CN109218090A - 一种物联网节点信任度评估方法 - Google Patents
一种物联网节点信任度评估方法 Download PDFInfo
- Publication number
- CN109218090A CN109218090A CN201811048175.4A CN201811048175A CN109218090A CN 109218090 A CN109218090 A CN 109218090A CN 201811048175 A CN201811048175 A CN 201811048175A CN 109218090 A CN109218090 A CN 109218090A
- Authority
- CN
- China
- Prior art keywords
- node
- service
- value
- trust
- quality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000011156 evaluation Methods 0.000 claims abstract description 36
- 230000003993 interaction Effects 0.000 claims abstract description 7
- 238000004891 communication Methods 0.000 claims description 29
- 230000001960 triggered effect Effects 0.000 claims description 13
- 238000012544 monitoring process Methods 0.000 claims description 10
- 238000007499 fusion processing Methods 0.000 claims description 5
- 230000002688 persistence Effects 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 abstract description 7
- 238000005265 energy consumption Methods 0.000 abstract description 7
- 230000004927 fusion Effects 0.000 abstract 1
- 238000005303 weighing Methods 0.000 abstract 1
- 230000006399 behavior Effects 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 8
- 238000004088 simulation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/50—Testing arrangements
- H04L43/55—Testing of service level quality, e.g. simulating service usage
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/20—Network architectures or network communication protocols for network security for managing network security; network security policies in general
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Computer Security & Cryptography (AREA)
- Quality & Reliability (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
一种物联网节点信任度评估方法。其包括查询直接交互节点列表;计算直接信任度值;计算推荐信任度值;计算综合信任度值:根据综合信任度值更新信任度值列表等步骤。本发明提供的物联网节点信任度评估方法在进行节点直接信任度评估时,采用改进基于Beta的直接信任度评估方法,并通过融合用户相似度、评价差异度及节点自身的信任度值,优化推荐信任度权重计算方法,计算节点推荐信任度值。最后,采取基于直接信任度值和推荐信任度值的组合方法计算节点综合信任度值,可提高信任度评估的准确性。实验结果表明,与其它方法相比,本发明方法对节点的恶意行为具有较高的敏感度,且在保证信任度计算准确率的同时可有效降低传输能耗。
Description
技术领域
本发明属于网络信息安全技术领域,特别是涉及一种物联网节点信任度评估方法。
背景技术
物联网(Internet of Things,IOT)是一种通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的网络,它是在互联网基础上延伸和扩展的网络。物联网能够获取客观物理信息,具有十分广阔的应用前景,能应用于城市管理、生物医疗、环境检测、智能家居等领域,因此目前已经引起了学术界和工业界的高度重视。
在IOT中,节点间通过一系列终端设备实时采集各类数据,其中不乏隐私和保密信息,因此用户格外重视IOT的安全性问题。一方面,由于传统的安全认证和加密技术难以应用,IOT节点更容易成为被攻击的对象;另一方面,由于IOT内信任关系复杂,容易被恶意节点利用,从而实施以获取服务或资源为目标的恶意行为。因此,在IOT中,充分挖掘节点信任关系并有效识别恶意节点,对保障IOT的服务质量具有重要意义。信任管理作为有效防御网络内部攻击和识别恶意节点的方法之一,可提高IOT应用系统的安全性、可靠性和公平性。但目前尚缺少有效的方法。
发明内容
为了解决上述问题,本发明的目的在于提供一种物联网节点信任度评估方法。
为了达到上述目的,本发明提供的物联网节点信任度评估方法包括按顺序进行的下列步骤:
1)查询直接交互节点列表的S1阶段:在此阶段中,物联网中的服务请求节点首先查询直接交互节点列表中是否存在服务提供节点的记录,若存在该服务提供节点的记录,则进入S2阶段;否则进入S3阶段;
2)计算直接信任度值的S2阶段:在此阶段中,首先,根据服务提供节点的数据包转发率和重复率,计算该服务提供节点的服务质量值及相同质量服务持续强度,然后利用上述结果计算服务提供节点的质量服务评分值,最后计算服务提供节点的直接信任度值,进入S4阶段;
3)计算推荐信任度值的S3阶段:在此阶段中,首先,服务请求节点向其通信范围内的所有节点请求查询本地是否存在服务提供节点的信任度值记录,若有,则该节点作为推荐节点,同时发送本地信任值列表至服务提供节点;其次,根据推荐节点与服务请求节点的共同通信节点数和对共同通信节点的评分相似度,计算得到用户相似度;然后,计算各推荐节点对服务提供节点的评价差异度;最后,通过对推荐节点的用户相似度、评价差异度的融合处理,得到该推荐节点的推荐信任度权重,并最终计算出推荐节点的推荐信任度值,进入S4阶段;
4)计算综合信任度值的S4阶段:在此阶段中,融合步骤2)和步骤3)获得的直接信任度值和推荐信任度值,计算节点的综合信任度值
5)根据上述综合信任度值更新信任度值列表的S5阶段:在此阶段中,根据上述综合信任度值,采取时间触发和事件触发机制更新信任度值列表。
在步骤2)中,所述的根据服务提供节点的数据包转发率和重复率,计算该服务提供节点的服务质量值及相同质量服务持续强度,然后利用上述结果计算服务提供节点的质量服务评分值,最后计算服务提供节点的直接信任度值的具体方法如下:
I)计算服务提供节点j的数据包转发率服务质量值
其中,Precieve与Psend分别为服务提供节点j实际接收和成功转发的数据包数量,δ为保证节点间通信正常时应转发的最低数据包的数量,K为服务提供节点j实际转发的数据包数量;
II)计算服务提供节点j的数据包重复率服务质量值Qij r:
其中,εTH=2,ε、TH为常数,由网络控制环境确定;
III)根据上述数据包转发率服务质量值和数据包重复率服务质量值Qij r计算服务提供节点j的服务质量值Qij d,用于评估本次服务性质:
其中,0≤ω1,ω2≤1且ω1+ω2=1;ω1和ω2分别表示数据包转发率服务质量和数据包重复率服务质量的权重;
IV)将步骤III)中计算得到的服务质量值Qij d与用户设定的服务质量阈值T进行比较,以判断本次服务性质,并更新该服务提供节点j在本监测周期内提供的高质量服务次数或低质量服务次数
当本次服务质量值Qij d<服务质量阈值T时,判定服务提供节点j提供的服务为低质量服务,并由公式(4)更新低质量服务次数
其中,ser′j N为历史低质量服务次数;
当本次服务质量值Qij d≥服务质量阈值T,判定服务提供节点j提供的服务为高质量服务,并由公式(5)更新高质量服务次数
其中为历史高质量服务次数;
V)根据上述低质量服务次数或高质量服务次数计算服务提供节点j在监测周期内的相同质量服务持续强度Fj a,其中a=r、p,并分别作为该节点本次服务的惩罚因子和奖励因子:
其中,a=r、p,type=N、P,分别为服务提供节点j在监测周期内提供的低质量和高质量服务次数,λ为速率调节因子;
VI)若此次服务提供节点j提供的服务为高质量服务,则根据公式(6)更新相同质量服务持续强度同时根据公式(7)更新高质量服务评分值αij:
其中,为服务提供节点j的历史高质量服务评分值;
VII)若此次服务提供节点j提供的服务为低质量服务,则根据公式(6)更新相同质量服务持续强度并根据公式(8)更新低质量服务评分值βij:
其中,为服务提供节点j的历史低质量服务评分值;
Ⅷ)根据上述高质量服务评分值αij和低质量服务评分值βij计算服务提供节点j的直接信任度值:
在步骤3)中,所述的根据推荐节点与服务请求节点的共同通信节点数和对共同通信节点的评分相似度,计算得到用户相似度;然后,计算各推荐节点对服务提供节点的评价差异度;最后,通过对推荐节点的用户相似度、评价差异度的融合处理,得到该推荐节点的推荐信任度权重,并最终计算出推荐节点的推荐信任度值的具体方法如下:
Ⅰ)计算通信范围内所有推荐节点所属用户和服务请求节点所属用户在共同通信节点数、对共同通信节点的评分相似度这两个属性上的用户相似度:
其中,Dx、Dy分别为与属于用户x、y的所有设备发生直接通信行为的设备列表;Txi、Tyi分别为用户x与用户y的信任度值评分列表,连接于同一指定高智能终端设备的所有设备视为一个用户;
Ⅱ)选取上述用户相似度Sim(x,y)user较高的前n个节点作为推荐节点集Simn;
Ⅲ)计算推荐节点集Simn中各推荐节点的评价差异度Diffk:设为所有推荐节点对服务提供节点j直接信任度的期望值,TDkj为第k个推荐节点对服务请求节点j的直接信任度值(TDkj∈Simn),则第k个推荐节点的评价差异度Diffk为:
Ⅳ)根据上述第k个推荐节点的用户相似度和评价差异度Diffk计算第k个推荐节点的推荐信任度权重weightk re
其中,Tk com为服务请求节点j对第k个推荐节点的信任度评估值,即推荐节点自身信任度值。
V)根据上述第k个推荐节点的推荐信任度权重weightk re,计算第k个推荐节点的推荐信任度值:
在步骤4)中,所述的计算节点的综合信任度值Tj total的公式如下:
其中,wd+wre=1且0≤wd,wre≤1,wd、wre分别为直接信任度值、推荐信任度值的权重,由网络实际情况设定。
在步骤5)中,所述的根据上述综合信任度值更新信任度值列表的S5阶段:在此阶段中,根据上述综合信任度值,采取时间触发和事件触发机制更新信任度值列表的具体方法如下:
Ⅰ)无事件触发时,根据上述综合信任度值将信任度值列表滑动窗口以△t的时间间隔向右滑动,滑动窗口外的记录失效,同时更新仍然有效的信任度值记录,更新后的综合信任度值为:
Tj com=FR×Tj total (15)
其中,FR=α/α+△t为信任衰减因子;
Ⅱ)服务结束后,若信任度值列表中无关于服务提供节点j的信任度值记录且信任度值列表仍有存储空间,则在列表中插入服务提供节点j的综合信任度值;
Ⅲ)若信任度值列表中有关于服务提供节点j的信任度值记录,则更新该记录;
Ⅳ)若无服务提供节点j的信任度值记录但信任度值列表已满,则在信任度值列表滑动窗口的队列尾部插入关于服务提供节点j的综合信任度值,此时最左端的综合信任度值失效。
与现有技术相比,本发明提供的物联网节点信任度评估方法在进行节点直接信任度评估时,采用改进基于Beta的直接信任度评估方法,并通过融合用户相似度、评价差异度及节点自身的信任度值,优化推荐信任度权重计算方法,计算节点推荐信任度值。最后,采取基于直接信任度值和推荐信任度值的组合方法计算节点综合信任度值,可提高信任度评估的准确性。实验结果表明,与其它方法相比,本发明方法对节点的恶意行为具有较高的敏感度,且在保证信任度计算准确率的同时可有效降低传输能耗。
附图说明
图1为本发明提供的物联网节点信任度评估方法流程图
图2为本发明提供的物联网节点信任度评估方法中直接信任度值计算方法流程图。
图3为本发明提供的物联网节点信任度评估方法中推荐信任度值计算方法流程图。
图4为节点信任度更新方法示意图。
图5为采用不同直接信任度值计算方法时节点直接信任度值仿真图。
图6为采用不同节点推荐信任度值计算方法时计算准确率仿真图。
图7为采用不同节点信任度评估方法时的传输能耗仿真图。
具体实施方式
下面结合附图及具体实施例对本发明做进一步的说明,但下述实施例绝非对本发明有任何限制。
如图1所示,本发明提供的物联网节点信任度评估方法包括按顺序进行的下列步骤:
1)查询直接交互节点列表的S1阶段:在此阶段中,物联网中的服务请求节点首先查询直接交互节点列表中是否存在服务提供节点的记录,若存在该服务提供节点的记录,则进入S2阶段;否则进入S3阶段;
2)计算直接信任度值的S2阶段:在此阶段中,首先,根据服务提供节点的数据包转发率和重复率,计算该服务提供节点的服务质量值及相同质量服务持续强度,然后利用上述结果计算服务提供节点的质量服务评分值,最后计算服务提供节点的直接信任度值,进入S4阶段;
如图2所示,具体方法如下:
I)计算服务提供节点j的数据包转发率服务质量值
其中,Precieve与Psend分别为服务提供节点j实际接收和成功转发的数据包数量,δ为保证节点间通信正常时应转发的最低数据包的数量,K为服务提供节点j实际转发的数据包数量;
II)计算服务提供节点j的数据包重复率服务质量值Qij r:
其中,εTH=2,ε、TH为常数,由网络控制环境确定;
III)根据上述数据包转发率服务质量值和数据包重复率服务质量值Qij r计算服务提供节点j的服务质量值Qij d,用于评估本次服务性质:
其中,0≤ω1,ω2≤1且ω1+ω2=1;ω1和ω2分别表示数据包转发率服务质量和数据包重复率服务质量的权重;
IV)将步骤III)中计算得到的服务质量值Qij d与用户设定的服务质量阈值T进行比较,以判断本次服务性质,并更新该服务提供节点j在本监测周期内提供的高质量服务(合法行为)次数或低质量服务(恶意行为)次数
当本次服务质量值Qij d<服务质量阈值T时,判定服务提供节点j提供的服务为低质量服务,并由公式(4)更新低质量服务次数
其中,ser′j N为历史低质量服务次数;
当本次服务质量值Qij d≥服务质量阈值T,判定服务提供节点j提供的服务为高质量服务,并由公式(5)更新高质量服务次数
其中为历史高质量服务次数;
V)根据上述低质量服务次数或高质量服务次数计算服务提供节点j在监测周期内的相同质量服务持续强度Fj a(a=r、p),并分别作为该节点本次服务的惩罚因子和奖励因子:
其中,a=r、p,type=N、P,分别为服务提供节点j在监测周期内提供的低质量和高质量服务次数,λ为速率调节因子;
VI)若此次服务提供节点j提供的服务为高质量服务,则根据公式(6)更新相同质量服务持续强度同时根据公式(7)更新高质量服务评分值αij:
其中,为服务提供节点j的历史高质量服务评分值;
VII)若此次服务提供节点j提供的服务为低质量服务,则根据公式(6)更新相同质量服务持续强度并根据公式(8)更新低质量服务评分值βij:
其中,为服务提供节点j的历史低质量服务评分值;
Ⅷ)根据上述高质量服务评分值αij和低质量服务评分值βij计算服务提供节点j的直接信任度值:
3)计算推荐信任度值的S3阶段:在此阶段中,首先,服务请求节点向其通信范围内的所有节点请求查询本地是否存在服务提供节点的信任度值记录,若有,则该节点作为推荐节点,同时发送本地信任值列表至服务提供节点;其次,根据推荐节点与服务请求节点的共同通信节点数和对共同通信节点的评分相似度,计算得到用户相似度;然后,计算各推荐节点对服务提供节点的评价差异度;最后,通过对推荐节点的用户相似度、评价差异度的融合处理,得到该推荐节点的推荐信任度权重,并最终计算出推荐节点的推荐信任度值,进入S4阶段;
如图3所示,具体方法如下:
Ⅰ)计算通信范围内所有推荐节点所属用户和服务请求节点所属用户在共同通信节点数、对共同通信节点的评分相似度这两个属性上的用户相似度:
其中,Dx、Dy分别为与属于用户x、y的所有设备发生直接通信行为的设备列表;Txi、Tyi分别为用户x与用户y的信任度值评分列表,连接于同一指定高智能终端设备的所有设备视为一个用户;
Ⅱ)选取上述用户相似度Sim(x,y)user较高的前n个节点作为推荐节点集Simn;
Ⅲ)计算推荐节点集Simn中各推荐节点的评价差异度Diffk:设为所有推荐节点对服务提供节点j直接信任度的期望值,TDkj为第k个推荐节点对服务请求节点j的直接信任度值(TDkj∈Simn),则第k个推荐节点的评价差异度Diffk为:
Ⅳ)根据上述第k个推荐节点的用户相似度和评价差异度Diffk计算第k个推荐节点的推荐信任度权重weightk re
其中,Tk com为服务请求节点j对第k个推荐节点的信任度评估值,即推荐节点自身信任度值。
V)根据上述第k个推荐节点的推荐信任度权重weightk re,计算第k个推荐节点的推荐信任度值:
4)计算综合信任度值的S4阶段:在此阶段中,融合步骤2和步骤3获得的的直接信任度值和推荐信任度值,计算节点的综合信任度值Tj total:公式如下:
其中,wd+wre=1且0≤wd,wre≤1,wd、wre分别为直接信任度值、推荐信任度值的权重,由网络实际情况设定。
5)根据上述综合信任度值更新信任度值列表的S5阶段:在此阶段中,采取时间触发和事件触发机制更新信任度值列表。
如图4所示,具体方法如下:
Ⅰ)无事件触发时,根据上述综合信任度值将信任度值列表滑动窗口以△t的时间间隔向右滑动,滑动窗口外的记录失效,同时更新仍然有效的信任度值记录,更新后的综合信任度值为:
Tj com=FR×Tj total (15)
其中,FR=α/α+△t为信任衰减因子,该信任衰减函数使得信任度值前期衰减速率低于指数函数,较好地保留了近期服务的评价,且随着时间的增加历史综合信任度值不会衰减为0;
Ⅱ)服务结束后,若信任度值列表中无关于服务提供节点j的信任度值记录且信任度值列表仍有存储空间,则在列表中插入服务提供节点j的综合信任度值,如图4中的1;
Ⅲ)若信任度值列表中有关于服务提供节点j的信任度值记录,则更新该记录,如图4中的2;
Ⅳ)若无服务提供节点j的信任度值记录但信任度值列表已满,则在信任度值列表滑动窗口的队列尾部插入关于服务提供节点j的综合信任度值,如图4中的3,此时最左端的综合信任度值失效。
图5为在仿真环境中,模拟恶意节点首先通过持续提供合法服务得到高信任度值,随后产生恶意行为的情况下,通过智能Beta信誉和动态信任值计算方法(IBRDT)、基于节点行为的物联网信任度评估方法和恶意行为检测方法(BITEM)及本发明方法(NBTEM),共三种不同方法得到的节点的直接信任度值。由图5可知,当节点进行合法通信时,由本发明方法计算得到的直接信任度值增速较慢,能够防止具有低信任度值的恶意节点,通过提供少数几次高质量服务快速增加自身信任度值。当t=45min时,节点开始产生恶意行为,由发明方法计算得到的直接信任度值下降较快,表明本发明方法能有效防止节点采取以低代价行为骗取信任度后提供异常服务并导致网络异常。当节点持续产生恶意行为时,本发明方法计算得到的直接信任度值低于其它两方法,由此可见,本发明方法对恶意节点的敏感度较高。
图6为网络中存在实施不实推荐行为的恶意节点时,智能Beta信誉和动态信任值计算方法(IBRDT)、基于节点行为的物联网信任度评估方法和恶意行为检测方法(BITEM)及本发明方法(NBTEM)在相同仿真环境下,计算得到的推荐信任度值的准确率,以验证本发明方法是否能够提高推荐信任度值的准确性,并有效抑制节点的恶意推荐行为。由图6可见,随着恶意节点数量的不断增加,三种方法得到的推荐信任度评估的准确率均呈下降趋势,当网络中存在不同数量恶意节点的情况下,由本发明方法得到的推荐信任度的准确率始终高于其它两种方法,故本发明方法可以提高推荐信任度评估的准确性,有效抑制物联网中的策略性欺骗行为,以防止恶意节点获取服务影响网络节点的服务质量。
图7为IBRDT、BITEM及本发明方法(NBTEM)在物联网环境中存在不同数量节点时的传输能耗,由图7可知,当节点数量小于200时,本发明方法的节点传输能耗略高于其它两种方法;但是,随着节点数量的增多,本发明方法在传输能耗上的表现优于其它两种方法,由此可见,本发明方法在网络中存在大量节点时,可以有效降低传输能耗。
Claims (5)
1.一种物联网节点信任度评估方法,其特征在于:所述的物联网节点信任度评估方法包括按顺序进行的下列步骤:
1)查询直接交互节点列表的S1阶段:在此阶段中,物联网中的服务请求节点首先查询直接交互节点列表中是否存在服务提供节点的记录,若存在该服务提供节点的记录,则进入S2阶段;否则进入S3阶段;
2)计算直接信任度值的S2阶段:在此阶段中,首先,根据服务提供节点的数据包转发率和重复率,计算该服务提供节点的服务质量值及相同质量服务持续强度,然后利用上述结果计算服务提供节点的质量服务评分值,最后计算服务提供节点的直接信任度值,进入S4阶段;
3)计算推荐信任度值的S3阶段:在此阶段中,首先,服务请求节点向其通信范围内的所有节点请求查询本地是否存在服务提供节点的信任度值记录,若有,则该节点作为推荐节点,同时发送本地信任值列表至服务提供节点;其次,根据推荐节点与服务请求节点的共同通信节点数和对共同通信节点的评分相似度,计算得到用户相似度;然后,计算各推荐节点对服务提供节点的评价差异度;最后,通过对推荐节点的用户相似度、评价差异度的融合处理,得到该推荐节点的推荐信任度权重,并最终计算出推荐节点的推荐信任度值,进入S4阶段;
4)计算综合信任度值的S4阶段:在此阶段中,融合步骤2)和步骤3)获得的直接信任度值和推荐信任度值,计算节点的综合信任度值Tj total:
5)根据上述综合信任度值更新信任度值列表的S5阶段:在此阶段中,根据上述综合信任度值,采取时间触发和事件触发机制更新信任度值列表。
2.根据权利要求1所述的物联网节点信任度评估方法,其特征在于:在步骤2)中,所述的根据服务提供节点的数据包转发率和重复率,计算该服务提供节点的服务质量值及相同质量服务持续强度,然后利用上述结果计算服务提供节点的质量服务评分值,最后计算服务提供节点的直接信任度值的具体方法如下:
I)计算服务提供节点j的数据包转发率服务质量值Qij pfr:
其中,Precieve与Psend分别为服务提供节点j实际接收和成功转发的数据包数量,δ为保证节点间通信正常时应转发的最低数据包的数量,K为服务提供节点j实际转发的数据包数量;
II)计算服务提供节点j的数据包重复率服务质量值Qij r:
其中,εTH=2,ε、TH为常数,由网络控制环境确定;
III)根据上述数据包转发率服务质量值Qij pfr和数据包重复率服务质量值Qij r计算服务提供节点j的服务质量值Qij d,用于评估本次服务性质:
其中,0≤ω1,ω2≤1且ω1+ω2=1;ω1和ω2分别表示数据包转发率服务质量和数据包重复率服务质量的权重;
IV)将步骤III)中计算得到的服务质量值Qij d与用户设定的服务质量阈值T进行比较,以判断本次服务性质,并更新该服务提供节点j在本监测周期内提供的高质量服务次数serj P或低质量服务次数serj N;
当本次服务质量值Qij d<服务质量阈值T时,判定服务提供节点j提供的服务为低质量服务,并由公式(4)更新低质量服务次数serj N:
其中,ser′j N为历史低质量服务次数;
当本次服务质量值Qij d≥服务质量阈值T,判定服务提供节点j提供的服务为高质量服务,并由公式(5)更新高质量服务次数serj P:
其中ser’j P为历史高质量服务次数;
V)根据上述低质量服务次数或高质量服务次数计算服务提供节点j在监测周期内的相同质量服务持续强度Fj a,其中a=r、p,并分别作为该节点本次服务的惩罚因子和奖励因子:
其中,a=r、p,type=N、P,serj N、serj P分别为服务提供节点j在监测周期内提供的低质量和高质量服务次数,λ为速率调节因子;
VI)若此次服务提供节点j提供的服务为高质量服务,则根据公式(6)更新相同质量服务持续强度Fj r,同时根据公式(7)更新高质量服务评分值αij:
其中,为服务提供节点j的历史高质量服务评分值;
VII)若此次服务提供节点j提供的服务为低质量服务,则根据公式(6)更新相同质量服务持续强度Fj p,并根据公式(8)更新低质量服务评分值βij:
其中,为服务提供节点j的历史低质量服务评分值;
Ⅷ)根据上述高质量服务评分值αij和低质量服务评分值βij计算服务提供节点j的直接信任度值:
3.根据权利要求1所述的物联网节点信任度评估方法,其特征在于:在步骤3)中,所述的根据推荐节点与服务请求节点的共同通信节点数和对共同通信节点的评分相似度,计算得到用户相似度;然后,计算各推荐节点对服务提供节点的评价差异度;最后,通过对推荐节点的用户相似度、评价差异度的融合处理,得到该推荐节点的推荐信任度权重,并最终计算出推荐节点的推荐信任度值的具体方法如下:
Ⅰ)计算通信范围内所有推荐节点所属用户和服务请求节点所属用户在共同通信节点数、对共同通信节点的评分相似度这两个属性上的用户相似度:
其中,Dx、Dy分别为与属于用户x、y的所有设备发生直接通信行为的设备列表;Txi、Tyi分别为用户x与用户y的信任度值评分列表,连接于同一指定高智能终端设备的所有设备视为一个用户;
Ⅱ)选取上述用户相似度Sim(x,y)user较高的前n个节点作为推荐节点集Simn;
Ⅲ)计算推荐节点集Simn中各推荐节点的评价差异度Diffk:设为所有推荐节点对服务提供节点j直接信任度的期望值,TDkj为第k个推荐节点对服务请求节点j的直接信任度值(TDkj∈Simn),则第k个推荐节点的评价差异度Diffk为:
Ⅳ)根据上述第k个推荐节点的用户相似度和评价差异度Diffk计算第k个推荐节点的推荐信任度权重weightk re
其中,Tk com为服务请求节点j对第k个推荐节点的信任度评估值,即推荐节点自身信任度值。
V)根据上述第k个推荐节点的推荐信任度权重weightk re,计算第k个推荐节点的推荐信任度值:
4.根据权利要求1所述的物联网节点信任度评估方法,其特征在于:在步骤4)中,所述的计算节点的综合信任度值Tj total的公式如下:
其中,wd+wre=1且0≤wd,wre≤1,wd、wre分别为直接信任度值、推荐信任度值的权重,由网络实际情况设定。
5.根据权利要求1所述的物联网节点信任度评估方法,其特征在于:在步骤5)中,所述的根据上述综合信任度值更新信任度值列表的S5阶段:在此阶段中,根据上述综合信任度值,采取时间触发和事件触发机制更新信任度值列表的具体方法如下:
Ⅰ)无事件触发时,根据上述综合信任度值将信任度值列表滑动窗口以△t的时间间隔向右滑动,滑动窗口外的记录失效,同时更新仍然有效的信任度值记录,更新后的综合信任度值为:
Tj com=FR×Tj total (15)
其中,FR=α/α+△t为信任衰减因子;
Ⅱ)服务结束后,若信任度值列表中无关于服务提供节点j的信任度值记录且信任度值列表仍有存储空间,则在列表中插入服务提供节点j的综合信任度值;
Ⅲ)若信任度值列表中有关于服务提供节点j的信任度值记录,则更新该记录;
Ⅳ)若无服务提供节点j的信任度值记录但信任度值列表已满,则在信任度值列表滑动窗口的队列尾部插入关于服务提供节点j的综合信任度值,此时最左端的综合信任度值失效。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811048175.4A CN109218090B (zh) | 2018-09-10 | 2018-09-10 | 一种物联网节点信任度评估方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811048175.4A CN109218090B (zh) | 2018-09-10 | 2018-09-10 | 一种物联网节点信任度评估方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109218090A true CN109218090A (zh) | 2019-01-15 |
CN109218090B CN109218090B (zh) | 2021-06-01 |
Family
ID=64987274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811048175.4A Active CN109218090B (zh) | 2018-09-10 | 2018-09-10 | 一种物联网节点信任度评估方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109218090B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111314348A (zh) * | 2020-02-19 | 2020-06-19 | 中国联合网络通信集团有限公司 | 信任度模型建立、信任评价、设备认证的方法及装置 |
CN112153220A (zh) * | 2020-08-26 | 2020-12-29 | 北京邮电大学 | 一种基于社交评价动态更新的通信行为识别方法 |
CN112733170A (zh) * | 2021-01-14 | 2021-04-30 | 中南大学 | 一种基于证据序列提取的主动信任评估方法 |
CN113114631A (zh) * | 2021-03-22 | 2021-07-13 | 广州杰赛科技股份有限公司 | 一种物联网节点的信任度评价方法、装置、设备及介质 |
CN115277055A (zh) * | 2022-06-08 | 2022-11-01 | 清华大学深圳国际研究生院 | 保障物联网数据交互安全的方法、装置和电子设备 |
CN117951140A (zh) * | 2024-03-25 | 2024-04-30 | 成都秦川物联网科技股份有限公司 | 一种工业物联网子服务平台数据交互系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101835158A (zh) * | 2010-04-12 | 2010-09-15 | 北京航空航天大学 | 基于节点行为与d-s证据理论的传感器网络信任评估方法 |
CN102244587A (zh) * | 2011-07-15 | 2011-11-16 | 杭州信雅达数码科技有限公司 | 网络中节点信任评估方法 |
CN103412918A (zh) * | 2013-08-08 | 2013-11-27 | 南京邮电大学 | 一种基于服务质量和声誉的服务信任度评估方法 |
CN105578455A (zh) * | 2016-01-27 | 2016-05-11 | 哈尔滨工业大学深圳研究生院 | 一种机会网络中分布式动态信誉评估方法 |
CN106412912A (zh) * | 2016-06-22 | 2017-02-15 | 长安大学 | 一种面向车联网的节点信任评估方法 |
-
2018
- 2018-09-10 CN CN201811048175.4A patent/CN109218090B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101835158A (zh) * | 2010-04-12 | 2010-09-15 | 北京航空航天大学 | 基于节点行为与d-s证据理论的传感器网络信任评估方法 |
CN102244587A (zh) * | 2011-07-15 | 2011-11-16 | 杭州信雅达数码科技有限公司 | 网络中节点信任评估方法 |
CN103412918A (zh) * | 2013-08-08 | 2013-11-27 | 南京邮电大学 | 一种基于服务质量和声誉的服务信任度评估方法 |
CN105578455A (zh) * | 2016-01-27 | 2016-05-11 | 哈尔滨工业大学深圳研究生院 | 一种机会网络中分布式动态信誉评估方法 |
CN106412912A (zh) * | 2016-06-22 | 2017-02-15 | 长安大学 | 一种面向车联网的节点信任评估方法 |
Non-Patent Citations (1)
Title |
---|
刘宴兵等: "基于物联网节点行为检测的信任评估方法", 《通信学报》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111314348A (zh) * | 2020-02-19 | 2020-06-19 | 中国联合网络通信集团有限公司 | 信任度模型建立、信任评价、设备认证的方法及装置 |
CN111314348B (zh) * | 2020-02-19 | 2022-07-12 | 中国联合网络通信集团有限公司 | 信任度模型建立、信任评价、设备认证的方法及装置 |
CN112153220A (zh) * | 2020-08-26 | 2020-12-29 | 北京邮电大学 | 一种基于社交评价动态更新的通信行为识别方法 |
CN112153220B (zh) * | 2020-08-26 | 2021-08-27 | 北京邮电大学 | 一种基于社交评价动态更新的通信行为识别方法 |
CN112733170A (zh) * | 2021-01-14 | 2021-04-30 | 中南大学 | 一种基于证据序列提取的主动信任评估方法 |
CN112733170B (zh) * | 2021-01-14 | 2024-01-30 | 中南大学 | 一种基于证据序列提取的主动信任评估方法 |
CN113114631A (zh) * | 2021-03-22 | 2021-07-13 | 广州杰赛科技股份有限公司 | 一种物联网节点的信任度评价方法、装置、设备及介质 |
CN113114631B (zh) * | 2021-03-22 | 2022-12-02 | 广州杰赛科技股份有限公司 | 一种物联网节点的信任度评价方法、装置、设备及介质 |
CN115277055A (zh) * | 2022-06-08 | 2022-11-01 | 清华大学深圳国际研究生院 | 保障物联网数据交互安全的方法、装置和电子设备 |
CN115277055B (zh) * | 2022-06-08 | 2023-12-05 | 清华大学深圳国际研究生院 | 保障物联网数据交互安全的方法、装置和电子设备 |
CN117951140A (zh) * | 2024-03-25 | 2024-04-30 | 成都秦川物联网科技股份有限公司 | 一种工业物联网子服务平台数据交互系统 |
Also Published As
Publication number | Publication date |
---|---|
CN109218090B (zh) | 2021-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109218090B (zh) | 一种物联网节点信任度评估方法 | |
Mislove et al. | Ostra: Leveraging Trust to Thwart Unwanted Communication. | |
Fung et al. | FACID: A trust-based collaborative decision framework for intrusion detection networks | |
Xia et al. | A novel light-weight subjective trust inference framework in MANETs | |
Labraoui et al. | A risk-aware reputation-based trust management in wireless sensor networks | |
CN104735055B (zh) | 一种基于信任度的跨域安全访问控制方法 | |
Chen et al. | An adaptive trust model based on recommendation filtering algorithm for the Internet of Things systems | |
CN108701260B (zh) | 用于辅助决策的系统和方法 | |
Jin et al. | Data-driven pricing for sensing effort elicitation in mobile crowd sensing systems | |
CN107612878A (zh) | 基于博弈论的动态窗口选择方法及无线网络信任管理系统 | |
CN110572822B (zh) | 基于决策树的水下无线传感器网络中的信任更新方法 | |
CN114363043B (zh) | 一种对等网络中基于可验证聚合和差分隐私的异步联邦学习方法 | |
Akbani et al. | EMLTrust: an enhanced machine learning based reputation system for MANETs | |
Jiang et al. | Controversy-adjudication-based trust management mechanism in the internet of underwater things | |
Li et al. | A trust evaluation scheme for complex links in a social network: a link strength perspective | |
Wang et al. | A dynamic trust model in internet of things | |
US20150006635A1 (en) | Global relationship model and a relationship search method for internet social networks | |
Yang et al. | Participant selection strategy with privacy protection for internet of things search | |
CN108322454B (zh) | 一种网络安全检测方法及装置 | |
Tripathi et al. | An optimal trust and secure model using deep metric learning for fog‐based VANET | |
Chen et al. | Pomdp-based decision making for fast event handling in vanets | |
Kalyani et al. | Security Aware Routing: Rule Based Attack Detection on Optimal Shortest Route Selection. | |
Wang et al. | Privacy-protecting reputation management scheme in IoV-based mobile crowdsensing | |
Zhou et al. | Stor: Social network based anonymous communication in tor | |
Kaljahi et al. | DTM: An efficient and dynamic trust and reputation model for e-commerce agents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |