional coupling, mating and the like). To date, about 2000 insect sex pheromones have been identified, with most being various fatty alcohol acetate molecules. At present, the chemical total synthesis of a few insect sex pheromones is realized. As the application of the insect sex pheromone for monitoring and controlling pests has the advantages of high efficiency, no toxicity, no pollution, no harm to natural enemy insects and the like, scholars at home and abroad attach great importance to the research and application of the insect sex pheromone.
2. The insect sex pheromone is a product of insects, so the insect sex pheromone has the greatest advantages of safe use, no resistance of pests, high sensitivity, small using amount, strong specificity, no environmental pollution, no harm or even benefit to natural enemies, small interference to the ecological environment and no damage. At present, insect sex pheromones are used for insect condition detection, mass trapping, mating interference, insect control, pest quarantine, kindred species differentiation and the like. However, most insect sex pheromones cannot be produced in a commercial way, so that the wider application of the insect sex pheromones is limited.
3. The sex pheromones which are commercialized at present are synthesized by a chemical method. The chemical synthesis of sex pheromones involves several reaction steps, which results in high synthesis costs. Through a biotechnology means, the synthesis of various sex pheromones by fermenting monosaccharide with microorganisms is realized, and the cost can be effectively reduced.
Disclosure of Invention
The invention aims to provide a method for synthesizing fatty alcohol acetate based on fatty acyl-ACP in a microorganism, and a metabolic pathway for converting monosaccharide into fatty alcohol acetate is constructed in the microorganism.
In order to achieve the above purpose, the invention provides a method for synthesizing fatty alcohol acetate in escherichia coli, wherein a synthetic schematic diagram is shown in fig. 1, and the main steps are as follows:
(1) construction of engineering bacteria for producing fatty alcohol acetate by using fatty acyl-ACP as precursor molecule
The fatty acyl-ACP reductase AAR gene from Synechococcus elongates, the aldehyde reductase AHR gene of Escherichia coli and the saccharomyces cerevisiae alcohol acetyltransferase ATF1 gene are recombined onto a vector pET28a (+) to obtain a vector pDY 05. The vector is transferred into escherichia coli, high-amount expression of the three genes in the escherichia coli is realized, and an escherichia coli engineering strain GDY2 is obtained. Expressing AAR for catalyzing the reduction of fatty acyl-ACP to fatty aldehyde, expressing AHR for catalyzing the reduction of fatty aldehyde to fatty alcohol, and expressing ATF1 for catalyzing the reaction of fatty alcohol and acetyl-CoA to synthesize fatty alcohol acetate. Both the acyl-ACP and acetyl-CoA can be synthesized by fermenting monosaccharide or glycerol with Escherichia coli, and the GDY2 engineering bacteria constructed above can effectively convert monosaccharide or glycerol into fatty alcohol acetate.
Correspondingly, the engineering bacteria for producing fatty alcohol acetate by (2) constructing the precursor molecule based on fatty acid
The carboxylate reductase CAR gene from Mycobacterium marinum and Saccharomyces cerevisiae alcohol acetyltransferase ATF1 gene are recombined onto a vector pET28a (+) to obtain a vector pDY 10. An aldehyde reductase AHR and thioesterase' TESA gene from escherichia coli and a bacillus subtilis phosphopantetheinyl transferase Sfp gene are recombined on a vector pBBR1MCS1 to obtain a vector pDY 09. And simultaneously transferring the two vectors into escherichia coli to realize high-amount expression of the five genes in the escherichia coli to obtain an escherichia coli engineering strain GDY 4. Expression of' TESA for hydrolysis of fatty acyl-ACP to fatty acids, expression of CAR for catalysis of fatty acid reduction to fatty aldehydes, expression of Sfp for activation of CAR enzymes, expression of AHR for subsequent catalysis of fatty aldehyde reduction to fatty alcohols, expression of ATF1 for eventual catalysis of fatty alcohol reaction with acetyl-coa for synthesis of fatty alcohol acetate. Both fatty acid and acetyl coenzyme A can be synthesized by fermenting monosaccharide or glycerol with Escherichia coli, so that the GDY4 engineering bacteria constructed above can effectively convert monosaccharide or glycerol into fatty alcohol acetate.
Correspondingly, the engineering bacteria for producing fatty alcohol acetate by using fatty acyl-ACP and fatty acyl-COA as precursor molecules can also be constructed by (3)
The fatty acyl-CoA reductase FAR gene from Marinobacter aquaeolei and a saccharomyces cerevisiae alcohol acetyltransferase ATF1 gene are recombined on a vector pET28a (+) to obtain a vector pDY 12. The vector is transferred into escherichia coli, high-amount expression of the two genes in the escherichia coli is realized, and an escherichia coli engineering strain GDY6 is obtained. Expression of FAR for catalyzing the reduction of fatty acyl-ACP and fatty acyl-COA to fatty alcohols, and ATF1 for the ultimate synthesis of fatty alcohol acetate by the reaction of fatty alcohols with acetyl-COA. The fatty acyl-ACP, fatty acyl-COA and acetyl-CoA can be synthesized by fermenting monosaccharide or glycerol with Escherichia coli, and the GDY6 engineering bacteria constructed above can effectively convert monosaccharide or glycerol into fatty alcohol acetate.
The method has the advantages that the exogenous gene is introduced into the escherichia coli to construct a metabolic pathway for synthesizing the fatty alcohol acetate, the purpose of synthesizing the fatty alcohol acetate by taking the monosaccharide as the raw material is finally realized, excessive chemical synthesis reaction is not needed, the release of toxic substances in the chemical synthesis process is reduced, and the synthesis cost is also reduced. Meanwhile, as the growth speed of the escherichia coli is high, the genetic operation technology is mature, and the fermentation process cannot cause pollution damage to the environment.
Drawings
FIG. 1 is a diagram of the pathway for biosynthesis of fatty alcohol acetate. ATF 1: alcohol acetyltransferase (alcohol acetyltransferase) is from s.cerevisiae; AAR: fatty acyl-ACP reductase (fatty acyl-acproductase) is from s.elongates; CAR: carboxylate reductase (carboxylic acid reductase) from m.marinum; FAR: fatty acyl-CoA reductase (fatty acyl-coaireducase) from m.aquaeolei bacteria; AHR: aldehyde reductase (aldehyde reductase) is from e.coli; FadD: fatty acyl-CoA synthase (fatty acyl-CoA synthase) from e.coli; ' TesA: thioesterase (a truncated fatty acyl-ACPthieoesterase) for removing signal peptide is derived from E.coli.
FIG. 2 shows the GC-MS detection results of fermentation products of engineered Escherichia coli GDY1 and GDY2 for synthesizing fatty alcohol or fatty alcohol acetate based on fatty acyl-ACP as precursor molecules. Peak 1 represents internal standard pentadecanoic fatty acid Methyl ester (Methyl Pentadecanoate), peak 2 represents internal standard pentadecanoic fatty alcohol (Pentadecanol), peak 3 represents Hexadecanol acetate (Hexadecanol acetate ester), peak 4 represents Hexadecanol (Hexadecanol), peak 5 represents Δ 9-octadecane fatty alcohol acetate (9-Octadecen-1-ol acetate ester), and peak 6 represents Δ 9-octadecane fatty alcohol (9-Octadecen-1-ol alcohol).
