CN109214360B - 一种基于ParaSoftMax损失函数的人脸识别模型的构建方法及应用 - Google Patents

一种基于ParaSoftMax损失函数的人脸识别模型的构建方法及应用 Download PDF

Info

Publication number
CN109214360B
CN109214360B CN201811198926.0A CN201811198926A CN109214360B CN 109214360 B CN109214360 B CN 109214360B CN 201811198926 A CN201811198926 A CN 201811198926A CN 109214360 B CN109214360 B CN 109214360B
Authority
CN
China
Prior art keywords
loss function
face
parasoft
face recognition
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811198926.0A
Other languages
English (en)
Other versions
CN109214360A (zh
Inventor
姚寒星
盛文娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing LLvision Technology Co ltd
Original Assignee
Beijing LLvision Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing LLvision Technology Co ltd filed Critical Beijing LLvision Technology Co ltd
Priority to CN201811198926.0A priority Critical patent/CN109214360B/zh
Publication of CN109214360A publication Critical patent/CN109214360A/zh
Application granted granted Critical
Publication of CN109214360B publication Critical patent/CN109214360B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/172Classification, e.g. identification

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了基于ParaSoftMax损失函数的人脸识别模型的构建方法,包括:根据任务的应用环境选取基础卷积神经网络模型;获取指定数量的标记有人脸身份信息的人脸图像作为训练数据集;根据训练数据集在基础卷积神经网络模型中分类训练时的困难样本特征向量和简单样本特征向量与其分别所属类内的类中心角度差异,获取决策边缘参数;根据所述决策边缘参数,获取ParaSoftMax损失函数;在基础卷积神经网络模型的最后一层设置所述损失函数,形成基于其的人脸识别模型;向该人脸识别模型中输入训练数据集,最小化损失函数迭代训练模型参数,获取最优的人脸识别模型。由上,本申请的人脸识别模型可以提高人脸识别的准确度。

Description

一种基于ParaSoftMax损失函数的人脸识别模型的构建方法 及应用
技术领域
本发明涉及人脸识别技术领域,特别涉及一种基于ParaSoftMax损失函数的人脸识别训练方法。
技术背景
人脸识别系统在人脸验证、接入控制、安全监控、人机交互等领域有广泛的应用。人脸识别任务主要包括人脸验证和人脸鉴别两类。当前,卷积神经网络(CNN)上执行人脸识别任务上表现优异,准确率甚至超越人眼。因此,卷积神经网络也是解决人脸识别问题的主流方法。
应用卷积神经网络技术的人脸识别方法一般化流程如下:在训练阶段,给定大量已知类别的人脸训练数据,利用最小化损失函数的方法迭代求解特征分类问题,训练卷积神经网络模型提取人脸高级特征的能力,迭代收敛时就可以得到一个训练好的人脸识别模型;在使用阶段,给定两个人脸图像,上述人脸识别模型可以计算出这两幅人脸的特征余弦相似度得分,该得分反映两幅人脸来自同一人的概率,可用于人脸识别问题。影响模型识别准确度的三点关键因素分别为:训练数据的规模和质量、网络模型的规模和损失函数的设计。数据因素取决于已有的训练数据集,模型因素取决于识别任务的应用场景,当二者确定之后,不同的损失函数影响模型的收敛速度及最终识别准确度。因此,在训练中,可以通过设计更好的损失函数来改进人脸识别算法的应用性能。
损失函数应用于训练阶段迭代求解特征分类问题,其机制在于通过最大化训练数据所属类别的后验概率来训练模型提取人脸特征的能力。现有的损失函数不具有好的特征区分度,甚至会导致错误分类。使特征具有更好的区分度指加大特征向量类间距离并减小其类内距离,这是通过迭代过程中最小化损失函数实现的。如果损失函数可以使特征具有更好的区别度,训练出来的模型提取特征的能力更强,对于全新身份的人脸来说识别泛化效果越好。对比损失(Contrastive loss)函数、三联体损失(triplet loss)函数利用配对策略进行训练,但是训练效果取决于复杂的配对规则,将问题复杂化,不适合实际使用。基于乘性角度边缘的SphereFace损失函数通过乘性缩放角度来增加特征区分度,但是训练时难以收敛。基于加性余弦边缘的CosFace 损失函数在余弦函数上设置加性边缘,训练易于收敛,也有相对更好的性能提升。基于加性角度边缘的ArcFace损失函数在角度上设置加性边缘,特征区分效果优于前述损失函数。上述损失函数的特点在于,对于简单样本和困难样本来说,边缘参数都是一样的。但是分类训练时,困难样本与类中心的夹角会大于同类简单样本与类中心的夹角,甚至会大于自身与其他类类中心的夹角,导致错误分类到其他类当中。
因此,目前亟需一种能够克服上述问题而获取特征提取能力更强人脸识别模型的构建方法,以提升人脸识别模型的识别准确度。
发明内容
为了实现本发明目的,本发明提出了一种基于ParaSoftMax损失函数的人脸识别模型的构建方法及应用,以提升人脸识别模型的识别准确度。具体地:
本申请提供一种基于ParaSoftMax损失函数的人脸识别模型的构建方法,包括:
A、根据任务的应用环境调用一基础卷积神经网络模型;并获取指定数量的标记有人脸身份信息的人脸图像作为训练数据集;
B、根据所述训练数据集在所述基础卷积神经网络模型中分类训练时的困难样本和简单样本与其分别所属类内的类中心角度差异,获取决策边缘参数;
C、根据所述决策边缘参数,获取抛物线-归一化指数损失函数 ParaSoftMax损失函数;
D、在所述基础卷积神经网络模型的最后一层设置所述 ParaSoftMax损失函数,形成基于ParaSoftMax损失函数的人脸识别训练模型;
E、向所述基于ParaSoftMax损失函数的人脸识别训练模型中输入训练数据集,通过最小化ParaSoftMax损失函数迭代训练所述人脸识别训练模型参数,以获取训练后的最优的基于ParaSoftMax损失函数的人脸识别模型。
由上,本申请根据困难样本和简单样本的类中心角度差异,获取与角度相关的决策边缘参数;并根据所述决策边缘参数,获取抛物线-归一化指数损失函数ParaSoftMax损失函数;并进一步的训练基于该损失函数的卷积神经网络模型,通过最小化ParaSoftMax损失函数迭代训练模型参数,以获取训练后的最优的基于ParaSoftMax损失函数的人脸识别模型。从而本申请可以得到特征提取能力更强的模型,避免错误分类,以提升人脸识别模型的识别准确度。
优选地,步骤B包括:
根据所述训练数据集中的困难样本特征向量和简单样本特征向量的类中心角度差异,加大困难样本特征向量与类中心夹角的惩罚,并同时减小简单样本特征向量与类中心夹角的惩罚,以获取决策边缘参数。
由上,对困难样本施加更大的惩罚边界从而压缩类内距并且保持合理的类间距,在提高分类精确的前提下还避免训练难以收敛。避免了现有技术中的错误分类的缺陷,同时避免了如果对简单样本与类中心也施加同样的惩罚会导致训练难以收敛,甚至造成某一类的消失的缺陷。
优选地,步骤D所述根据任务的应用环境调用一基础卷积神经网络模型,具体为:
若判断在计算资源有限的移动端设备上执行人脸识别任务,则调用一轻量级基础卷积神经网络模型;
若判断在计算资源有限的移动端设备上执行人脸识别任务,则调用一轻量级基础卷积神经网络模型;
由上,本申请根据任务环境需要选取基础卷积神经模型进行训练,若需在计算资源有限的移动端设备上执行人脸识别任务,则调用一模型规模小、运算速度快的轻量级基础卷积神经网络模型;若需在计算资源有限的移动端设备上执行人脸识别任务,则调用一模型规模小、运算速度快的轻量级基础卷积神经网络模型;可以训练获取与任务环境更匹配的人脸识别模型。
优选地,步骤D所述在所述基础卷积神经网络模型的最后一层设置的所述ParaSoftMax损失函数的解析式如下:
Figure BDA0001829520220000041
其中,M指训练的批量数(batch size),n指训练集的类别数量,
Figure BDA0001829520220000042
指本批第i个样本特征向量与标记的所属类别yi的类中心
Figure BDA0001829520220000043
的夹角度数,θj指本批第i个样本特征向量与类别j中心ωj的夹角度数,参数m∈R+用于在余弦空间增加特征区分度。
由上,本申请的ParaSoftMax的损失函数加大困难样本特征向量与类中心夹角的惩罚,并同时减小简单样本特征向量与类中心夹角的惩罚,可以使得训练出的模型能够更准确的进行特征分类,以更准确的进行人脸识别。
优选地,所述通过最小化ParaSoftMax损失函数迭代训练模型参数,具体为通过迭代求解如下优化模型来求解用于图像特征提取的模型参数:
minLPsM
s.t.||ωi||2=L,i=1,...n
||xj||2=1,j=1,...M
其中,LPSM表示在模型的最后一层设置的所述ParaSoftMax损失函数的解析式;ωi表示第i类别的类中心,xj表示第j个类别的人脸图像的特征向量。
由上,可以训练获取能够更准确的进行人脸识别的模型。
本申请还提供一种基于上述构建方法构建的基于ParaSoftMax损失函数的人脸识别模型的人脸识别方法,包括:
N1、获取待识别的人脸图像及识别任务;
N2、根据所述识别任务,将所述待识别的人脸图像输入至基于 ParaSoftMax损失函数训练的人脸识别模型中,通过所述基于 ParaSoftMax损失函数的人脸识别模型对所述人脸图像进行识别。
由上,本申请可以更精确的对人脸图像进行识别。
优选地,步骤N1中所述识别任务为验证所述待识别的两幅人脸图像是否属于同一人时,
步骤N2中所述通过所述基于ParaSoftMax损失函数的人脸识别模型对所述人脸图像进行识别,包括:
获取该两幅人脸图像的特征余弦相似度值,当所述特征余弦相似度值大于指定阈值时,则验证结果为所述两幅人脸图像属于同一人。
由上,本申请可以更精确的对人脸图像进行识别验证。
优选地,步骤N1所述识别任务为鉴定待识别的单幅人脸图像的身份时;
步骤N2中所述通过所述基于ParaSoftMax损失函数的人脸识别模型对所述人脸图像进行识别,为:
将所述单幅人脸图像分别与预设数据库中存储的各个人脸图像一一比对,成对输入至所述人脸识别模型中,获取与各个人脸图像的余弦相似度得分中的最高得分;
判断所述最高得分大于指定阈值时,则识别结果为所述最高得分对应的数据库中的人脸图像对应的身份与所述待识别的单幅人脸图像所对应的身份匹配。
由上,本申请可以更精确的对人脸图像进行鉴别。
综上,与现有技术相比,本发明根据同类的困难样本特征向量以及简单样本特征向量分别与其所属类内的类中心角度差异,获取了一个角度相关的决策边缘参数,并据此获取ParaSoftMax损失函数,在该损失函数中决策边缘加大对同类样本特征向量的角度约束(对困难样本特征向量的角度约束大于对简单样本特征向量的角度约束),本申请的上述技术方案对困难样本施加更大的惩罚边界从而压缩类内距并且保持合理的类间距,避免训练难以收敛。达到使用时提升人脸识别算法准确度的目的。本发明可根据实际应用场景选取基础神经网络模型规模,与现有的先进人脸识别算法相比,本发明方法在大规模模型和小规模模型上都可以显著提升人脸识别准确度。
附图说明
图1为本申请实施例提供的基于ParaSoftMax损失函数的人脸识别模型的构建方法的流程示意图;
图2为本申请实施例提供的分类问题中的样本特征向量与类中心夹角示意图;
图3为本申请实施例提供的分类问题中ParaSoftMax损失函数的决策边缘示意图;
图4为本申请实施例提供的Logit曲线示意图。其中,当曲线越低,对样本与类中心的夹角压缩的越大,本发明提出的ParaSoftMax损失函数对不同角度的夹角都有压缩效果,但是对夹角大的角度,即,困难样本情况压缩的相对更大;
图5为本申请实施例提供的一种基于ParaSoftMax损失函数的人脸识别模型的人脸识别方法。
具体实施方式
为了使本发明的目的、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解为此处所描述的具体实施例仅仅用以解释本发明,并不用于限制本发明的保护范围。
实施例一
本发明提出了一种基于ParaSoftMax损失函数的人脸识别模型的构建方法,所述方法包括:
S101,根据任务的应用环境调用一基础卷积神经网络模型;并获取指定数量的标记有人脸身份信息的人脸图像作为训练数据集。
具体地,所述根据任务的应用环境调用一基础卷积神经网络模型,具体为:
若判断在计算资源有限的移动端设备上执行人脸识别任务,则调用一模型规模小、运算速度快的轻量级基础卷积神经网络模型;例如,轻量级CNN网络模型MobileNet。
若判断在对识别准确度要求高的系统上执行人脸识别任务,则调用一模型规模大、识别准确度高的重量级基础卷积神经网络模型。
具体地,获取指定数量的标记有人脸身份信息的人脸图像作为训练数据集:可以使用微软名人训练集(MS-Celeb-1M)作为训练数据集。
S102,根据所述训练数据集在所述基础卷积神经网络模型中分类训练时的困难样本特征向量和简单样本特征向量与其分别所属类内的类中心角度差异,获取决策边缘参数。
具体地,根据所述训练数据集中的困难样本特征向量和简单样本特征向量的类中心角度差异,加大困难样本特征向量与类中心夹角的惩罚,并同时减小简单样本特征向量与类中心夹角的惩罚,以获取决策边缘参数。
由于现有技术中的对于简单样本和困难样本来说,边缘参数都是一样的。在分类训练时,困难样本特征向量与类中心的夹角会大于同类简单样本与类中心的夹角,甚至会大于自身与其他类类中心的夹角,导致错误分类到其他类当中;因此需要对困难样本与类中心的夹角施加更大的边缘参数。但是,如果对简单样本与类中心也施加同样大的边缘参数会导致训练难以收敛,甚至造成某一类的消失。因此,本申请的上述技术方案对困难样本施加更大的惩罚边界从而压缩类内距并且保持合理的类间距,避免训练难以收敛。
其中,如图2所示,示出了分类训练时二分类问题中样本特征向量与类中心夹角示意图。其中,ωi,i=1,2分别表示第i类Ci的类中心,
Figure BDA0001829520220000071
表示第1类的第j个样本的特征向量,假设
Figure BDA0001829520220000072
为困难样本的特征向量、
Figure BDA0001829520220000073
为简单样本的特征向量,
Figure BDA0001829520220000074
分别表示
Figure BDA0001829520220000075
与ω1的夹角,有
Figure BDA0001829520220000076
Figure BDA0001829520220000077
表示
Figure BDA0001829520220000078
与ω2的夹角,当困难样本离本类类中心较远,离其他类类中心较近时有
Figure BDA0001829520220000079
S103,根据所述决策边缘参数,获取抛物线-归一化指数损失函数 (本申请中还将其称之为ParaSoftMax损失函数,也可称之为Para-curve SoftMax损失函数)。具体地,所述ParaSoftMax损失函数的解析式如下:
Figure BDA00018295202200000710
其中,M指训练的批量数(batch size),n指训练集的类别数量,
Figure BDA00018295202200000711
指本批第i个样本特征向量与标记的所属类别yi的类中心
Figure BDA0001829520220000081
的夹角度数,θj指本批第i个样本特征向量与类别j中心ωj的夹角度数,参数m∈R+用于在余弦空间增加特征区分度。例如,批量数M=256,训练集类别数 n=100K,参数m=0.25,其中, i、j为正整数。
其中,本申请的ParaSoftMax损失函数加大困难样本特征向量与类中心夹角的惩罚,并同时减小简单样本特征向量与类中心夹角的惩罚,可以使得训练出的模型能够更准确的进行特征分类,以更准确的进行人脸识别。
如图3所示,示出了分类训练时二分类问题中ParaSoftMax损失函数的决策边缘示意图,其中Ci,i=1,2表示第i类,当样本特征向量与类中心夹角减小的时候,即余弦距离增大的时候,决策边缘减小,最小减小至m2
如图4所示,示出了Logit曲线示意图,当曲线越低,对样本与类中心的夹角压缩的越大,本发明提出的ParaSoftMax对不同角度的夹角都有压缩效果,但是对夹角大的角度,即,困难样本情况压缩的相对更大。
S104,在所述基础卷积神经网络模型的最后一层设置所述 ParaSoftMax损失函数,形成基于ParaSoftMax损失函数的人脸识别训练模型。
S105,向所述基于ParaSoftMax损失函数的人脸识别训练模型中输入训练数据集,通过最小化ParaSoftMax损失函数迭代训练所述人脸识别训练模型参数,以获取训练后的最优的基于ParaSoftMax损失函数的人脸识别模型。
具体地,所述通过最小化ParaSoftMax损失函数迭代训练模型参数,具体为:通过迭代求解如下优化模型来求解用于图像特征提取的模型参数:
minLPsM
s.t.||ωi||2=1,i=1,...n
||xj||2=1,j=1,...M
其中,LPSM表示在模型的最后一层设置的所述ParaSoftMax损失函数的解析式;ωi表示第i类别的类中心,xj表示第j个类别的人脸图像的特征向量。
当模型迭代到指定训练次数时停止训练,得到具有泛化能力的人脸识别模型。其中,所述具有泛化能力的人脸识别模型是指:实际应用时的输入人脸图像的所属类别不在训练数据集的类别当中,但是模型仍然适用于其类别相似度的判定,即模型特征提取及分类的能力可以泛化到未知数据中。
进一步地,本申请还对本申请训练后的基于 ParaSoftMaxLoss(ParaSoftMax)损失函数的人脸识别模型进行了人脸识别测试,并将本申请训练获取的人脸识别模型和现有技术训练获取的人脸识别模型对人脸图像识别的结果进行比较,对比如下:
Loss LFW CFP-FP AgeDB-30
ParaSoftMaxLoss(m=0.25) 0.99567 0.88943 0.96067
ArcFace(m=0.5) 0.99467 0.87529 0.96083
可以看到,本发明基于ParaSoftMax损失函数训练的人脸识别模型比当前最先进的基于ArcFace损失函数训练的人脸识别模型,在LFW和 CFP-FP测试集上识别准确度更高,在AgeDB-30测试集上相差不到0.02%。
综上,与现有技术相比,本发明的有益效果为,基于训练时增加特征区分度的目的,提出一个改进后的ParaSoftMax损失函数,和基于该损失函数训练获取的人脸识别卷积神经网络模型及应用。该函数可以对困难样本施加更大的惩罚边界从而压缩类内距并且保持合理的类间距,避免训练难以收敛。由此训练的人脸识别模型可以提升特征提取的能力,从而在使用时提升人脸识别准确度。本发明可根据实际应用场景选取模型规模,与现有的先进人脸识别算法相比,本发明方法在大规模模型和小规模模型上都可以显著提升人脸识别准确度。
实施例二
基于实施例一中的人脸识别模型,本申请还提供一种基于上述实施例一种构建的基于ParaSoftMax损失函数的人脸识别模型的人脸识别方法,包括:
S501,获取待识别的人脸图像及识别任务;
具体地,识别任务为:验证所述待识别的两幅人脸图像是否属于同一人;或者鉴定待识别的单幅人脸图像的身份。
S502,根据所述识别任务,将所述待识别的人脸图像输入至基于设置决策边缘参数的ParaSoftMax损失函数训练的人脸识别模型中,通过所述基于ParaSoftMax损失函数的人脸识别模型对所述人脸图像进行识别。
具体地,S5021,若S501中识别任务为验证所述待识别的两幅人脸图像是否属于同一人时,则S502所述通过所述基于ParaSoftMax损失函数的人脸识别模型对所述人脸图像进行识别,具体为:
获取该两幅人脸图像的特征余弦相似度值,当所述特征余弦相似度值大于指定阈值时,则验证结果为所述两幅人脸图像属于同一人。
或者,S5022,若S501中识别任务为鉴定待识别的单幅人脸图像的身份时;则S502所述通过所述基于ParaSoftMax损失函数的人脸识别模型对所述人脸图像进行识别,具体为:
将所述单幅人脸图像分别与预设数据库中存储的各个人脸图像一一比对,成对输入至所述人脸识别模型中,获取与各个人脸图像的余弦相似度得分中的最高得分;
判断所述最高得分大于指定阈值时,则识别结果为所述最高得分对应的数据库中的人脸图像对应的身份与所述待识别的单幅人脸图像所对应的身份匹配。
其中,在本实施例中的已设置决策边缘参数的所述ParaSoftMax损失函数的解析式如下:
Figure BDA0001829520220000101
其中,M指训练的批量数(batch size),n指训练集的类别数量,
Figure BDA0001829520220000102
指本批第i个样本特征向量与标记的所属类别yi的类中心
Figure BDA0001829520220000103
的夹角度数,θj指本批第i个样本特征向量与类别j中心ωj的夹角度数,参数m∈R+用于在余弦空间增加特征区分度。
其中,所述人脸识别模型通过计算两人脸图像的特征向量的余弦相似度来对人脸进行识别验证,假设两人脸图像的特征向量为xi∈RN,i=1,2,其中N为特征维度,特征归一化后余弦相似度计算公式为:
x1·x2
s.t.||xi||=1,i=1,2
其中,所述x1和所述x2分别表示人脸图像的特征向量。所述计算结果可以用于评价x1,x2属于相同类别的概率,其中,当所述余弦相似度的数值高于指定阈值时,则可判断两人脸图像对应身份为一人,否则为不同身份。
综上,与现有技术相比,本发明的有益效果为,基于训练时增加特征区分度的目的,获取了一ParaSoftMax损失函数,并基于该损失函数训练获取了人脸识别卷积神经网络模型及应用。该函数可以对困难样本施加更大的惩罚边界从而压缩类内距并且保持合理的类间距,避免训练难以收敛,且提高了分类的精确度。由此训练的人脸识别模型可以提升特征提取的能力,从而在使用时提升人脸识别准确度。本发明可根据实际应用场景选取模型规模,与现有的先进人脸识别算法相比,本发明方法在大规模模型和小规模模型上都可以显著提升人脸识别准确度。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种基于ParaSoftMax损失函数的人脸识别模型的构建方法,其特征在于,包括:
A、根据任务的应用环境调用一基础卷积神经网络模型;并获取指定数量的标记有人脸身份信息的人脸图像作为训练数据集;
B、根据所述训练数据集在所述基础卷积神经网络模型中分类训练时的困难样本特征向量和简单样本特征向量与其分别所属类内的类中心角度差异,获取决策边缘参数;
C、根据所述决策边缘参数,获取抛物线-归一化指数损失函数ParaSoftMax损失函数;
D、在所述基础卷积神经网络模型的最后一层设置所述ParaSoftMax损失函数,形成基于ParaSoftMax损失函数的人脸识别训练模型;
E、向所述基于ParaSoftMax损失函数的人脸识别训练模型中输入训练数据集,通过最小化ParaSoftMax损失函数迭代训练所述人脸识别训练模型参数,以获取训练后的最优的基于ParaSoftMax损失函数的人脸识别模型;
其中,步骤D所述在所述基础卷积神经网络模型的最后一层设置的所述ParaSoftMax损失函数的解析式如下:
Figure FDA0002800962870000011
其中,M指训练的批量数(batch size),n指训练集的类别数量,
Figure FDA0002800962870000012
指本批第i个样本特征向量与标记的所属类别yi的类中心
Figure FDA0002800962870000013
的夹角度数,θj指本批第i个样本特征向量与类别j中心ωj的夹角度数,参数m∈R+用于在余弦空间增加特征区分度;其中,i、j为正整数。
2.根据权利要求1所述的构建方法,其特征在于,步骤B包括:
根据所述训练数据集中的困难样本特征向量和简单样本特征向量的类中心角度差异,加大困难样本特征向量与类中心夹角的惩罚,并同时减小简单样本特征向量与类中心夹角的惩罚,以获取决策边缘参数。
3.根据权利要求1所述的构建方法,其特征在于,步骤A所述根据任务的应用环境调用一基础卷积神经网络模型的步骤包括:
若判断在计算资源有限的移动端设备上执行人脸识别任务,则调用一轻量级基础卷积神经网络模型;
若判断在对识别准确度要求高的系统上执行人脸识别任务,则调用一重量级基础卷积神经网络模型。
4.根据权利要求1所述的构建方法,其特征在于,步骤E所述通过最小化ParaSoftMax损失函数迭代训练所述人脸识别训练模型参数,包括:通过迭代求解如下优化模型来求解用于图像特征提取的模型参数:
minLPSM
s.t.||ωi||2=1,i=1,...n
||xj||2=1,j=1,...M
其中,LPsM表示在模型的最后一层设置的所述ParaSoftMax损失函数的解析式;ωi表示第i类别的类中心,xj表示第j个类别的人脸图像的特征向量。
5.一种人脸识别方法,基于权利要求1-4任一项所述构建方法构建的基于ParaSoftMax损失函数的人脸识别模型,其特征在于,包括步骤:
N1、获取待识别的人脸图像及识别任务;
N2、根据所述识别任务,将所述待识别的人脸图像输入至所述基于ParaSoftMax损失函数训练的人脸识别模型中,通过所述基于ParaSoftMax损失函数的人脸识别模型对所述人脸图像进行识别。
6.根据权利要求5所述的识别方法,其特征在于,步骤N1中所述识别任务为验证所述待识别的两幅人脸图像是否属于同一人时,
步骤N2中所述通过所述基于ParaSoftMax损失函数的人脸识别模型对所述人脸图像进行识别,包括:
获取该两幅人脸图像的特征余弦相似度值,当所述特征余弦相似度值大于指定阈值时,则验证结果为所述两幅人脸图像属于同一人。
7.根据权利要求5所述的识别方法,其特征在于,步骤N1所述识别任务为鉴定待识别的单幅人脸图像的身份时;
步骤N2中所述通过所述基于ParaSoftMax损失函数的人脸识别模型对所述人脸图像进行识别,为:
将所述单幅人脸图像分别与预设数据库中存储的各个人脸图像一一比对,成对输入至所述人脸识别模型中,获取与各个人脸图像的余弦相似度得分中的最高得分;
判断所述最高得分大于指定阈值时,则识别结果为所述最高得分对应的数据库中的人脸图像对应的身份与所述待识别的单幅人脸图像所对应的身份匹配。
CN201811198926.0A 2018-10-15 2018-10-15 一种基于ParaSoftMax损失函数的人脸识别模型的构建方法及应用 Active CN109214360B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811198926.0A CN109214360B (zh) 2018-10-15 2018-10-15 一种基于ParaSoftMax损失函数的人脸识别模型的构建方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811198926.0A CN109214360B (zh) 2018-10-15 2018-10-15 一种基于ParaSoftMax损失函数的人脸识别模型的构建方法及应用

Publications (2)

Publication Number Publication Date
CN109214360A CN109214360A (zh) 2019-01-15
CN109214360B true CN109214360B (zh) 2021-03-26

Family

ID=64980146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811198926.0A Active CN109214360B (zh) 2018-10-15 2018-10-15 一种基于ParaSoftMax损失函数的人脸识别模型的构建方法及应用

Country Status (1)

Country Link
CN (1) CN109214360B (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10902295B2 (en) * 2019-02-08 2021-01-26 Sap Se Using transformations to verify computer vision quality
CN109919093A (zh) * 2019-03-07 2019-06-21 苏州科达科技股份有限公司 一种人脸识别方法、装置、设备及可读存储介质
CN110443162B (zh) * 2019-07-19 2022-08-30 南京邮电大学 一种用于伪装人脸识别的两段式训练方法
CN110880018B (zh) * 2019-10-29 2023-03-14 北京邮电大学 一种卷积神经网络目标分类方法
CN111680536B (zh) * 2019-10-30 2023-06-30 高新兴科技集团股份有限公司 基于案管场景下的轻量化人脸识别方法
CN110826525B (zh) * 2019-11-18 2023-05-26 天津高创安邦技术有限公司 一种人脸识别的方法及系统
CN111209839B (zh) * 2019-12-31 2023-05-23 上海涛润医疗科技有限公司 人脸识别方法
CN111241992B (zh) * 2020-01-08 2024-02-20 科大讯飞股份有限公司 人脸识别模型构建方法、识别方法、装置、设备及存储介质
CN111368683B (zh) * 2020-02-27 2022-08-02 南京邮电大学 基于模约束CenterFace的人脸图像特征提取方法及人脸识别方法
CN111401257B (zh) * 2020-03-17 2022-10-04 天津理工大学 一种基于余弦损失在非约束条件下的人脸识别方法
CN111695415B (zh) * 2020-04-28 2024-04-12 平安科技(深圳)有限公司 图像识别方法及相关设备
CN111639535B (zh) * 2020-04-29 2023-08-22 深圳英飞拓智能技术有限公司 基于深度学习的人脸识别方法及装置
CN111310743B (zh) * 2020-05-11 2020-08-25 腾讯科技(深圳)有限公司 人脸识别方法、装置、电子设备及可读存储介质
CN111626340B (zh) * 2020-05-11 2024-05-28 Oppo广东移动通信有限公司 一种分类方法、装置、终端及计算机存储介质
CN111695450B (zh) * 2020-05-26 2023-05-09 东南大学 一种基于IMobileNet的人脸快速识别方法
CN111783698A (zh) * 2020-07-06 2020-10-16 周书田 一种基于提高人脸识别模型训练稳定性的方法
CN111832498B (zh) * 2020-07-17 2023-07-28 西安电子科技大学 基于卷积神经网络的漫画人脸识别方法
CN112215357A (zh) * 2020-09-29 2021-01-12 三一专用汽车有限责任公司 模型优化方法、装置、设备和计算机可读存储介质
CN112287870A (zh) * 2020-11-11 2021-01-29 合肥的卢深视科技有限公司 一种人脸识别方法、装置及电子设备
CN112541458B (zh) * 2020-12-21 2023-08-11 中国科学院自动化研究所 基于元学习的域自适应的人脸识别方法、系统、装置
CN113111698B (zh) * 2020-12-30 2022-04-01 无锡乐骐科技股份有限公司 一种基于语义感知损失的人脸标志点检测方法
CN112766399B (zh) * 2021-01-28 2021-09-28 电子科技大学 一种面向图像识别的自适应神经网络训练方法
CN112800959B (zh) * 2021-01-28 2023-06-06 华南理工大学 一种用于人脸识别中数据拟合估计的困难样本发掘方法
CN112836629B (zh) * 2021-02-01 2024-03-08 清华大学深圳国际研究生院 一种图像分类方法
CN113221655B (zh) * 2021-04-12 2022-09-30 重庆邮电大学 基于特征空间约束的人脸欺骗检测方法
CN113158902B (zh) * 2021-04-23 2023-08-11 深圳龙岗智能视听研究院 一种基于知识蒸馏的自动化训练识别模型的方法
CN113361346B (zh) * 2021-05-25 2022-12-23 天津大学 一种替换调节参数的尺度参数自适应的人脸识别方法
CN113901901A (zh) * 2021-09-29 2022-01-07 北京百度网讯科技有限公司 图像处理模型的训练方法、装置、电子设备和介质
CN115809702B (zh) * 2022-11-11 2023-07-11 中南大学 Acgan模型构建方法、图像生成方法及服装设计方法
CN116453201B (zh) * 2023-06-19 2023-09-01 南昌大学 基于相邻边缘损失的人脸识别方法及系统
CN116665282B (zh) * 2023-07-26 2024-06-25 苏州浪潮智能科技有限公司 人脸识别模型训练方法、人脸识别方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108427921A (zh) * 2018-02-28 2018-08-21 辽宁科技大学 一种基于卷积神经网络的人脸识别方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106203533B (zh) * 2016-07-26 2019-09-20 厦门大学 基于混合训练的深度学习人脸验证方法
US20180203851A1 (en) * 2017-01-13 2018-07-19 Microsoft Technology Licensing, Llc Systems and methods for automated haiku chatting
CN108108807B (zh) * 2017-12-29 2020-06-02 北京达佳互联信息技术有限公司 学习型图像处理方法、系统及服务器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108427921A (zh) * 2018-02-28 2018-08-21 辽宁科技大学 一种基于卷积神经网络的人脸识别方法

Also Published As

Publication number Publication date
CN109214360A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
CN109214360B (zh) 一种基于ParaSoftMax损失函数的人脸识别模型的构建方法及应用
CN108564129B (zh) 一种基于生成对抗网络的轨迹数据分类方法
CN107480575B (zh) 模型的训练方法、跨年龄人脸识别方法和对应的装置
WO2019174131A1 (zh) 身份认证方法、服务器及计算机可读存储介质
CN112036383B (zh) 一种基于手静脉的身份识别方法及装置
KR20170016231A (ko) 사용자 인증을 위한 멀티-모달 퓨전 방법 및 사용자 인증 방법
CN104167208A (zh) 一种说话人识别方法和装置
US20070189611A1 (en) Bayesian Competitive Model Integrated With a Generative Classifier for Unspecific Person Verification
CN108564040B (zh) 一种基于深度卷积特征的指纹活性检测方法
CN104820983A (zh) 一种图像匹配方法
CN111104852B (zh) 一种基于启发式高斯云变换的人脸识别技术
US9147130B2 (en) Information processing method, information processing apparatus, and recording medium for identifying a class of an object by using a plurality of discriminators
CN112101542A (zh) 机器学习模型的训练方法、装置、人脸的识别方法和装置
CN105681324A (zh) 互联网金融交易系统及方法
CN115937873A (zh) 一种基于可辨识单字字符的在线笔迹验证系统及方法
CN107688822B (zh) 基于深度学习的新增类别识别方法
CN113361666B (zh) 一种手写字符识别方法、系统及介质
CN112651328B (zh) 一种基于几何位置关系损失函数的虹膜分割方法
Neto et al. PIC-Score: Probabilistic Interpretable Comparison Score for Optimal Matching Confidence in Single-and Multi-Biometric Face Recognition
CN112200216A (zh) 汉字识别方法、装置、计算机设备和存储介质
CN113920573B (zh) 基于对抗学习的人脸变化解耦的亲属关系验证方法
CN114187434A (zh) 一种基于树莓派4b的端到端车牌识别方法
CN110135306B (zh) 基于角度损失函数的行为识别方法
CN105488493A (zh) 一种快速虹膜识别方法
CN106874920A (zh) 基于小波包分析和支持向量机的车牌字符识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant