CN109200824A - A kind of preparation method of nascent state in-situ modification reverse osmosis membrane - Google Patents

A kind of preparation method of nascent state in-situ modification reverse osmosis membrane Download PDF

Info

Publication number
CN109200824A
CN109200824A CN201811234418.3A CN201811234418A CN109200824A CN 109200824 A CN109200824 A CN 109200824A CN 201811234418 A CN201811234418 A CN 201811234418A CN 109200824 A CN109200824 A CN 109200824A
Authority
CN
China
Prior art keywords
reverse osmosis
nascent state
phase solution
osmosis membrane
organic phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811234418.3A
Other languages
Chinese (zh)
Inventor
周勇
王书浩
高从堦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201811234418.3A priority Critical patent/CN109200824A/en
Publication of CN109200824A publication Critical patent/CN109200824A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Abstract

The invention discloses a kind of preparation methods of nascent state in-situ modification reverse osmosis membrane, and polynary acyl chlorides is added in alkane solvent and stirs into homogeneous and transparent organic phase, sealing and standing;Aqueous phase solution is made in polyamine dissolution, adjusts pH to 10;Aqueous phase solution containing polyamine is poured on porous support membrane and is stood, extra aqueous phase solution is then outwelled, it is water stain to what is be visible by naked eyes to drain film surface;It is subsequently poured into the organic phase solution containing polynary acyl chlorides, nascent state film is formed, then pours into the polynary acyl chlorides organic phase solution modification reaction containing various concentration again;Nascent state reverse osmosis membrane after modification is put into baking oven and dries film forming.The present invention reduces nascent state film defect by the degree of cross linking on regulation nascent state reverse osmosis membrane surface, regulates and controls nascent state film surface charge, effectively enhances the differential permeability of reverse osmosis membrane.

Description

A kind of preparation method of nascent state in-situ modification reverse osmosis membrane
Technical field
The present invention relates to a kind of preparation method of macromolecule organic film, in particular to a kind of nascent state in-situ modification are reverse osmosis The preparation method of film.
Background technique
Reverse osmosis technology is a kind of low energy consumption, efficient environmentally protective isolation technics, has simple process, operating condition Mildly, the features such as separative efficiency is high achieves in the fields such as bitter and sea water desalination, wastewater treatment and is widely applied.
The core of reverse osmosis separation technology is reverse osmosis membrane, and aromatic polyamides reverse osmosis composite membrane accounts for market predominantly Position.Aromatic polyamides reverse osmosis composite membrane is that one layer of ultra-thin polyamide functional layer is combined to aperture by interfacial polycondensation is appropriate Open support film surface, interfacial polycondensation combination process determine that we can regulate and control its each layer and reach optimal separation Energy.Porous support membrane can achieve optimal intensity and resistance to pressure, and ultra-thin aramid layer can be optimized to ideal selected area update strategy Property.
Permeation flux and salt rejection rate are to evaluate two important parameters of reverse osmosis membrane.High throughput, high desalination reverse osmosis membrane are The need of industrial application at present are at present concentrated mainly on the improvement of reverse osmosis membrane and research and develop new reaction monomers, film surface coating changes Property and addition inorganic nanoparticles improve reverse osmosis membrane differential permeability.It, cannot be from although achieving certain effect It fundamentally solves the problems, such as, and new monomer research and development are difficult and at high cost, surface is modified and addition nano particle is easy to fall off, and meeting Secondary pollution is caused to environment.Only a few people regulates and controls ultra-thin polyamides it may be noted that by reverse osmosis membrane nascent state in-situ modification Amine functions layer enhances the differential permeability of reverse osmosis composite membrane.This is a kind of new knowledge to reverse osmosis membrane film forming procedure.
Summary of the invention
The present invention is insufficient for current reverse osmosis composite membrane film forming procedure understanding, and it is reverse osmosis to propose nascent state in-situ modification The preparation method of film can effectively enhance the differential permeability of reverse osmosis composite membrane.
The technical problem to be solved in the invention is to pass through regulation nascent state reverse osmosis membrane surface polyamine and polynary acyl chlorides Ratio, improve the degree of cross linking, reduce nascent state film defect, regulate and control film surface charge, thus effectively enhance reverse osmosis membrane selection Permeability.
The present invention is achieved by the following technical programs: a kind of preparation method of nascent state in-situ modification reverse osmosis membrane, Its feature the following steps are included:
(1) by mass volume ratio score be 0.005-0.3% polynary acyl chlorides be added in alkane solvent stir into it is uniform Transparent organic phase, sealing and standing 2 hours or more;
(2) aqueous phase solution is made in the polyamine dissolution that mass volume ratio score is 1.0-3.0%, adjusts pH to 10;
(3) aqueous phase solution containing polyamine is poured on porous support membrane and stands 1-5 minutes, then outwell extra water It is water stain to what is be visible by naked eyes to drain film surface for phase solution;
(4) it is subsequently poured into the organic phase solution containing polynary acyl chlorides, 10-30 seconds formation nascent state films is reacted, then falls again Enter polynary acyl chlorides organic phase solution modification reaction 10-60 seconds containing various concentration;
(5) the nascent state reverse osmosis membrane after modification is put into 60-90 DEG C of baking oven to dry 5-10 minutes and is formed a film.
Preferably, alkane solvent described in above-mentioned preparation method is n-hexane, in hexamethylene, normal heptane, petroleum ether One or more.
Preferably, polyamine described in above-mentioned preparation method is m-phenylene diamine (MPD), polynary acyl chlorides is pyromellitic trimethylsilyl chloride.
Preferably, the reagent that pH is used is adjusted described in above-mentioned preparation method as triethylamine and camphorsulfonic acid, wherein Camphorsulfonic acid quality volume fraction is 1.0-5.0%.
Preferably, porous support membrane described in above-mentioned preparation method is the polysulfones ultrafiltration of molecular cut off 3~50,000 Film.
The utility model has the advantages that the degree of cross linking of the present invention by regulation nascent state reverse osmosis membrane surface, reduces nascent state film defect, adjust Nascent state film surface charge is controlled, the differential permeability of reverse osmosis membrane is effectively enhanced.It can effectively be mentioned in the case where retention loss is small The flux of high bitter reverse osmosis membrane.The rejection of sea water desalination membrane can be effectively improved in the case where throughput loss is small.And Not introducing third party's additive reduces cost, reduces the potential danger to environment, and simple process is easy to industrialize.
Specific embodiment
Combined with specific embodiments below, technical solution of the present invention is further elaborated with.
The test operation condition used in the present invention are as follows: the sodium-chloride water solution of 2000ppm, operating pressure 1.55MPa, Operation temperature is 25 DEG C, the sodium-chloride water solution of pH=8 and 32000ppm, operating pressure 5.5Mpa, operation temperature 25 DEG C, pH=8.Following embodiment provides the preparation explanation and their differential permeability of reverse osmosis membrane.However, these embodiments Only it is to provide explanation rather than limits the present invention.
Embodiment 1
Pyromellitic trimethylsilyl chloride is added in n-hexane and is stirred and dissolved into homogeneous and transparent organic phase, mass volume ratio score For 0.1% and 0.01%.It is 2.0% (triethylamine and camphor sulphur that aqueous phase solution quality volume fraction, which is made, in m-phenylene diamine (MPD) dissolution Acid for adjusting pH=10, wherein 4.0%) camphorsulfonic acid mass volume ratio score is.Aqueous phase solution is poured on polysulfones support membrane, it is quiet Only 5 minutes, extra water phase is then removed, drains to film surface and is visible by naked eyes water stain, then pour into the equal benzene containing 0.1% Three formyl chloride organic phases react 30s, then outwell organic phase and form nascent state reverse osmosis membrane, then pour into the equal benzene containing 0.01% Three formyl chloride organic phase solution in-situ modifications react 30s, then outwell organic phase, are finally putting into drying in baking oven and form a film (at heat 80 DEG C of temperature of reason, 10 minutes time).
Under 1.55MPa pressure, the sodium-chloride water solution of 2000ppm is tested, the permeation flux of diaphragm is 59.5 (L m- 2h-1), the rejection to sodium chloride is 99.71%.
Embodiment 2
Pyromellitic trimethylsilyl chloride is added in hexamethylene and is stirred and dissolved into homogeneous and transparent organic phase, mass volume ratio score It is 0.1%.It is 2.0% (triethylamine and camphorsulfonic acid adjusting pH that aqueous phase solution quality volume fraction, which is made, in m-phenylene diamine (MPD) dissolution =10, wherein 4.0%) camphorsulfonic acid mass volume ratio score is.Aqueous phase solution is poured on polysulfones support membrane, static 5 minutes, Then extra aqueous phase solution is removed, drains to film surface and is visible by naked eyes water stain, then pour into the equal benzene front three containing 0.1% Then the organic phase reaction 30s of acyl chlorides outwells organic phase and forms nascent state reverse osmosis membrane, then pours into having without pyromellitic trimethylsilyl chloride Machine phase cyclohexane solution in-situ modification reacts 30s, then outwells organic phase, after be put into baking oven drying film forming (heat treatment temperature 80 DEG C, 10 minutes time).
Under 1.55MPa pressure, the sodium-chloride water solution of 2000ppm is tested, the permeation flux of diaphragm is 64.98 (L m-2h-1), the rejection to sodium chloride is 99.64%.
Embodiment 3
Film modified without nascent state, remaining operating procedure is same as Example 1.It is right under 1.55MPa pressure The sodium-chloride water solution of 2000ppm is tested, and the permeation flux of diaphragm is 45.32 (L m-2h-1), the rejection to sodium chloride is 99.77%.Under 5.5MPa pressure, the sodium-chloride water solution of 32000ppm is tested, the permeation flux of diaphragm is 69.22 (L m-2h-1), the rejection to sodium chloride is 99.03%.
Embodiment 4-8
Change the concentration of pyromellitic trimethylsilyl chloride in organic phase solution during in-situ modification, other steps and 1 phase of embodiment Same operating method, prepared composite membrane are tested the sodium-chloride water solution of 2000ppm, are obtained under 1.55MPa pressure As a result as shown in the table:
Embodiment 9
Pyromellitic trimethylsilyl chloride is added in n-hexane and is stirred and dissolved into homogeneous and transparent organic phase, mass volume ratio score For 0.1% and 0.06%.It is 2.0% (triethylamine and camphor sulphur that aqueous phase solution quality volume fraction, which is made, in m-phenylene diamine (MPD) dissolution Acid for adjusting pH=10, wherein 4.0%) camphorsulfonic acid mass volume ratio score is.Aqueous phase solution is poured on polysulfones support membrane, it is quiet Only 5 minutes, extra water phase is then removed, drains to film surface and is visible by naked eyes water stain, then pour into the equal benzene containing 0.1% Three formyl chloride organic phases react 30s, then outwell organic phase and form nascent state reverse osmosis membrane, then pour into the equal benzene containing 0.06% Three formyl chloride organic phase solution in-situ modifications react 30s, then outwell organic phase, are finally putting into drying in baking oven and form a film (at heat 80 DEG C of temperature of reason, 10 minutes time).
Under 5.5MPa pressure, the sodium-chloride water solution of 32000ppm is tested, the permeation flux of diaphragm is 65.92 (L m-2h-1), the rejection to sodium chloride is 99.32%.
Embodiment 10
Pyromellitic trimethylsilyl chloride is added in hexamethylene and is stirred and dissolved into homogeneous and transparent organic phase, mass volume ratio score For 0.1% and 0.04%.It is 2.0% (triethylamine and camphor sulphur that aqueous phase solution quality volume fraction, which is made, in m-phenylene diamine (MPD) dissolution Acid for adjusting pH=10, wherein 4.0%) camphorsulfonic acid mass volume ratio score is.Aqueous phase solution is poured on polysulfones support membrane, it is quiet Only 5 minutes, extra water phase is then removed, drains to film surface and is visible by naked eyes water stain, then pour into the equal benzene containing 0.1% Three formyl chloride organic phases react 30s, then outwell organic phase and form nascent state reverse osmosis membrane, then pour into the equal benzene containing 0.04% Three formyl chloride organic phase solution modification reaction 30s, then outwell organic phase, are finally putting into drying film forming (heat treatment temperature in baking oven 80 DEG C of degree, 10 minutes time).
Under 5.5MPa pressure, the sodium-chloride water solution of 32000ppm is tested, the permeation flux of diaphragm is 67.81 (L m-2h-1), the rejection to sodium chloride is 99.22%.

Claims (5)

1. a kind of preparation method of nascent state in-situ modification reverse osmosis membrane, it is characterised in that: the following steps are included:
(1) the polynary acyl chlorides that mass volume ratio score is 0.005-0.3% is added in alkane solvent and stirs into transparent and homogeneous Organic phase, sealing and standing 2 hours or more;
(2) aqueous phase solution is made in the polyamine dissolution that mass volume ratio score is 1.0-3.0%, adjusts pH to 10;
(3) aqueous phase solution containing polyamine is poured on porous support membrane and stands 1-5 minutes, it is molten then to outwell extra water phase It is water stain to what is be visible by naked eyes to drain film surface for liquid;
(4) it is subsequently poured into the organic phase solution containing polynary acyl chlorides, 10-30 seconds formation nascent state films is reacted, then pours into and contain again There is the polynary acyl chlorides organic phase solution in-situ modification of various concentration to react 10-60 seconds;
(5) the nascent state reverse osmosis membrane after modification is put into 60-90 DEG C of baking oven to dry 5-10 minutes and is formed a film.
2. preparation method according to claim 1, it is characterised in that: the alkane solvent is n-hexane, hexamethylene, just One of heptane, petroleum ether are a variety of.
3. preparation method according to claim 1, it is characterised in that: the polyamine is m-phenylene diamine (MPD), piperazine, fat One or more in diamines, polynary acyl chlorides is pyromellitic trimethylsilyl chloride.
4. preparation method according to claim 1, it is characterised in that: the reagent that the adjusting pH is used be triethylamine and Camphorsulfonic acid, wherein camphorsulfonic acid quality volume fraction is 1.0-5.0%.
5. according to preparation method described in patent requirements 1, it is characterised in that the porous support membrane is molecular cut off 3~5 Ten thousand polysulfone ultrafiltration membrane.
CN201811234418.3A 2018-10-23 2018-10-23 A kind of preparation method of nascent state in-situ modification reverse osmosis membrane Pending CN109200824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811234418.3A CN109200824A (en) 2018-10-23 2018-10-23 A kind of preparation method of nascent state in-situ modification reverse osmosis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811234418.3A CN109200824A (en) 2018-10-23 2018-10-23 A kind of preparation method of nascent state in-situ modification reverse osmosis membrane

Publications (1)

Publication Number Publication Date
CN109200824A true CN109200824A (en) 2019-01-15

Family

ID=64980132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811234418.3A Pending CN109200824A (en) 2018-10-23 2018-10-23 A kind of preparation method of nascent state in-situ modification reverse osmosis membrane

Country Status (1)

Country Link
CN (1) CN109200824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973462A (en) * 2021-03-24 2021-06-18 浙江工业大学 Preparation method of high-selectivity reverse osmosis membrane by covering membrane surface defects
CN114146572A (en) * 2021-12-07 2022-03-08 天津大学 Preparation method of amide chain segment embedded covalent organic framework composite membrane and filter membrane thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783346A (en) * 1987-12-10 1988-11-08 E. I. Du Pont De Nemours And Company Process for preparing composite membranes
US5152901A (en) * 1990-09-14 1992-10-06 Ionics, Incorporated Polyamine-polyamide composite nanofiltration membrane for water softening
KR100666483B1 (en) * 2004-12-10 2007-01-09 주식회사 새 한 Producing method of polyamide reverse osmosis membrane having high salt rejection property
US7490725B2 (en) * 2003-10-09 2009-02-17 Membrane Technology & Research Reverse osmosis membrane and process
CN103252178A (en) * 2013-05-31 2013-08-21 杭州水处理技术研究开发中心有限公司 Method for improving ion rejection rate of charged nano-filtration membrane
CN104781001A (en) * 2013-06-18 2015-07-15 Lg化学株式会社 Polyamide-based water-treatment separation membrane having excellent salt removal rate and permeation flux characteristics, and method for manufacturing same
CN107349804A (en) * 2017-07-13 2017-11-17 中国科学院生态环境研究中心 A kind of preparation method of high flux anti-acid NF membrane
CN107398189A (en) * 2017-07-31 2017-11-28 宁波日新恒力科技有限公司 The method that the reverse osmosis membrane containing aquaporin is prepared using secondary interface polymerization

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783346A (en) * 1987-12-10 1988-11-08 E. I. Du Pont De Nemours And Company Process for preparing composite membranes
US5152901A (en) * 1990-09-14 1992-10-06 Ionics, Incorporated Polyamine-polyamide composite nanofiltration membrane for water softening
US7490725B2 (en) * 2003-10-09 2009-02-17 Membrane Technology & Research Reverse osmosis membrane and process
KR100666483B1 (en) * 2004-12-10 2007-01-09 주식회사 새 한 Producing method of polyamide reverse osmosis membrane having high salt rejection property
CN103252178A (en) * 2013-05-31 2013-08-21 杭州水处理技术研究开发中心有限公司 Method for improving ion rejection rate of charged nano-filtration membrane
CN104781001A (en) * 2013-06-18 2015-07-15 Lg化学株式会社 Polyamide-based water-treatment separation membrane having excellent salt removal rate and permeation flux characteristics, and method for manufacturing same
CN107349804A (en) * 2017-07-13 2017-11-17 中国科学院生态环境研究中心 A kind of preparation method of high flux anti-acid NF membrane
CN107398189A (en) * 2017-07-31 2017-11-28 宁波日新恒力科技有限公司 The method that the reverse osmosis membrane containing aquaporin is prepared using secondary interface polymerization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973462A (en) * 2021-03-24 2021-06-18 浙江工业大学 Preparation method of high-selectivity reverse osmosis membrane by covering membrane surface defects
CN114146572A (en) * 2021-12-07 2022-03-08 天津大学 Preparation method of amide chain segment embedded covalent organic framework composite membrane and filter membrane thereof
CN114146572B (en) * 2021-12-07 2023-06-30 天津大学 Preparation method of amide chain segment embedded covalent organic framework composite membrane and filter membrane thereof

Similar Documents

Publication Publication Date Title
Wang et al. Tailored design of nanofiltration membranes for water treatment based on synthesis–property–performance relationships
CN105727772B (en) A kind of complex reverse osmosis membrane and preparation method thereof
Ding et al. Preparation of highly permeable loose nanofiltration membranes using sulfonated polyethylenimine for effective dye/salt fractionation
CN111330447B (en) Positively charged composite nanofiltration membrane, and preparation method and application thereof
Cheng et al. Tailoring nanofiltration membrane performance for highly-efficient antibiotics removal by mussel-inspired modification
Zhang et al. Capsaicin mimic-polyethyleneimine crosslinked antifouling loose nanofiltration membrane for effective dye/salt wastewater treatment
Zeng et al. Green glycerol tailored composite membranes with boosted nanofiltration performance
CN112827369B (en) Preparation method of nano hybrid composite membrane
CN110314559A (en) A kind of preparation method of interfacial polymerization composite membrane
CN112808021B (en) Method for preparing reverse osmosis membrane by adopting novel water phase system
CN104474910B (en) A kind of preparation method of organo-mineral complexing separation film
CN104028120B (en) Sodium carboxymethylcellulose compound fills the preparation method of polyamide nanofiltration membrane
CN109260968B (en) Preparation method of zwitterion nanocapsule modified polyamide nanofiltration membrane
Kanagaraj et al. Separation of macromolecular proteins and rejection of toxic heavy metal ions by PEI/cSMM blend UF membranes
CN101829508A (en) Novel polyamide nanofiltration membrane and preparation method thereof
CN113289498B (en) Positively charged nanofiltration membrane and preparation method thereof
CN109200824A (en) A kind of preparation method of nascent state in-situ modification reverse osmosis membrane
CN104028126B (en) The preparation method of sulfonic acid type polyampholyte nano particle hybridization polyamide nanofiltration membrane
CN103990392A (en) Novel charged polyamide composite nanofiltration membrane and preparation method thereof
CN110180413A (en) A kind of preparation method of high desalination high boron-removing sea water desalination membrane
Peng et al. Highly selective separation and resource recovery using forward osmosis membrane assembled by polyphenol network
CN111841343B (en) Asymmetric polyamide nano-film and preparation method thereof
Wu et al. Ultrafast formation of pyrogallol/polyethyleneimine nanofilms for aqueous and organic nanofiltration
Li et al. Polyamide thin-film composite membrane on polyethylene porous membrane: fabrication, characterization and application in water treatment
CN112892230A (en) High-desalination polyamide composite reverse osmosis membrane for seawater desalination and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190115