FIG. 3 shows the GC-MS detection results of fermentation products of Escherichia coli engineering bacteria GDY3 and GDY4 for synthesizing fatty alcohol or fatty alcohol acetate based on fatty acid as precursor molecules. The peak 1 is a C.dodecaol acetate (Dodecanol acetate ester), the peak 2 is a C.dodecaol (Dodecanol), the peak 3 is a.DELTA.9-C.dodecenol (9-Dodecanol-1-ol), the peak 4 is a C.tetradecanol acetate (Tetradecanol acetate ester), the peak 5 is a C.pentadecanoic acid Methyl ester internal standard (Methyl Pentadecanoate), the peak 6 is a C.tetradecanol (Tetradecanol), the peak 7 is a.DELTA.9-C.tetradecanol (9-Tetradecanol-1-ol), the peak 8 is a C.pentadecanol internal standard (Pentacanol), the peak 9 is a.DELTA.9-C.hexadecanol acetate (9-Hexadecanol-1-ol acetate ester), the peak 10 is a C.hexadecanol (Hexadecanol), the peak 11 is a.DELTA.9-C.hexadecene alcohol (9-Hexadecen-1-12), the peak 9-C.octadecanol acetate (OctaOctadecanol acetate) (OctaOctaOctaOctaOctaOctaOctaOctaOctaOcta9-1-ol), the peak No. 13 was. delta.9-carbaoctadecenol (9-octadien-1-ol).
FIG. 4 shows the GC-MS detection results of fermentation products of engineered Escherichia coli GDY5 and GDY6 for synthesizing fatty alcohol or fatty alcohol acetate based on fatty acyl-ACP and fatty acyl-CoA as precursor molecules. The peak 1 is tetradecanoic alcohol acetate (Tetradecanol acetate ester), the peak 2 is pentadecanoic acid Methyl ester internal standard (Methyl Pentadecanoate), the peak 3 is tetradecanoic alcohol (Tetradecanol), the peak 4 is Δ 9-tetradecenol (9-Tetradecanol-1-ol), the peak 5 is Pentadecanol internal standard (Pentadecanol), the peak 6 is Hexadecanol acetate (Hexadecanol acetate ester), the peak 7 is Δ 9-Hexadecanol acetate (9-Hexadecanol-1-ol acetate ester), the peak 8 is Hexadecanol (Hexadecanol), the peak 9 is Δ 9-hexadecene alcohol (9-Hexadecanol-1-ol), the peak 10 is Δ 9-octadecanol acetate (9-octadienol-1-acetate), and the peak 11 is octadecanol (Δ 9-octadienol-1-ol).
Detailed Description
The object of the invention is achieved by the following measures:
1. the AAR and AHR genes are expressed in a microorganism body and are used for catalyzing the reduction of fatty acyl-ACP as an intermediate of a fatty acid synthetic pathway into fatty alcohol. The ATF1 gene is expressed to catalyze two substrates of fatty alcohol and acetyl coenzyme A to synthesize fatty alcohol acetate.
2. Expression of' TESA in microorganisms for hydrolysis of fatty acyl-ACP to fatty acids, expression of CAR for catalytic reduction of fatty acids to fatty aldehydes, expression of Sfp for activation of CAR enzymes, expression of AHR for subsequent catalytic reduction of fatty aldehydes to fatty alcohols, expression of ATF1 for final catalytic reaction of fatty alcohols with acetyl-coa to synthesize fatty alcohol acetate.
3. The FAR is expressed in microorganisms and used for catalyzing the reduction of fatty acyl-ACP and fatty acyl-COA into fatty alcohol, and the ATF1 is expressed and used for finally catalyzing the reaction of the fatty alcohol and acetyl-CoA to synthesize fatty alcohol acetate.
4. The three engineering bacteria of the invention have rapid cell growth, and can synthesize fatty alcohol acetate by using monosaccharide as a unique carbon source.
The following examples are intended to further illustrate the invention but are not to be construed as limiting the invention.
EXAMPLE 1 construction of fatty acyl-ACP-based engineered Escherichia coli producing fatty alcohol acetate as precursor molecule (shown in FIG. 1)
Construction of engineering bacteria producing fatty alcohol
1. The AAR gene from Synechococcus elongas was PCR-amplified using primers AAR-XbaI (GTATCTAGAAAGAGGATAATATATATATATATATGTTCGTTCGTCATCTCGTCATCTC) and AAR-SpeI-BamHI (TGTGGATCCACTAGTTCAAATTGCCAATGCCAAGG), and the amplified fragment was subsequently inserted into pET28a (+) with XbaI and BamHI to give vector pDY 01. The AHR gene from E.coli was PCR amplified using primers AHR-XbaI (ATATCTAGAAAGAGGAGATATATAATGTCGATGATTAAAAAGCTATGCCG) and AHR-SpeI-BamHI (GTAGGATCCACTAGTTCAAATCGGCTTTCAACACCAC) and inserted into pET28a (+) using XbaI and BamHI to give vector pDY 02. The AAR expression cassette was obtained by double digestion of pDY01 with XbaI and XhoI and inserted into vector pDY02 digested with SpeI and XhoI to obtain recombinant vector pDY 03.
A) And introducing the recombinant vector pDY03 into escherichia coli GM1655 to obtain GDY1 engineering bacteria. The engineering bacterium realizes high expression of AAR and AHR genes. The AAR enzyme is expressed to catalyze the reduction of fatty acyl-ACP which is an intermediate in fatty acid synthesis to fatty aldehyde, and the AHR enzyme is expressed to catalyze the reduction of fatty aldehyde to fatty alcohol.
Construction of engineering bacteria producing fatty alcohol acetate
1. ATF1 gene from Saccharomyces cerevisiae was PCR-amplified using primers ATF1-XbaI (GGATCTAGAAACTTTAAGAAGGATATAATGAA) and ATF1-SpeI-SacI (GATGAGCTCACTAGTCTAAGGGCC TAAAAGGAGAGCTTTGTTAA), and the amplified fragment was then inserted into pET28a (+) vector with double digestion with XbaI and SacI to give vector pDY 04. Vector pDY03 was digested with XbaI and XhoI to generate AAR and AHR expression cassettes, which were inserted into SpeI and XhoI digested vector pDY04 to generate recombinant vector pDY 05.
2. The recombinant vector pDY05 was introduced into E.coli GM1655 to obtain GDY2 engineered bacteria. The engineering bacteria realize high expression of AAR, AHR and ATF1 genes. The AAR enzyme is expressed to catalyze the reduction of fatty acyl-ACP as an intermediate in fatty acid synthesis to fatty aldehyde, the AHR enzyme is expressed to catalyze the reduction of fatty aldehyde to fatty alcohol, and the ATF1 is expressed to catalyze the reaction of fatty alcohol and acetyl-CoA to synthesize fatty alcohol acetate.
EXAMPLE 2 construction of Escherichia coli engineered bacterium (shown in FIG. 1) for producing fatty alcohol acetate based on fatty acid as precursor molecule
Construction of engineering bacteria producing fatty alcohol
1. The CAR gene from Mycobacterium marinum was PCR amplified using primers CAR-XbaI (ATATATCTAGAAAGAGGATATATAATGTCGCCAATCACGCGCGTGGA) and CAR-SpeI-BamHI (AGAGGATCCACTAGTTCAGAGCAGGCGAGTAGGC), and the amplified fragment was subsequently inserted into pET28a (+) as XbaI and BamHI to give vector pDY 06. The ` TesA gene from E.coli was PCR amplified using the primers ` TesA-SacI (AGATGAGCTCATGG CGGACACGTTATTGATTTCTGG) and ` TesA-SpeI (TGTACTAGTTTATGAGTCATGATTTAAAGGCTGC), and the amplified fragment was then inserted into pBBR1MCS1 by double digestion with SacI and SpeI to give vector pDY 07. AHR gene from E.coli was PCR amplified using primers AHR-BamHI (ACTGGATCCAA GAAGGATATAATGTCGATGATAAAAAAGCTATGCCG) and AHR-XhoI (TGTCGAGTCCAAAATCGGCTTTCAACACCAC), and the amplified fragment was then inserted into vector pDY07 by double digestion with BamHI and XhoI to give vector pDY 08. The Sfp gene from Bacillus subtilis strain.168 is amplified by PCR using primers of Sfp-XhoI (TT CCTCGAGAAGAGGATATAATGAAGATTACGGAATTATATGGACCG) and Sfp-ApaI (ACAGGGCCTTATAAAAGCTCTTCGTACGAGCACCATTG), and then the amplified fragment is inserted into a vector pDY08 by double enzyme digestion of XhoI and ApaI to obtain a vector pDY 09.
2. Recombinant vectors pDY06 and pDY09 were introduced into E.coli GM1655 to obtain GDY3 engineered bacteria. The engineering bacteria realize high expression of CAR, AHR, Sfp and' TesA genes. Expression of' TesA for hydrolysis of fatty acyl-ACP to produce fatty acids, expression of CAR for catalyzing reduction of fatty acids to fatty aldehydes, expression of Sfp for activation of CAR enzymes, expression of AHR for subsequent catalysis of reduction of fatty aldehydes to fatty alcohols.
Construction of engineering bacteria producing fatty alcohol acetate
1. Vector pDY06 was digested with XbaI and XhoI to generate a CAR expression cassette, which was inserted into SpeI and XhoI vector pDY04 to generate recombinant vector pDY 10.
2. Recombinant vectors pDY10 and pDY09 were introduced into E.coli GM1655 to obtain GDY4 engineered bacteria. The engineering bacteria realize high expression of CAR, AHR, Sfp,' TesA and ATF1 genes. Expression of' TesA for hydrolysis of fatty acyl-ACP to fatty acids, expression of CAR for catalytic reduction of fatty acids to fatty aldehydes, expression of Sfp for activation of CAR enzymes, expression of AHR for subsequent catalytic reduction of fatty aldehydes to fatty alcohols, and expression of ATF1 for catalytic reaction of fatty alcohols with acetyl-coa to synthesize fatty alcohol acetate.
EXAMPLE 3 construction of fatty alcohol acetate-producing engineered Escherichia coli (shown in FIG. 1) based on fatty acyl-ACP and fatty acyl-CoA as precursor molecules
Construction of engineering bacteria producing fatty alcohol
1. The FAR gene from M.aquaeolei was PCR amplified using primers FAR-XbaI (CATCTAGAAAGAGGAGATATAATGGCAATACAGCAGGGTACATCA C) and FAR-SpeI-BamHI (CGAGGATCCACTAGTTCAGGCAGCTTTTTTGCGCGCGCT), and the amplified fragment was subsequently inserted into pET28a (+) with XbaI and BamHI to give vector pDY 11.
2. The recombinant vector pDY11 was introduced into E.coli GM1655 to obtain GDY5 engineered bacteria. The engineering bacterium realizes high expression of FAR genes. The FAR enzyme is expressed to catalyze the direct reduction of fatty acyl-ACP and fatty acyl-CoA, intermediates in fatty acid synthesis, to fatty alcohol alcohols.
Construction of engineering bacteria producing fatty alcohol acetate
1. Vector pDY11 was digested with XbaI and XhoI to obtain the FAR expression cassette, which was inserted into vector pDY04 digested with SpeI and XhoI to obtain recombinant vector pDY 12.
2. The recombinant vector pDY12 was introduced into E.coli GM1655 to obtain GDY6 engineered bacteria. The engineering bacteria realize high expression of FAR and ATF1 genes. The FAR enzyme is expressed to catalyze the direct reduction of fatty acyl-ACP and fatty acyl-CoA which are intermediates in fatty acid synthesis into fatty alcohol, and the ATF1 is expressed to catalyze the reaction of fatty alcohol and acetyl-CoA to synthesize fatty alcohol acetate.
Example 4 fermentation experiment of Escherichia coli engineering bacteria for producing fatty alcohol or fatty alcohol acetate
1. The engineered E.coli strain cultured 30 degrees overnight was inoculated into 50ml of M9 fermentation medium (containing 2% glucose).
2. After 24 hours of culture, the cells were collected, disrupted by ultrasonic waves, and the product was extracted with ethyl acetate.
3. The solvent ethyl acetate was spin dried using a rotary evaporator and the product was dissolved in n-hexane.
4. The sample dissolved in n-hexane was detected by GC-MS (gas chromatography-mass spectrometer).
The experimental results are as follows: as shown in FIG. 2, Escherichia coli engineering bacteria GDY1 and GDY2 can respectively directly use glucose based on fatty acyl-ACP as precursor molecules to synthesize various fatty alcohols or fatty alcohol acetates; as shown in FIG. 3, Escherichia coli engineering bacteria GDY3 and GDY4 can respectively directly use glucose based on fatty acid as precursor molecule to synthesize various fatty alcohols or fatty alcohol acetates; as shown in FIG. 4, Escherichia coli engineering bacteria GDY5 and GDY6 can respectively directly use glucose based on fatty acyl-ACP and fatty acyl-CoA as precursor molecules to synthesize various fatty alcohols or fatty alcohol acetates.
<110> Gannan institute of teachers and education
<120> biosynthesis of fatty alcohol acetate
<160> 14
<170> PatentIn Version 2.1
<210> 1
<211> 1026
<212> DNA
<213> blue algae (Synechococcus elongates)
<400> 1
atgttcggtc ttatcggtca tctcaccagt ttggagcagg cccgcgacgt ttctcgcagg 60
atgggctacg acgaatacgc cgatcaagga ttggagtttt ggagtagcgc tcctcctcaa 120
atcgttgatg aaatcacagt caccagtgcc acaggcaagg tgattcacgg tcgctacatc 180
gaatcgtgtt tcttgccgga aatgctggcg gcgcgccgct tcaaaacagc cacgcgcaaa 240
gttctcaatg ccatgtccca tgcccaaaaa cacggcatcg acatctcggc cttggggggc 300
tttacctcga ttattttcga gaatttcgat ttggccagtt tgcggcaagt gcgcgacact 360
accttggagt ttgaacggtt caccaccggc aatactcaca cggcctacgt aatctgtaga 420
caggtggaag ccgctgctaa aacgctgggc atcgacatta cccaagcgac agtagcggtt 480
gtcggcgcga ctggcgatat cggtagcgct gtctgccgct ggctcgacct caaactgggt 540
gtcggtgatt tgatcctgac ggcgcgcaat caggagcgtt tggataacct gcaggctgaa 600
ctcggccggg gcaagattct gcccttggaa gccgctctgc cggaagctga ctttatcgtg 660
tgggtcgcca gtatgcctca gggcgtagtg atcgacccag caaccctgaa gcaaccctgc 720
gtcctaatcg acgggggcta ccccaaaaac ttgggcagca aagtccaagg tgagggcatc 780
tatgtcctca atggcggggt agttgaacat tgcttcgaca tcgactggca gatcatgtcc 840
gctgcagaga tggcgcggcc cgagcgccag atgtttgcct gctttgccga ggcgatgctc 900
ttggaatttg aaggctggca tactaacttc tcctggggcc gcaaccaaat cacgatcgag 960
aagatggaag cgatcggtga ggcatcggtg cgccacggct tccaaccctt ggcattggca 1200
atttga 1026
<210> 2
<211> 341
<212> PRT
<213> blue algae (Synechococcus elongates)
<400> 2
Met Phe Gly Leu Ile Gly His Leu Thr Ser Leu Glu Gln Ala Arg Asp
1 5 10 15
Val Ser Arg Arg Met Gly Tyr Asp Glu Tyr Ala Asp Gln Gly Leu Glu
20 25 30
Phe Trp Ser Ser Ala Pro Pro Gln Ile Val Asp Glu Ile Thr Val Thr
35 40 45
Ser Ala Thr Gly Lys Val Ile His Gly Arg Tyr Ile Glu Ser Cys Phe
50 55 60
Leu Pro Glu Met Leu Ala Ala Arg Arg Phe Lys Thr Ala Thr Arg Lys
65 70 75 80
Val Leu Asn Ala Met Ser His Ala Gln Lys His Gly Ile Asp Ile Ser
85 90 95
Ala Leu Gly Gly Phe Thr Ser Ile Ile Phe Glu Asn Phe Asp Leu Ala
100 105 110
Ser Leu Arg Gln Val Arg Asp Thr Thr Leu Glu Phe Glu Arg Phe Thr
115 120 125
Thr Gly Asn Thr His Thr Ala Tyr Val Ile Cys Arg Gln Val Glu Ala
130 135 140
Ala Ala Lys Thr Leu Gly Ile Asp Ile Thr Gln Ala Thr Val Ala Val
145 150 155 160
Val Gly Ala Thr Gly Asp Ile Gly Ser Ala Val Cys Arg Trp Leu Asp
165 170 175
Leu Lys Leu Gly Val Gly Asp Leu Ile Leu Thr Ala Arg Asn Gln Glu
180 185 190
Arg Leu Asp Asn Leu Gln Ala Glu Leu Gly Arg Gly Lys Ile Leu Pro
195 200 205
Leu Glu Ala Ala Leu Pro Glu Ala Asp Phe Ile Val Trp Val Ala Ser
210 215 220
Met Pro Gln Gly Val Val Ile Asp Pro Ala Thr Leu Lys Gln Pro Cys
225 230 235 240
Val Leu Ile Asp Gly Gly Tyr Pro Lys Asn Leu Gly Ser Lys Val Gln
245 250 255
Gly Glu Gly Ile Tyr Val Leu Asn Gly Gly Val Val Glu His Cys Phe
260 265 270
Asp Ile Asp Trp Gln Ile Met Ser Ala Ala Glu Met Ala Arg Pro Glu
275 280 285
Arg Gln Met Phe Ala Cys Phe Ala Glu Ala Met Leu Leu Glu Phe Glu
290 295 300
Gly Trp His Thr Asn Phe Ser Trp Gly Arg Asn Gln Ile Thr Ile Glu
305 310 315 320
Lys Met Glu Ala Ile Gly Glu Ala Ser Val Arg His Gly Phe Gln Pro
325 330 335
Leu Ala Leu Ala Ile
340
<210> 3
<211> 1026
<212> DNA
<213> Escherichia coli (Escherichia coli)
<400> 3
atgtcgatga taaaaagcta tgccgcaaaa gaagcgggcg gcgaactgga agtttatgag 60
tacgatcccg gtgagctgag gccacaagat gttgaagtgc aggtggatta ctgcgggatc 120
tgccattccg atctgtcgat gatcgataac gaatggggat tttcacaata tccgctggtt 180
gccgggcatg aggtgattgg gcgcgtggtg gcactcggga gcgccgcgca ggataaaggt 240
ttgcaggtcg gtcagcgtgt cgggattggc tggacggcgc gtagctgtgg tcactgcgac 300
gcctgtatta gcggtaatca gatcaactgc gagcaaggtg cggtgccgac gattatgaat 360
cgcggtggct ttgccgagaa gttgcgtgcg gactggcaat gggtgattcc actgccagaa 420
aatattgata tcgagtccgc cgggccgctg ttgtgcggcg gtatcacggt ctttaaacca 480
ctgttgatgc accatatcac tgctaccagc cgcgttgggg taattggtat tggcgggctg 540
gggcatatcg ctataaaact tctgcacgca atgggatgcg aggtgacagc ctttagttct 600
aatccggcga aagagcagga agtgctggcg atgggtgccg ataaagtggt gaatagccgc 660
gatccgcagg cactgaaagc actggcgggg cagtttgatc tcattatcaa caccgtcaac 720
gtcagcctcg actggcagcc ctattttgag gcgctgacct atggcggtaa tttccatacg 780
gtcggtgcgg ttctcacgcc gctgtctgtt ccggccttta cgttaattgc gggcgatcgc 840
agcgtctctg gttctgctac cggcacgcct tatgagctgc gtaagctgat gcgttttgcc 900
gcccgcagca aggttgcgcc gaccaccgaa ctgttcccga tgtcgaaaat taacgacgcc 960
atccagcatg tgcgcgacgg taaggcgcgt taccgcgtgg tgttgaaagc cgatttttga 1020
<210> 4
<211> 339
<212> PRT
<213> Escherichia coli (Escherichia coli)
<400> 4
Met Ser Met Ile Lys Ser Tyr Ala Ala Lys Glu Ala Gly Gly Glu Leu
1 5 10 15
Glu Val Tyr Glu Tyr Asp Pro Gly Glu Leu Arg Pro Gln Asp Val Glu
20 25 30
Val Gln Val Asp Tyr Cys Gly Ile Cys His Ser Asp Leu Ser Met Ile
35 40 45
Asp Asn Glu Trp Gly Phe Ser Gln Tyr Pro Leu Val Ala Gly His Glu
50 55 60
Val Ile Gly Arg Val Val Ala Leu Gly Ser Ala Ala Gln Asp Lys Gly
65 70 75 80
Leu Gln Val Gly Gln Arg Val Gly Ile Gly Trp Thr Ala Arg Ser Cys
85 90 95
Gly His Cys Asp Ala Cys Ile Ser Gly Asn Gln Ile Asn Cys Glu Gln
100 105 110
Gly Ala Val Pro Thr Ile Met Asn Arg Gly Gly Phe Ala Glu Lys Leu
115 120 125
Arg Ala Asp Trp Gln Trp Val Ile Pro Leu Pro Glu Asn Ile Asp Ile
130 135 140
Glu Ser Ala Gly Pro Leu Leu Cys Gly Gly Ile Thr Val Phe Lys Pro
145 150 155 160
Leu Leu Met His His Ile Thr Ala Thr Ser Arg Val Gly Val Ile Gly
165 170 175
Ile Gly Gly Leu Gly His Ile Ala Ile Lys Leu Leu His Ala Met Gly
180 185 190
Cys Glu Val Thr Ala Phe Ser Ser Asn Pro Ala Lys Glu Gln Glu Val
195 200 205
Leu Ala Met Gly Ala Asp Lys Val Val Asn Ser Arg Asp Pro Gln Ala
210 215 220
Leu Lys Ala Leu Ala Gly Gln Phe Asp Leu Ile Ile Asn Thr Val Asn
225 230 235 240
Val Ser Leu Asp Trp Gln Pro Tyr Phe Glu Ala Leu Thr Tyr Gly Gly
245 250 255
Asn Phe His Thr Val Gly Ala Val Leu Thr Pro Leu Ser Val Pro Ala
260 265 270
Phe Thr Leu Ile Ala Gly Asp Arg Ser Val Ser Gly Ser Ala Thr Gly
275 280 285
Thr Pro Tyr Glu Leu Arg Lys Leu Met Arg Phe Ala Ala Arg Ser Lys
290 295 300
Val Ala Pro Thr Thr Glu Leu Phe Pro Met Ser Lys Ile Asn Asp Ala
305 310 315 320
Ile Gln His Val Arg Asp Gly Lys Ala Arg Tyr Arg Val Val Leu Lys
325 330 335
Ala Asp Phe
<210> 5
<211> 1578
<212> DNA
<213> Saccharomyces cerevisiae
<400> 5
atgaatgaaa tcgatgagaa aaatcaggcc cccgtgcaac aagaatgcct gaaagagatg 60
attcagaatg ggcatgctcg gcgtatggga tctgttgaag atctgtatgt tgctctcaac 120
agacaaaact tatatcgaaa cttctgcaca tatggagaat tgagtgatta ctgtactagg 180
gatcagctca cattagcttt gagggaaatc tgcctgaaaa atccaactct tttacatatt 240
gttctaccaa caagatggcc aaatcatgaa aattattatc gcagttccga atactattca 300
cggccacatc cagtgcatga ttatatttca gtattacaag aattgaaact gagtggtgtg 360
gttctcaatg aacaacctga gtacagtgca gtaatgaagc aaatattaga agaattcaaa 400
aatagtaagg gttcctatac tgcaaaaatt tttaaactta ctaccacttt gactattcct 480
tactttggac caacaggacc gagttggcgg ctaatttgtc ttccagaaga gcacacagaa 540
aagtggaaaa aatttatctt tgtatctaat cattgcatgt ctgatggtcg gtcttcgatc 600
cacttttttc atgatttaag agacgaatta aataatatta aaactccacc aaaaaaatta 660
gattacattt tcaagtacga ggaggattac caattattga ggaaacttcc agaaccgatc 720
gaaaaggtga tagactttag accaccgtac ttgtttattc cgaagtcact tctttcgggt 780
ttcatctaca atcatttgag attttcttca aaaggtgtct gtatgagaat ggatgatgtg 840
gaaaaaaccg atgatgttgt caccgagatc atcaatattt caccaacaga atttcaagcg 900
attaaagcaa atattaaatc aaatatccaa ggtaagtgta ctatcactcc gtttttacat 960
gtttgttggt ttgtatctct tcataaatgg ggtaaatttt tcaaaccatt gaacttcgaa 1020
tggcttacgg atatttttat ccccgcagat tgccgctcac aactaccaga tgatgatgaa 1080
atgagacaga tgtacagata tggcgctaac gttggattta ttgacttcac cccctggata 1140
agcgaatttg acatgaatga taacaaagaa aatttttggc cacttattga gcactaccat 1200
gaagtaattt cggaagcttt aagaaataaa aagcatctcc atggcttagg gttcaatata 1260
caaggcttcg ttcaaaaata tgtgaacatt gacaaggtaa tgtgcgatcg tgccatcggg 1320
aaaagacgcg gaggtacatt gttaagcaat gtaggtctgt ttaatcagtt agaggagccc 1380
gatgccaaat attctatatg cgatttggca tttggccaat ttcaaggatc ctggcaccaa 1440
gcattttcct tgggtgtttg ttcgactaat gtaaagggga tgaatattgt tgttgcttca 1500
acaaagaatg ttgttggtag tcaagaatct ctcgaagagc tttgctccat ttacaaagct 1560
ctccttttag gcccttag
<210> 6
<211> 525
<212> PRT
<213> Saccharomyces cerevisiae
<400> 6
Met Asn Glu Ile Asp Glu Lys Asn Gln Ala Pro Val Gln Gln Glu Cys
1 5 10 15
Leu Lys Glu Met Ile Gln Asn Gly His Ala Arg Arg Met Gly Ser Val
20 25 30
Glu Asp Leu Tyr Val Ala Leu Asn Arg Gln Asn Leu Tyr Arg Asn Phe
35 40 45
Cys Thr Tyr Gly Glu Leu Ser Asp Tyr Cys Thr Arg Asp Gln Leu Thr
50 55 60
Leu Ala Leu Arg Glu Ile Cys Leu Lys Asn Pro Thr Leu Leu His Ile
65 70 75 80
Val Leu Pro Thr Arg Trp Pro Asn His Glu Asn Tyr Tyr Arg Ser Ser
85 90 95
Glu Tyr Tyr Ser Arg Pro His Pro Val His Asp Tyr Ile Ser Val Leu
100 105 110
Gln Glu Leu Lys Leu Ser Gly Val Val Leu Asn Glu Gln Pro Glu Tyr
115 120 125
Ser Ala Val Met Lys Gln Ile Leu Glu Glu Phe Lys Asn Ser Lys Gly
130 135 140
Ser Tyr Thr Ala Lys Ile Phe Lys Leu Thr Thr Thr Leu Thr Ile Pro
145 150 155 160
Tyr Phe Gly Pro Thr Gly Pro Ser Trp Arg Leu Ile Cys Leu Pro Glu
165 170 175
Glu His Thr Glu Lys Trp Lys Lys Phe Ile Phe Val Ser Asn His Cys
180 185 190
Met Ser Asp Gly Arg Ser Ser Ile His Phe Phe His Asp Leu Arg Asp
195 200 205
Glu Leu Asn Asn Ile Lys Thr Pro Pro Lys Lys Leu Asp Tyr Ile Phe
210 215 220
Lys Tyr Glu Glu Asp Tyr Gln Leu Leu Arg Lys Leu Pro Glu Pro Ile
225 230 235 240
Glu Lys Val Ile Asp Phe Arg Pro Pro Tyr Leu Phe Ile Pro Lys Ser
245 250 255
Leu Leu Ser Gly Phe Ile Tyr Asn His Leu Arg Phe Ser Ser Lys Gly
260 265 270
Val Cys Met Arg Met Asp Asp Val Glu Lys Thr Asp Asp Val Val Thr
275 280 285
Glu Ile Ile Asn Ile Ser Pro Thr Glu Phe Gln Ala Ile Lys Ala Asn
290 295 300
Ile Lys Ser Asn Ile Gln Gly Lys Cys Thr Ile Thr Pro Phe Leu His
305 310 315 320
Val Cys Trp Phe Val Ser Leu His Lys Trp Gly Lys Phe Phe Lys Pro
325 330 335
Leu Asn Phe Glu Trp Leu Thr Asp Ile Phe Ile Pro Ala Asp Cys Arg
340 345 350
Ser Gln Leu Pro Asp Asp Asp Glu Met Arg Gln Met Tyr Arg Tyr Gly
355 360 365
Ala Asn Val Gly Phe Ile Asp Phe Thr Pro Trp Ile Ser Glu Phe Asp
370 375 380
Met Asn Asp Asn Lys Glu Asn Phe Trp Pro Leu Ile Glu His Tyr His
385 390 395 400
Glu Val Ile Ser Glu Ala Leu Arg Asn Lys Lys His Leu His Gly Leu
405 410 415
Gly Phe Asn Ile Gln Gly Phe Val Gln Lys Tyr Val Asn Ile Asp Lys
420 425 430
Val Met Cys Asp Arg Ala Ile Gly Lys Arg Arg Gly Gly Thr Leu Leu
435 440 445
Ser Asn Val Gly Leu Phe Asn Gln Leu Glu Glu Pro Asp Ala Lys Tyr
450 455 460
Ser Ile Cys Asp Leu Ala Phe Gly Gln Phe Gln Gly Ser Trp His Gln
465 470 475 480
Ala Phe Ser Leu Gly Val Cys Ser Thr Asn Val Lys Gly Met Asn Ile
485 490 495
Val Val Ala Ser Thr Lys Asn Val Val Gly Ser Gln Glu Ser Leu Glu
500 505 510
Glu Leu Cys Ser Ile Tyr Lys Ala Leu Leu Leu Gly Pro
515 520 525
<210> 7
<211> 3525
<212> DNA
<213> Mycobacterium (Mycobacterium marinum)
<400> 7
atgtcgccaa tcacgcgtga agagcggctc gagcgccgca tccaggacct ctacgccaac 60
gacccgcagt tcgccgccgc caaacccgcc acggcgatca ccgcagcaat cgagcggccg 120
ggtctaccgc taccccagat catcgagacc gtcatgaccg gatacgccga tcggccggct 180
ctcgctcagc gctcggtcga attcgtgacc gacgccggca ccggccacac cacgctgcga 240
ctgctccccc acttcgaaac catcagctac ggcgagcttt gggaccgcat cagcgcactg 300
gccgacgtgc tcagcaccga acagacggtg aaaccgggcg accgggtctg cttgttgggc 360
ttcaacagcg tcgactacgc cacgatcgac atgactttgg cgcggctggg cgcggtggcc 420
gtaccactgc agaccagcgc ggcgataacc cagctgcagc cgatcgtcgc cgagacccag 480
cccaccatga tcgcggccag cgtcgacgca ctcgctgacg ccaccgaatt ggctctgtcc 540
ggtcagaccg ctacccgagt cctggtgttc gaccaccacc ggcaggttga cgcacaccgc 600
gcagcggtcg aatccgcccg ggagcgcctg gccggctcgg cggtcgtcga aaccctggcc 660
gaggccatcg cgcgcggcga cgtgccccgc ggtgcgtccg ccggctcggc gcccggcacc 721
gatgtgtccg acgactcgct cgcgctactg atctacacct cgggcagcac gggtgcgccc 780
aagggcgcga tgtacccccg acgcaacgtt gcgaccttct ggcgcaagcg cacctggttc 840
gaaggcggct acgagccgtc gatcacgctg aacttcatgc caatgagcca cgtcatgggc 900
cgccaaatcc tgtacggcac gctgtgcaat ggcggcaccg cctacttcgt ggcgaaaagc 960
gatctctcca ccttgttcga agacctggcg ctggtgcggc ccaccgagct gaccttcgtg 1020
ccgcgcgtgt gggacatggt gttcgacgag tttcagagtg aggtcgaccg ccgcctggtc 1080
gacggcgccg accgggtcgc gctcgaagcc caggtcaagg ccgagatacg caacgacgtg 1140
ctcggtggac ggtataccag cgcactgacc ggctccgccc ctatctccga cgagatgaag 1200
gcgtgggtcg aggagctgct cgacatgcat ctggtcgagg gctacggctc caccgaggcc 1260
gggatgatcc tgatcgacgg agccattcgg cgcccggcgg tactcgacta caagctggtc 1320
gatgttcccg acctgggtta cttcctgacc gaccggccac atccgcgggg cgagttgctg 1380
gtcaagaccg atagtttgtt cccgggctac taccagcgag ccgaagtcac cgccgacgtg 1440
ttcgatgctg acggcttcta ccggaccggc gacatcatgg ccgaggtcgg ccccgaacag 1500
ttcgtgtacc tcgaccgccg caacaacgtg ttgaagctgt cgcagggcga gttcgtcacc 1560
gtctccaaac tcgaagcggt gtttggcgac agcccactgg tacggcagat ctacatctac 1620
ggcaacagcg cccgtgccta cctgttggcg gtgatcgtcc ccacccagga ggcgctggac 1680
gccgtgcctg tcgaggagct caaggcgcgg ctgggcgact cgctgcaaga ggtcgcaaag 1740
gccgccggcc tgcagtccta cgagatcccg cgcgacttca tcatcgaaac aacaccatgg 1800
acgctggaga acggcctgct caccggcatc cgcaagttgg ccaggccgca gctgaaaaag 1860
cattacggcg agcttctcga gcagatctac acggacctgg cacacggcca ggccgacgaa 1920
ctgcgctcgc tgcgccaaag cggtgccgat gcgccggtgc tggtgacggt gtgccgtgcg 1980
gcggccgcgc tgttgggcgg cagcgcctct gacgtccagc ccgatgcgca cttcaccgat 2040
ttgggcggcg actcgctgtc ggcgctgtcg ttcaccaacc tgctgcacga gatcttcgac 2100
atcgaagtgc cggtgggcgt catcgtcagc cccgccaacg acttgcaggc cctggccgac 2160
tacgtcgagg cggctcgcaa acccggctcg tcacggccga ccttcgcctc ggtccacggc 2220
gcctcgaatg ggcaggtcac cgaggtgcat gccggtgacc tgtccctgga caaattcatc 2280
gatgccgcaa ccctggccga agctccccgg ctgcccgccg caaacaccca agtgcgcacc 2340
gtgctgctga ccggcgccac cggcttcctc gggcgctacc tggccctgga atggctggag 2400
cggatggacc tggtcgacgg caaactgatc tgcctggtcc gggccaagtc cgacaccgaa 2460
gcacgggcgc ggctggacaa gacgttcgac agcggcgacc ccgaactgct ggcccactac 2520
cgcgcactgg ccggcgacca cctcgaggtg ctcgccggtg acaagggcga agccgacctc 2580
ggactggacc ggcagacctg gcaacgcctg gccgacacgg tcgacctgat cgtcgacccc 2640
gcggccctgg tcaaccacgt actgccatac agccagctgt tcgggcccaa cgcgctgggc 2700
accgccgagc tgctgcggct ggcgctcacc tccaagatca agccctacag ctacacctcg 2760
acaatcggtg tcgccgacca gatcccgccg tcggcgttca ccgaggacgc cgacatccgg 2820
gtcatcagcg ccacccgcgc ggtcgacgac agctacgcca atggctactc gaacagcaag 2880
tgggccggcg aggtgctgtt gcgcgaggcg catgacctgt gtggcctgcc ggttgcggtg 2940
ttccgctgcg acatgatcct ggccgacacc acatgggcgg gacagctcaa tgtgccggac 3000
atgttcaccc ggatgatcct gagcctggcg gccaccggta tcgcgccggg ttcgttctat 3060
gagcttgcgg ccgacggcgc ccggcaacgc gcccactatg acggtctgcc cgtcgagttc 3120
atcgccgagg cgatttcgac tttgggtgcg cagagccagg atggtttcca cacgtatcac 3180
gtgatgaacc cctacgacga cggcatcgga ctcgacgagt tcgtcgactg gctcaacgag 3240
tccggttgcc ccatccagcg catcgctgac tatggcgact ggctgcagcg cttcgaaacc 3300
gcactgcgcg cactgcccga tcggcagcgg cacagctcac tgctgccgct gttgcacaac 3360
tatcggcagc cggagcggcc cgtccgcggg tcgatcgccc ctaccgatcg cttccgggca 3420
gcggtgcaag aggccaagat cggccccgac aaagacattc cgcacgtcgg cgcgccgatc 3480
atcgtgaagt acgtcagcga cctgcgccta ctcggcctgc tctga
<210> 8
<211> 1174
<212> PRT
<213> Mycobacterium (Mycobacterium marinum)
<400> 8
Met Ser Pro Ile Thr Arg Glu Glu Arg Leu Glu Arg Arg Ile Gln Asp
1 5 10 15
Leu Tyr Ala Asn Asp Pro Gln Phe Ala Ala Ala Lys Pro Ala Thr Ala
20 25 30
Ile Thr Ala Ala Ile Glu Arg Pro Gly Leu Pro Leu Pro Gln Ile Ile
35 40 45
Glu Thr Val Met Thr Gly Tyr Ala Asp Arg Pro Ala Leu Ala Gln Arg
50 55 60
Ser Val Glu Phe Val Thr Asp Ala Gly Thr Gly His Thr Thr Leu Arg
65 70 75 80
Leu Leu Pro His Phe Glu Thr Ile Ser Tyr Gly Glu Leu Trp Asp Arg
85 90 95
Ile Ser Ala Leu Ala Asp Val Leu Ser Thr Glu Gln Thr Val Lys Pro
100 105 110
Gly Asp Arg Val Cys Leu Leu Gly Phe Asn Ser Val Asp Tyr Ala Thr
115 120 125
Ile Asp Met Thr Leu Ala Arg Leu Gly Ala Val Ala Val Pro Leu Gln
130 135 140
Thr Ser Ala Ala Ile Thr Gln Leu Gln Pro Ile Val Ala Glu Thr Gln
145 150 155 160
Pro Thr Met Ile Ala Ala Ser Val Asp Ala Leu Ala Asp Ala Thr Glu
165 170 175
Leu Ala Leu Ser Gly Gln Thr Ala Thr Arg Val Leu Val Phe Asp His
180 185 190
His Arg Gln Val Asp Ala His Arg Ala Ala Val Glu Ser Ala Arg Glu
195 200 205
Arg Leu Ala Gly Ser Ala Val Val Glu Thr Leu Ala Glu Ala Ile Ala
210 215 220
Arg Gly Asp Val Pro Arg Gly Ala Ser Ala Gly Ser Ala Pro Gly Thr
225 230 235 240
Asp Val Ser Asp Asp Ser Leu Ala Leu Leu Ile Tyr Thr Ser Gly Ser
245 250 255
Thr Gly Ala Pro Lys Gly Ala Met Tyr Pro Arg Arg Asn Val Ala Thr
260 265 270
Phe Trp Arg Lys Arg Thr Trp Phe Glu Gly Gly Tyr Glu Pro Ser Ile
275 280 285
Thr Leu Asn Phe Met Pro Met Ser His Val Met Gly Arg Gln Ile Leu
290 295 300
Tyr Gly Thr Leu Cys Asn Gly Gly Thr Ala Tyr Phe Val Ala Lys Ser
305 310 315 320
Asp Leu Ser Thr Leu Phe Glu Asp Leu Ala Leu Val Arg Pro Thr Glu
325 330 335
Leu Thr Phe Val Pro Arg Val Trp Asp Met Val Phe Asp Glu Phe Gln
340 345 350
Ser Glu Val Asp Arg Arg Leu Val Asp Gly Ala Asp Arg Val Ala Leu
355 360 365
Glu Ala Gln Val Lys Ala Glu Ile Arg Asn Asp Val Leu Gly Gly Arg
370 375 380
Tyr Thr Ser Ala Leu Thr Gly Ser Ala Pro Ile Ser Asp Glu Met Lys
385 390 395 400
Ala Trp Val Glu Glu Leu Leu Asp Met His Leu Val Glu Gly Tyr Gly
405 410 415
Ser Thr Glu Ala Gly Met Ile Leu Ile Asp Gly Ala Ile Arg Arg Pro
420 425 430
Ala Val Leu Asp Tyr Lys Leu Val Asp Val Pro Asp Leu Gly Tyr Phe
435 440 445
Leu Thr Asp Arg Pro His Pro Arg Gly Glu Leu Leu Val Lys Thr Asp
450 455 460
Ser Leu Phe Pro Gly Tyr Tyr Gln Arg Ala Glu Val Thr Ala Asp Val
465 470 475 480
Phe Asp Ala Asp Gly Phe Tyr Arg Thr Gly Asp Ile Met Ala Glu Val
485 490 495
Gly Pro Glu Gln Phe Val Tyr Leu Asp Arg Arg Asn Asn Val Leu Lys
500 505 510
Leu Ser Gln Gly Glu Phe Val Thr Val Ser Lys Leu Glu Ala Val Phe
515 520 525
Gly Asp Ser Pro Leu Val Arg Gln Ile Tyr Ile Tyr Gly Asn Ser Ala
530 535 540
Arg Ala Tyr Leu Leu Ala Val Ile Val Pro Thr Gln Glu Ala Leu Asp
545 550 555 560
Ala Val Pro Val Glu Glu Leu Lys Ala Arg Leu Gly Asp Ser Leu Gln
565 570 575
Glu Val Ala Lys Ala Ala Gly Leu Gln Ser Tyr Glu Ile Pro Arg Asp
580 585 590
Phe Ile Ile Glu Thr Thr Pro Trp Thr Leu Glu Asn Gly Leu Leu Thr
595 600 605
Gly Ile Arg Lys Leu Ala Arg Pro Gln Leu Lys Lys His Tyr Gly Glu
610 615 620
Leu Leu Glu Gln Ile Tyr Thr Asp Leu Ala His Gly Gln Ala Asp Glu
625 630 635 640
Leu Arg Ser Leu Arg Gln Ser Gly Ala Asp Ala Pro Val Leu Val Thr
645 650 655
Val Cys Arg Ala Ala Ala Ala Leu Leu Gly Gly Ser Ala Ser Asp Val
660 665 670
Gln Pro Asp Ala His Phe Thr Asp Leu Gly Gly Asp Ser Leu Ser Ala
675 680 685
Leu Ser Phe Thr Asn Leu Leu His Glu Ile Phe Asp Ile Glu Val Pro
690 695 700
Val Gly Val Ile Val Ser Pro Ala Asn Asp Leu Gln Ala Leu Ala Asp
705 710 715 720
Tyr Val Glu Ala Ala Arg Lys Pro Gly Ser Ser Arg Pro Thr Phe Ala
725 730 735
Ser Val His Gly Ala Ser Asn Gly Gln Val Thr Glu Val His Ala Gly
740 745 750
Asp Leu Ser Leu Asp Lys Phe Ile Asp Ala Ala Thr Leu Ala Glu Ala
755 760 765
Pro Arg Leu Pro Ala Ala Asn Thr Gln Val Arg Thr Val Leu Leu Thr
770 775 780
Gly Ala Thr Gly Phe Leu Gly Arg Tyr Leu Ala Leu Glu Trp Leu Glu
785 790 795 800
Arg Met Asp Leu Val Asp Gly Lys Leu Ile Cys Leu Val Arg Ala Lys
805 810 815
Ser Asp Thr Glu Ala Arg Ala Arg Leu Asp Lys Thr Phe Asp Ser Gly
820 825 830
Asp Pro Glu Leu Leu Ala His Tyr Arg Ala Leu Ala Gly Asp His Leu
835 840 845
Glu Val Leu Ala Gly Asp Lys Gly Glu Ala Asp Leu Gly Leu Asp Arg
850 855 860
Gln Thr Trp Gln Arg Leu Ala Asp Thr Val Asp Leu Ile Val Asp Pro
865 870 875 880
Ala Ala Leu Val Asn His Val Leu Pro Tyr Ser Gln Leu Phe Gly Pro
885 890 895
Asn Ala Leu Gly Thr Ala Glu Leu Leu Arg Leu Ala Leu Thr Ser Lys
900 905 910
Ile Lys Pro Tyr Ser Tyr Thr Ser Thr Ile Gly Val Ala Asp Gln Ile
915 920 925
Pro Pro Ser Ala Phe Thr Glu Asp Ala Asp Ile Arg Val Ile Ser Ala
930 935 940
Thr Arg Ala Val Asp Asp Ser Tyr Ala Asn Gly Tyr Ser Asn Ser Lys
945 950 955 960
Trp Ala Gly Glu Val Leu Leu Arg Glu Ala His Asp Leu Cys Gly Leu
965 970 975
Pro Val Ala Val Phe Arg Cys Asp Met Ile Leu Ala Asp Thr Thr Trp
980 985 990
Ala Gly Gln Leu Asn Val Pro Asp Met Phe Thr Arg Met Ile Leu Ser
995 1000 1005
Leu Ala Ala Thr Gly Ile Ala Pro Gly Ser Phe Tyr Glu Leu Ala Ala
1010 1015 1020
Asp Gly Ala Arg Gln Arg Ala His Tyr Asp Gly Leu Pro Val Glu Phe
1025 1030 1035 1040
Ile Ala Glu Ala Ile Ser Thr Leu Gly Ala Gln Ser Gln Asp Gly Phe
1045 1050 1055
His Thr Tyr His Val Met Asn Pro Tyr Asp Asp Gly Ile Gly Leu Asp
1060 1065 1070
Glu Phe Val Asp Trp Leu Asn Glu Ser Gly Cys Pro Ile Gln Arg Ile
1075 1080 1085
Ala Asp Tyr Gly Asp Trp Leu Gln Arg Phe Glu Thr Ala Leu Arg Ala
1090 1095 1100
Leu Pro Asp Arg Gln Arg His Ser Ser Leu Leu Pro Leu Leu His Asn
1105 1110 1115 1120
Tyr Arg Gln Pro Glu Arg Pro Val Arg Gly Ser Ile Ala Pro Thr Asp
1125 1130 1135
Arg Phe Arg Ala Ala Val Gln Glu Ala Lys Ile Gly Pro Asp Lys Asp
1140 1145 1150
Ile Pro His Val Gly Ala Pro Ile Ile Val Lys Tyr Val Ser Asp Leu
1155 1160 1165
Arg Leu Leu Gly Leu Leu
1170
<210> 9
<211> 675
<212> DNA
<213> Bacillus subtilis
<400> 9
atgaagattt acggaattta tatggaccgc ccgctttcac aggaagaaaa tgaacggttc 60
atgactttca tatcacctga aaaacgggag aaatgccgga gattttatca taaagaagat 120
gctcaccgca ccctgctggg agatgtgctc gttcgctcag tcataagcag gcagtatcag 180
ttggacaaat ccgatatccg ctttagcacg caggaatacg ggaagccgtg catccctgat 240
cttcccgacg ctcatttcaa catttctcac tccggccgct gggtcattgg tgcgtttgat 300
tcacagccga tcggcataga tatcgaaaaa acgaaaccga tcagccttga gatcgccaag 360
cgcttctttt caaaaacaga gtacagcgac cttttagcaa aagacaagga cgagcagaca 420
gactattttt atcatctatg gtcaatgaaa gaaagcttta tcaaacagga aggcaaaggc 480
ttatcgcttc cgcttgattc cttttcagtg cgcctgcatc aggacggaca agtatccatt 540
gagcttccgg acagccattc cccatgctat atcaaaacgt atgaggtcga tcccggctac 600
aaaatggctg tatgcgccgc acaccctgat ttccccgagg atatcacaat ggtctcgtac 660
gaagagcttt tataa
<210> 10
<211> 224
<212> PRT
<213> Bacillus subtilis
<400> 10
Met Lys Ile Tyr Gly Ile Tyr Met Asp Arg Pro Leu Ser Gln Glu Glu
1 5 10 15
Asn Glu Arg Phe Met Thr Phe Ile Ser Pro Glu Lys Arg Glu Lys Cys
20 25 30
Arg Arg Phe Tyr His Lys Glu Asp Ala His Arg Thr Leu Leu Gly Asp
35 40 45
Val Leu Val Arg Ser Val Ile Ser Arg Gln Tyr Gln Leu Asp Lys Ser
50 55 60
Asp Ile Arg Phe Ser Thr Gln Glu Tyr Gly Lys Pro Cys Ile Pro Asp
65 70 75 80
Leu Pro Asp Ala His Phe Asn Ile Ser His Ser Gly Arg Trp Val Ile
85 90 95
Gly Ala Phe Asp Ser Gln Pro Ile Gly Ile Asp Ile Glu Lys Thr Lys
100 105 110
Pro Ile Ser Leu Glu Ile Ala Lys Arg Phe Phe Ser Lys Thr Glu Tyr
115 120 125
Ser Asp Leu Leu Ala Lys Asp Lys Asp Glu Gln Thr Asp Tyr Phe Tyr
130 135 140
His Leu Trp Ser Met Lys Glu Ser Phe Ile Lys Gln Glu Gly Lys Gly
145 150 155 160
Leu Ser Leu Pro Leu Asp Ser Phe Ser Val Arg Leu His Gln Asp Gly
165 170 175
Gln Val Ser Ile Glu Leu Pro Asp Ser His Ser Pro Cys Tyr Ile Lys
180 185 190
Thr Tyr Glu Val Asp Pro Gly Tyr Lys Met Ala Val Cys Ala Ala His
195 200 205
Pro Asp Phe Pro Glu Asp Ile Thr Met Val Ser Tyr Glu Glu Leu Leu
210 215 220
<210> 11
<211> 549
<212> DNA
<213> Escherichia coli (Escherichia coli)
<400> 11
gcggacacgt tattgattct gggtgatagc ctgagcgccg ggtatcgaat gtctgccagc 60
gcggcctggc ctgccttgtt gaatgataag tggcagagta aaacgtcggt agttaatgcc 120
agcatcagcg gcgacacctc gcaacaagga ctggcgcgcc ttccggctct gctgaaacag 180
catcagccgc gttgggtgct ggttgaactg ggcggcaatg acggtttgcg tggttttcag 240
ccacagcaaa ccgagcaaac gctgcgccag attttgcagg atgtcaaagc cgccaacgct 300
gaaccattgt taatgcaaat acgtctgcct gcaaactatg gtcgccgtta taatgaagcc 360
tttagcgcca tttaccccaa actcgccaaa gagtttgatg ttccgctgct gccctttttt 420
atggaagagg tctacctcaa gccacaatgg atgcaggatg acggtattca tcccaaccgc 480
gacgcccagc cgtttattgc cgactggatg gcgaagcagt tgcagccttt agtaaatcat 540
gactcataa
<210> 12
<211> 182
<212> PRT
<213> Escherichia coli (Escherichia coli)
<400> 12
Ala Asp Thr Leu Leu Ile Leu Gly Asp Ser Leu Ser Ala Gly Tyr Arg
1 5 10 15
Met Ser Ala Ser Ala Ala Trp Pro Ala Leu Leu Asn Asp Lys Trp Gln
20 25 30
Ser Lys Thr Ser Val Val Asn Ala Ser Ile Ser Gly Asp Thr Ser Gln
35 40 45
Gln Gly Leu Ala Arg Leu Pro Ala Leu Leu Lys Gln His Gln Pro Arg
50 55 60
Trp Val Leu Val Glu Leu Gly Gly Asn Asp Gly Leu Arg Gly Phe Gln
65 70 75 80
Pro Gln Gln Thr Glu Gln Thr Leu Arg Gln Ile Leu Gln Asp Val Lys
85 90 95
Ala Ala Asn Ala Glu Pro Leu Leu Met Gln Ile Arg Leu Pro Ala Asn
100 105 110
Tyr Gly Arg Arg Tyr Asn Glu Ala Phe Ser Ala Ile Tyr Pro Lys Leu
115 120 125
Ala Lys Glu Phe Asp Val Pro Leu Leu Pro Phe Phe Met Glu Glu Val
130 135 140
Tyr Leu Lys Pro Gln Trp Met Gln Asp Asp Gly Ile His Pro Asn Arg
145 150 155 160
Asp Ala Gln Pro Phe Ile Ala Asp Trp Met Ala Lys Gln Leu Gln Pro
165 170 175
Leu Val Asn His Asp Ser
180
<210> 13
<211> 1542
<212> DNA
<213> sea bacillus (Marinobacter aquaeolei)
<400>13
ATGGCAATAC AGCAGGTACA TCACGCTGAC ACTTCATCAT CAAAGGTGCT CGGACAGCTC 60
CGTGGCAAGC GGGTTCTGAT CACCGGTACC ACTGGCTTTC TGGGCAAGGT GGTCCTCGAA 120
AGGCTGATTC GGGCGGTGCC TGATATCGGC GCAATTTACC TGCTGATCCG GGGCAATAAA 180
CGGCATCCGG ATGCTCGTTC CCGTTTCCTG GAAGAAATTG CCACCTCCTC GGTGTTTGAC 240
CGTCTTCGCG AGGCCGATTC AGAGGGATTT GACGCCTTTC TGGAAGAGCG CATTCACTGC 300
GTGACCGGTG AGGTGACCGA AGCGGGTTTC GGGATAGGGC AGGAAGACTA TCGCAAACTC 360
GCCACCGAAC TGGATGCGGT GATCAACTCC GCTGCAAGCG TGAATTTCCG TGAAGAGCTC 420
GACAAGGCGC TGGCCATCAA CACCCTGTGC CTTCGGAATA TTGCCGGCAT GGTGGATTTG 480
AATCCGAAGC TTGCGGTCCT GCAGGTCTCC ACCTGCTATG TCAATGGCAT GAACTCGGGG 540
CAGGTAACCG AATCGGTGAT CAAGCCGGCA GGCGAGGCCG TGCCGCGTTC CCCGGACGGC 600
TTCTATGAGA TAGAAGAGCT TGTTCGCCTG CTTCAGGATA AAATTGAAGA CGTTCAGGCC 660
CGTTATTCCG GCAAAGTGCT GGAGAGGAAG CTGGTGGACC TGGGGATTCG GGAAGCCAAC 720
CGCTATGGCT GGAGCGATAC CTACACCTTT ACCAAGTGGC TGGGCGAACA GTTGCTGATG 780
AAGGCGTTAA ACGGGCGCAC GCTGACCATT CTGCGTCCTT CGATTATCGA AAGTGCCCTG 840
GAGGAACCAG CGCCCGGCTG GATTGAGGGG GTGAAGGTGG CAGATGCCAT CATCCTGGCT 900
TACGCACGGG AAAAAGTCAC CCTCTTCCCG GGCAAACGCT CCGGTATCAT CGATGTGATT 960
CCAGTGGACC TGGTGGCCAA CTCCATCATC CTTTCCCTGG CGGAAGCTCT TGGAGAACCC 1020
GGTCGACGTC GCATCTATCA ATGTTGCAGC GGGGGCGGCA ATCCAATCTC CCTGGGTGAG 1080
TTCATCGATC ATCTCATGGC GGAATCAAAA GCCAATTACG CTGCCTACGA TCACCTGTTC 1140
TACCGGCAGC CCAGCAAGCC GTTTCTGGCG GTTAACCGGG CGCTGTTTGA TTTGGTGATC 1200
AGTGGTGTTC GCTTACCGCT CTCCCTGACG GACCGTGTGC TCAAATTACT GGGAAATTCC 1260
CGGGACCTGA AAATGCTCAG GAATCTGGAT ACCACCCAGT CGCTGGCAAC CATTTTTGGT 1320
TTCTACACCG CGCCGGATTA TATCTTCCGG AACGATGAGC TGATGGCGCT GGCGAACCGG 1380
ATGGGTGAGG TCGATAAAGG GCTGTTCCCG GTGGATGCCC GCCTGATTGA CTGGGAGCTC 1440
TACCTGCGCA AGATTCACCT GGCCGGGCTC AATCGCTATG CCCTGAAAGA ACGAAAGGTG 1500
TACAGTCTGA AAACCGCGCG CCAGCGCAAA AAAGCTGCCT GA
<210> 14
<211> 513
<212> PRT
<213> sea bacillus (Marinobacter aquaeolei)
<400>14
MET ALA ILE GLN GLN VAL HIS HIS ALA ASP THR SER SER SER LYS VAL
1 5 10 15
LEU GLY GLN LEU ARG GLY LYS ARG VAL LEU ILE THR GLY THR THR GLY
20 25 30
PHE LEU GLY LYS VAL VAL LEU GLU ARG LEU ILE ARG ALA VAL PRO ASP
35 40 45
ILE GLY ALA ILE TYR LEU LEU ILE ARG GLY ASN LYS ARG HIS PRO ASP
50 55 60
ALA ARG SER ARG PHE LEU GLU GLU ILE ALA THR SER SER VAL PHE ASP
65 70 75 80
ARG LEU ARG GLU ALA ASP SER GLU GLY PHE ASP ALA PHE LEU GLU GLU
85 90 95
ARG ILE HIS CYS VAL THR GLY GLU VAL THR GLU ALA GLY PHE GLY ILE
100 105 110
GLY GLN GLU ASP TYR ARG LYS LEU ALA THR GLU LEU ASP ALA VAL ILE
115 120 125
ASN SER ALA ALA SER VAL ASN PHE ARG GLU GLU LEU ASP LYS ALA LEU
130 135 140
ALA ILE ASN THR LEU CYS LEU ARG ASN ILE ALA GLY MET VAL ASP LEU
145 150 155 160
ASN PRO LYS LEU ALA VAL LEU GLN VAL SER THR CYS TYR VAL ASN GLY
165 170 175
MET ASN SER GLY GLN VAL THR GLU SER VAL ILE LYS PRO ALA GLY GLU
180 185 190
ALA VAL PRO ARG SER PRO ASP GLY PHE TYR GLU ILE GLU GLU LEU VAL
195 200 205
ARG LEU LEU GLN ASP LYS ILE GLU ASP VAL GLN ALA ARG TYR SER GLY
210 215 220
LYS VAL LEU GLU ARG LYS LEU VAL ASP LEU GLY ILE ARG GLU ALA ASN
225 230 235 240
ARG TYR GLY TRP SER ASP THR TYR THR PHE THR LYS TRP LEU GLY GLU
245 250 255
GLN LEU LEU MET LYS ALA LEU ASN GLY ARG THR LEU THR ILE LEU ARG
260 265 270
PRO SER ILE ILE GLU SER ALA LEU GLU GLU PRO ALA PRO GLY TRP ILE
275 280 285
GLU GLY VAL LYS VAL ALA ASP ALA ILE ILE LEU ALA TYR ALA ARG GLU
290 295 300
LYS VAL THR LEU PHE PRO GLY LYS ARG SER GLY ILE ILE ASP VAL ILE
305 310 315 320
PRO VAL ASP LEU VAL ALA ASN SER ILE ILE LEU SER LEU ALA GLU ALA
325 330 335
LEU GLY GLU PRO GLY ARG ARG ARG ILE TYR GLN CYS CYS SER GLY GLY
340 345 350
GLY ASN PRO ILE SER LEU GLY GLU PHE ILE ASP HIS LEU MET ALA GLU
355 360 365
SER LYS ALA ASN TYR ALA ALA TYR ASP HIS LEU PHE TYR ARG GLN PRO
370 375 380
SER LYS PRO PHE LEU ALA VAL ASN ARG ALA LEU PHE ASP LEU VAL ILE
385 390 395 400
SER GLY VAL ARG LEU PRO LEU SER LEU THR ASP ARG VAL LEU LYS LEU
405 410 415
LEU GLY ASN SER ARG ASP LEU LYS MET LEU ARG ASN LEU ASP THR THR
420 425 430
GLN SER LEU ALA THR ILE PHE GLY PHE TYR THR ALA PRO ASP TYR ILE
435 440 445
PHE ARG ASN ASP GLU LEU MET ALA LEU ALA ASN ARG MET GLY GLU VAL
450 455 460
ASP LYS GLY LEU PHE PRO VAL ASP ALA ARG LEU ILE ASP TRP GLU LEU
465 470 475 480
TYR LEU ARG LYS ILE HIS LEU ALA GLY LEU ASN ARG TYR ALA LEU LYS
485 490 495
GLU ARG LYS VAL TYR SER LEU LYS THR ALA ARG GLN ARG LYS LYS ALA
500 505 510
ALA

Claims (4)

1. A method for synthesizing fatty alcohol acetate based on fatty acyl-ACP in a microorganism is characterized in that fatty alcohol acetate is produced by taking fatty acyl-ACP as a precursor molecule:
recombining a fatty acyl-ACP reductase AAR gene, an aldehyde reductase AHR gene and an alcohol acetyltransferase ATF1 gene into a vector; transferring the vector into a microorganism to realize high-quantity expression of the three genes in the microorganism to obtain an engineering strain; expressing AAR for catalyzing the reduction of fatty acyl-ACP to fatty aldehyde, expressing AHR for catalyzing the reduction of fatty aldehyde to fatty alcohol, and expressing ATF1 for catalyzing the reaction of fatty alcohol and acetyl-CoA to synthesize fatty alcohol acetate; both of fatty acyl-ACP and acetyl-CoA can be synthesized by fermenting monosaccharide or glycerol with a microorganism, which is either one of a bacterium and a yeast, and thus the engineered bacterium constructed above can efficiently convert the monosaccharide or glycerol into fatty alcohol acetate.
2. The method for synthesizing fatty alcohol acetate based on fatty acyl-ACP in a microorganism according to claim 1,
the nucleotide sequence of the fatty acyl-ACP reductase AAR gene is shown as SEQ ID NO: 1 is shown in the specification; the amino acid sequence of the fatty acyl-ACP reductase AAR gene code is shown as SEQ ID NO: 2 is shown in the specification;
the nucleotide sequence of the aldehyde reductase AHR gene is shown in SEQ ID NO: 3 is shown in the specification; the amino acid sequence of the aldehyde reductase AHR gene code is shown as SEQ ID NO: 4 is shown in the specification;
the nucleotide sequence of the alcohol acetyltransferase ATF1 gene is shown as SEQ ID NO: 5 is shown in the specification; the amino acid sequence coded by the alcohol acetyltransferase ATF1 gene is shown as SEQ ID NO: and 6, respectively.
3. The method for synthesizing fatty alcohol acetate based on fatty acyl-ACP in a microorganism according to claim 1, wherein: said microorganism comprising a nucleic acid sequence of the alcohol acetyltransferase ATF1 gene; the nucleic acid sequence of the alcohol acetyltransferase ATF1 gene utilizes acetyl coenzyme A and alcohol compounds to generate fatty alcohol acetate; the alcohol compound is saturated monohydric alcohol and unsaturated monohydric alcohol, wherein the carbon source seed number is more than 5 but less than 30.
4. The method for synthesizing fatty alcohol acetate based on fatty acyl-ACP in a microorganism according to claim 1, wherein: the monosaccharide is any one of glucose, galactose or fructose.
CN201811031769.4A 2015-07-03 2015-07-03 Method for synthesizing fatty alcohol acetate in microorganism based on fatty acyl-ACP Active CN109234294B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811031769.4A CN109234294B (en) 2015-07-03 2015-07-03 Method for synthesizing fatty alcohol acetate in microorganism based on fatty acyl-ACP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510383782.6A CN105331647B (en) 2015-07-03 2015-07-03 A kind of method of synthctic fat alcohol acetic ester in microbial body
CN201811031769.4A CN109234294B (en) 2015-07-03 2015-07-03 Method for synthesizing fatty alcohol acetate in microorganism based on fatty acyl-ACP

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201510383782.6A Division CN105331647B (en) 2015-07-03 2015-07-03 A kind of method of synthctic fat alcohol acetic ester in microbial body

Publications (2)

Publication Number Publication Date
CN109234294A CN109234294A (en) 2019-01-18
CN109234294B true CN109234294B (en) 2022-09-23

Family

ID=55282412

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201811031769.4A Active CN109234294B (en) 2015-07-03 2015-07-03 Method for synthesizing fatty alcohol acetate in microorganism based on fatty acyl-ACP
CN201811033458.1A Active CN109234295B (en) 2015-07-03 2015-07-03 Method for synthesizing fatty alcohol acetate in microorganism body based on fatty acid
CN201510383782.6A Active - Reinstated CN105331647B (en) 2015-07-03 2015-07-03 A kind of method of synthctic fat alcohol acetic ester in microbial body

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201811033458.1A Active CN109234295B (en) 2015-07-03 2015-07-03 Method for synthesizing fatty alcohol acetate in microorganism body based on fatty acid
CN201510383782.6A Active - Reinstated CN105331647B (en) 2015-07-03 2015-07-03 A kind of method of synthctic fat alcohol acetic ester in microbial body

Country Status (1)

Country Link
CN (3) CN109234294B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111696619B (en) * 2019-03-13 2023-06-20 赣南师范大学 Method for predicting influence degree of reaction environment on reaction activation energy
CN111235191B (en) * 2020-01-20 2022-11-22 赣南师范大学 Method for synthesizing acetaminophenol by microorganisms
WO2023077377A1 (en) * 2021-11-04 2023-05-11 珠海市润农科技有限公司 Application of higher fatty alcohol in fatty acid metabolic pathway of cruciferous plant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213194A (en) * 2004-08-03 2008-07-02 惠氏公司 Indazoles useful in treating cardiovascular diseases
WO2012177726A1 (en) * 2011-06-22 2012-12-27 Genomatica, Inc. Microorganism for producing primary alcohols and related compounds and methods related thereto
WO2015031859A1 (en) * 2013-08-29 2015-03-05 The Regents Of The University Of California Bacteria engineered for ester production
CN105061515A (en) * 2015-08-08 2015-11-18 赣南师范学院 Synthesis of phosphorescent iridium complex and application of phosphorescent iridium complex for fluorescence labeling of schistosome cercaria
CN106011164A (en) * 2016-05-20 2016-10-12 天津大学 Genetic element, expression vector and application of genetic element and expression vector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2703775T3 (en) * 2008-03-05 2019-03-12 Genomatica Inc Organisms producing primary alcohols
WO2010075483A2 (en) * 2008-12-23 2010-07-01 Ls9, Inc. Methods and compositions related to thioesterase enzymes
WO2012043633A1 (en) * 2010-09-30 2012-04-05 独立行政法人国立精神・神経医療研究センター Inhibitor of expression of dominantly mutated gene
ES2396823B1 (en) * 2011-08-18 2014-01-28 Iden Biotechnology S.L. BIODIESEL PRODUCTION FROM GLYCERINE.
CN111235191B (en) * 2020-01-20 2022-11-22 赣南师范大学 Method for synthesizing acetaminophenol by microorganisms

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213194A (en) * 2004-08-03 2008-07-02 惠氏公司 Indazoles useful in treating cardiovascular diseases
WO2012177726A1 (en) * 2011-06-22 2012-12-27 Genomatica, Inc. Microorganism for producing primary alcohols and related compounds and methods related thereto
WO2015031859A1 (en) * 2013-08-29 2015-03-05 The Regents Of The University Of California Bacteria engineered for ester production
CN105061515A (en) * 2015-08-08 2015-11-18 赣南师范学院 Synthesis of phosphorescent iridium complex and application of phosphorescent iridium complex for fluorescence labeling of schistosome cercaria
CN106011164A (en) * 2016-05-20 2016-10-12 天津大学 Genetic element, expression vector and application of genetic element and expression vector

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Metabolic engineering of Escherichia coli fo r production of biodiesel from fatty alcohols and acety-COA";Daoyi Guo等;《Appl Microbiol Biotechnol》;20150724;第99卷(第8期);第7805-7812页 *
"Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli";Ran Liu等;《Metab Eng》;20131212;第22卷;第10-21页 *
"大肠杆菌3-酮基脂酰ACP还原酶110位天冬酰胺突变后的结构域功能";童文华等;《中国生物化学与分子生物学报》;20120820;第28卷(第8期);第713-721页 *
"流产布氏杆菌烯脂酰ACP还原酶的鉴定";雷鸣等;《生物化学与生物物理进展》;20120515;第39卷(第5期);第464-471页 *
"细菌3-酮脂酰ACP还原酶研究进展";毛雅慧等;《微生物学通报》;20180622;第46卷(第4期);第931-939页 *

Also Published As

Publication number Publication date
CN109234295A (en) 2019-01-18
CN105331647B (en) 2019-02-22
CN109234295B (en) 2022-09-23
CN109234294A (en) 2019-01-18
CN105331647A (en) 2016-02-17

Similar Documents

Publication Publication Date Title
CN106957850B (en) Genetically engineered bacterium for producing phospholipase D and construction method and application thereof
CN109234294B (en) Method for synthesizing fatty alcohol acetate in microorganism based on fatty acyl-ACP
JP2005510203A5 (en)
CN114181877B (en) Genetically engineered bacterium for synthesizing vanillin and application thereof
CN110387379B (en) Mixed culture process and application of recombinant escherichia coli for producing glutathione
CN106636168B (en) Method for regulating and controlling synthesis of clostridium acetobutylicum extracellular polymer
CN107075465A (en) The method that forulic acid is converted into vanillic aldehyde
CN107548418A (en) Separation and the method for purifying ambrox
CN101802200B (en) Preparing method for (s)-3-hydroxybutyric acid and (s)-3-hydroxybutyrate ester using recombinant microorganism
CN107119001A (en) The production method of genetically engineered hydrogenlike silicon ion and preparation method thereof and farnesol
CN111235191B (en) Method for synthesizing acetaminophenol by microorganisms
CN111197054B (en) Construction of recombinant pseudomonas putida and application thereof in production of propionic acid
JP2011172526A (en) Yeast host
CN110157746B (en) Method for synthesizing auxin by microorganisms
CN115927143A (en) Method and strain for improving N-acetylglucosamine yield through multi-path optimization
CN110004099A (en) A kind of fermentation method for producing of rhodioside
JP4647391B2 (en) Highly efficient production method of dicarboxylic acid by coryneform bacteria
US9222110B2 (en) Microorganism and method for lactic acid production
CN116376995B (en) Method for preparing glycine, acetyl-CoA and acetyl-CoA derivatives by using threonine
CN114317476B (en) Biocatalysis production process of glucosyl glycerine and sucrose phosphorylase thereof
CN114231509B (en) Sucrose phosphorylase and glucosyl glycerol production process
CN103571785A (en) Method for efficiently producing mevalonic acid from fatty acid and constructed gene engineering bacterium
CN111378675A (en) Biosynthesis gene of eremophilane sesquiterpene in catharanthus roseus and application
CN114806914B (en) Yarrowia lipolytica capable of producing beta-carotene at high yield and application thereof
CN109929853A (en) The application of the heat shock protein gene in Thermophilic Bacteria source

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant