CN109194411B - 一种测量硅光相干接收机光电响应度的装置和方法 - Google Patents

一种测量硅光相干接收机光电响应度的装置和方法 Download PDF

Info

Publication number
CN109194411B
CN109194411B CN201811134088.0A CN201811134088A CN109194411B CN 109194411 B CN109194411 B CN 109194411B CN 201811134088 A CN201811134088 A CN 201811134088A CN 109194411 B CN109194411 B CN 109194411B
Authority
CN
China
Prior art keywords
optical
intrinsic
signal
input end
optical power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811134088.0A
Other languages
English (en)
Other versions
CN109194411A (zh
Inventor
陈宏刚
张博
丁兰
梁雪瑞
杨俊麒
胡毅
马卫东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Accelink Technologies Co Ltd
Original Assignee
Accelink Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Accelink Technologies Co Ltd filed Critical Accelink Technologies Co Ltd
Priority to CN201811134088.0A priority Critical patent/CN109194411B/zh
Publication of CN109194411A publication Critical patent/CN109194411A/zh
Application granted granted Critical
Publication of CN109194411B publication Critical patent/CN109194411B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明实施例提供一种测量硅光相干接收机光电响应度的装置和方法,其中装置包括光源、硅光相干接收机、光功率计、电流测量单元、光路转换单元和处理单元;处理单元用于控制光路转换单元将光源发出的信号光切换至光功率计以及硅光相干接收机的信号输入端和/或本征输入端;光功率计用于测量信号输入端和/或本征输入端的输入光功率;电流测量单元用于测量信号输入端的第一偏振电流和第二偏振电流,和/或本征输入端的本征输出电流;处理单元还用于计算信号输入端的光电响应度,和/或计算本征输入端的光电响应度。本发明实施例提供的装置和方法,结构简单,操作方便,价格低廉,自动化程度高,测试结果精确,测试数据自动生成无需人工处理。

Description

一种测量硅光相干接收机光电响应度的装置和方法
技术领域
本发明实施例涉及光通信技术领域,尤其涉及一种测量硅光相干接收机光电响应度的装置和方法。
背景技术
硅光相干接收机是基于硅和硅基衬底材料(如SiGe/Si、SOI等),采用现有CMOS工艺将信号光功率监控二极管、光电二极管、信号光可调衰减器、偏振分束器、90°相干光混频器等部分单片集成于相干接收机的硅光芯片内,此工艺结合了集成电路技术的超大规模、超高精度制造的特性和光子技术超高速率、超低功耗的优势。
但是,硅光相干接收机也存在如下缺点:损耗比传统工艺的器件偏大,器件光电指标随波长变化即WDL偏大。而硅光相干接收机的光电响应度指标就是用来直接评估器件损耗的,不同波长下的光电响应度还可以用来评估器件的WDL指标,因此硅光相干接收机的光电响应度测试非常重要。
当前测量硅光相干接收机的光电响应度通常采用人工手动测试,需要昂贵的单波长可调激光器外加手动偏振控制器并通过人眼读取电流源显示数据,操作非常不方便同时效率极其低下。因此,如何简单准确的测量硅光相干接收机的光电响应度对于器件指标的评定及后续规模化的生产有极其重要的意义。
发明内容
本发明实施例提供一种测量硅光相干接收机光电响应度的装置和方法,用以解决现有的硅光相干接收机光电响应度测量不便且效率低下的问题。
第一方面,本发明实施例提供一种测量硅光相干接收机光电响应度的装置,包括光源、硅光相干接收机、光功率计、电流测量单元、光路转换单元和处理单元;硅光相干接收机与电流测量单元连接,处理单元分别与光功率计、电流测量单元和光路转换单元连接;
处理单元用于控制光路转换单元将光源发出的信号光切换至光功率计以及硅光相干接收机的信号输入端和/或本征输入端;
光功率计用于测量信号输入端和/或本征输入端的输入光功率;
电流测量单元用于测量信号输入端的第一偏振电流和第二偏振电流,和/或本征输入端的本征输出电流;
处理单元还用于根据信号输入端的输入光功率以及第一偏振电流和第二偏振电流计算信号输入端的光电响应度,和/或根据本征输入端的输入光功率与本征输出电流计算本征输入端的光电响应度。
第二方面,本发明实施例提供一种测量硅光相干接收机光电响应度的方法,包括:
处理单元控制光路转换单元,将光源发出的信号光切换至光功率计,光功率计测量硅光相干接收机的信号输入端和/或本征输入端的输入光功率;
处理单元控制光路转换单元,将光源发出的信号光切换至硅光相干接收机的信号输入端和/或本征输入端,电流测量单元测量信号输入端的第一偏振电流和第二偏振电流,和/或本征输入端的本征输出电流;
处理单元根据信号输入端的输入光功率以及第一偏振电流和第二偏振电流计算信号输入端的光电响应度,和/或根据本征输入端的输入光功率与本征输出电流计算本征输入端的光电响应度。
本发明实施例提供的一种测量硅光相干接收机光电响应度的装置和方法,通过光源、硅光相干接收机、光功率计、电流测量单元、光路转换单元和处理单元,实现了硅光相干接收机光电响应度的自动测量,相比传统的测量装置,无需借助昂贵的可调激光器,也不需要手动旋转偏振控制器以及人眼读取光电流等可能影响测量结果准确性的主观操作,结构简单,操作方便,价格低廉,自动化程度高,测试结果精确,测试数据自动生成无需人工处理,对研发和工业生产都具有重要的意义。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的测量硅光相干接收机光电响应度的装置的结构示意图;
图2为本发明另一实施例提供的测量硅光相干接收机光电响应度的装置的结构示意图;
图3为本发明实施例提供的测量硅光相干接收机光电响应度的方法的流程示意图;
图4为本发明实施例提供的测量信号输入端光电响应度的阶段一示意图;
图5为本发明实施例提供的测量信号输入端光电响应度的阶段二示意图;
图6为本发明实施例提供的测量本征输入端光电响应度的阶段一示意图;
图7为本发明实施例提供的测量本征输入端光电响应度的阶段二示意图;附图标记说明:
1-光源; 2-硅光相干接收机; 3-光功率计;
4-电流测量单元; 5-光路转换单元; 6-处理单元;
21-信号输入端; 22-本征输入端; 31-信号光功率计;
32-本征光功率计; 51-第一光开关; 52-第二光开关;
53-第三光开关; 71-信号可调谐滤波器; 72-本征可调谐滤波器;
8-可调光衰减器; 9-掺铒光纤放大器。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
当前测量硅光相干接收机的光电响应度通常采用人工手动测试,需要昂贵的单波长可调激光器外加手动偏振控制器并通过人眼读取电流源显示数据,操作非常不方便同时效率极其低下。针对上述问题,本发明实施例提供一种能够实现自动化测量的装置,该装置无需额外的贵重仪表,测量效率高、精度好。图1为本发明实施例提供的测量硅光相干接收机光电响应度的装置的结构示意图,如图1所示,一种测量硅光相干接收机2光电响应度的装置,包括光源1、硅光相干接收机2、光功率计3、电流测量单元4、光路转换单元5和处理单元6;硅光相干接收机2与电流测量单元4连接,处理单元6分别与光功率计3、电流测量单元4和光路转换单元5连接;处理单元6用于控制光路转换单元5将光源1发出的信号光切换至光功率计3以及硅光相干接收机2的信号输入端21和/或本征输入端22;光功率计3用于测量信号输入端21和/或本征输入端22的输入光功率;电流测量单元4用于测量信号输入端21的第一偏振电流和第二偏振电流,和/或本征输入端22的本征输出电流;处理单元6还用于根据信号输入端21的输入光功率以及第一偏振电流和第二偏振电流计算信号输入端21的光电响应度,和/或根据本征输入端22的输入光功率与本征输出电流计算本征输入端22的光电响应度。
具体地,硅光相干接收机2光电响应度的测量具体分为硅光相干接收机2信号输入端21的光电响应度的测量和本征输入端22的光电响应度的测量。本发明实施例提供的测量硅光相干接收机2光电响应度的装置,既能够单独用于实现信号输入端21的光电响应度的测量,也能够单独用于实现本征输入端22的光电响应度的测量,还能够同时实现信号输入端21的光电响应度以及本征输入端22的光电响应度的测量。
此处,光源1用于发射触发硅光相干接收机2的光电响应的信号光,本发明实施例中上述装置包括的光源1数量可以是一个,也可以是多个。当光源1数量为一个时,处理单元6可以通过控制光路转换单元5,对光源1输出信号光的光路进行转换,从而实现单一光源1向硅光相干接收机2的信号输入端21和本征输入端22发射信号光的功能。当光源1的数量为多个时,可以分别设置对应用于信号输入端21的光电响应度的测量和本征输入端22的光电响应度的测量的光源1,针对信号输入端21的光电响应度的测量和本征输入端22的光电响应度的测量,可以设置多个不同波长的光源1,从而实现不同波长下的光电响应度的测量。
光功率计3用于测量光功率,本发明实施例中上述装置包括的光功率计3可以是一个,也可以是多个。当光功率计3数量为一个时,处理单元6可以通过控制光路转换单元5,实现单一光功率计3分别测量信号输入端21的输入光功率和本征输入端22的输入光功率的功能。当光功率计3的数量为多个时,可以分别设置对应用于信号输入端21的输入光功率测量的光功率计3和本征输入端22的输入光功率测量的光功率计3。
当装置进行信号输入端21的光电响应度的测量时,光功率计3用于测量信号输入端21的输入光功率,此处信号输入端21的输入光功率是指在进行信号输入端21的光电响应度的测量时,光源1发出的信号光输入至信号输入端21时的光功率。电流测量单元4用于测量信号输入端21的第一偏振电流和第二偏振电流,此处,第一偏振电流和第二偏振电流仅用于区分在进行信号输入端21光电响应度测量时信号输入端21的两个偏振态的电流。由于输入到信号输入端21的信号光为偏振无关光源1,则信号光将平均分配到两个偏振态中,无需额外增加偏振控制器来旋转信号光的偏振态。此外,光功率计3将测量获取的信号输入端21的输入光功率发送到处理单元6,电流测量单元4将测量获取的第一偏振电流和第二偏振电流发送到处理单元6,处理单元6用于根据信号输入端21的输入光功率以及第一偏振电流和第二偏振电流计算信号输入端21的光电响应度。
当装置进行本征输入端22的光电响应度的测量时,光功率计3用于测量本征输入端22的输入光功率,此处本征输入端22的输入光功率是指在进行本征输入端22的光电响应度的测量时,光源1发出的信号光输入至本征输入端22时的光功率。在具体进行测量时,处理单元6可以通过控制光路转换单元5,将光源1发出的信号光传输至光功率计3,使得光功率计3能够对输入光功率进行测量。电流测量单元4用于测量本征输入端22的本征输出电流,此处本征输出电流是指在进行本征输入端22的光电响应度测量时本征输入端22的一个偏正态的电流。此外,光功率计3将测量获取的本征输入端22的输入光功率发送到处理单元6,电流测量单元4将测量获取的本征输出电流发送到处理单元6,处理单元6根据本征输入端22的输入光功率与本征输出电流计算本征输入端22的光电响应度。
本发明实施例提供的装置,通过光源1、硅光相干接收机2、光功率计3、电流测量单元4、光路转换单元5和处理单元6,实现了硅光相干接收机2光电响应度的自动测量,相比传统的测量装置,无需借助昂贵的可调激光器,也不需要手动旋转偏振控制器以及人眼读取光电流等可能影响测量结果准确性的主观操作,结构简单,操作方便,价格低廉,自动化程度高,测试结果精确,测试数据自动生成无需人工处理,对研发和工业生产都具有重要的意义。
基于上述实施例,还包括可调谐滤波器,可调谐滤波器设置于光源1与光功率计3、硅光相干接收机2的信号输入端21和/或本征输入端22之间的光路上;可调谐滤波器用于对信号光进行波长调制。
具体地,可调谐滤波器(Acousto-opticTunable Filter,AOTF)的原理是根据声光衍射原理制成的分光器件,它由晶体和键合在其上的换能器构成,换能器将高频的RF驱动电信号(一般约为几十兆赫至二百兆赫之间)转换为在晶体内的超声波振动,超声波产生了空间周期性的调制,其作用像衍射光栅。本发明实施例中,可调谐滤波器可以根据驱动信号的频率对输入的信号光的波长进行调制,输出预设波长的信号光,用于光电响应度的测量。
本发明实施例中,通过控制可调谐滤波器输出信号光的波长,可以在减少光源1数量的同时实现多波长下的硅光相干接收机2的光电响应度的测量,有效减小测量光电响应度的装置体积,降低测量成本。
基于上述任一实施例,还包括可调光衰减器和/或掺铒光纤放大器,可调光衰减器和/或光纤放大器设置在光源1与光功率计3、硅光相干接收机2的信号输入端21和/或本征输入端22之间的光路上。
具体地,可调光衰减器和掺铒光纤放大器用于对光源1发出的信号光功率进行调节。由于在光源1发出的信号光传输与光功率计3、硅光相干接收机2的信号输入端21和/或本征输入端22之间的光路上设置有可调谐滤波器,而可调谐滤波器的插入损耗较大,因此需要在光源1与可调谐滤波器之间的光路上设置掺铒光纤放大器,对信号光的增益进行调节,进而针对可调谐滤波器的插入损耗进行补偿。
基于上述任一实施例,图2为本发明另一实施例提供的测量硅光相干接收机光电响应度的装置的结构示意图,如图2所示,光功率计3包括信号光功率计31和本征光功率计32,光路转换单元5包括第一光开关51、第二光开关52和第三光开关53,可调谐滤波器包括信号可调谐滤波器71和本征可调谐滤波器72;第一光开关51用于切换光源1发出的信号光传输至信号可调谐滤波器71和传输至本征可调谐滤波器72;第二光开关52用于切换信号可调谐滤波器71发出的信号光传输至信号光功率计31和信号输入端21;第三光开关53用于切换本征可调谐滤波器72发出的信号光传输至本征光功率计32和本征输入端22。
具体地,当进行信号输入端21的光电响应度测量时,处理单元6控制第一光开关51,将光源1发出的信号光传输至信号可调谐滤波器71,信号可调谐滤波器71将光源1发出的信号光调制为预设波长的信号光。此外,处理单元6控制第二光开关52,将信号可调谐滤波器71发出的信号光传输至信号光功率计31,信号光功率计31测量硅光相干接收机2的信号输入端21的输入光功率,并控制第二光开关52,将信号可调谐滤波器71发出的信号光传输至硅光相干接收机2的信号输入端21,电流测量单元4测量信号输入端21的第一偏振电流和第二偏振电流。此处,输入光功率信号的测量以及第一偏振电流和第二偏振电流的测量,两者的先后顺序本发明实施例不作具体限定。
当进行本征输入端22的光电响应度测量时,处理单元6控制第一光开关51,将光源1发出的信号光传输至本征可调谐滤波器72,本征可调谐滤波器72将光源1发出的信号光调制为预设波长的信号光。此外,处理单元6控制第三光开关53,将本征可调谐滤波器72发出的信号光传输至本征光功率计32,本征光功率计32测量硅光相干接收机2的本征输入端22的输入光功率,并控制第三光开关53,将本征可调谐滤波器72发出的信号光传输至硅光相干接收机2的本征输入端22,电流测量单元4测量本征输入端22的本征输出电流。此处,输入光功率信号的测量以及本征输出电流的测量,两者的先后顺序本发明实施例不作具体限定。
基于上述任一装置实施例,图3为本发明实施例提供的测量硅光相干接收机光电响应度的方法的流程示意图,如图3所示,一种根据上述任一实施例提供的装置测量硅光相干接收机光电响应度的方法,包括:
301,处理单元6控制光路转换单元5,将光源1发出的信号光切换至光功率计3,光功率计3测量硅光相干接收机2的信号输入端21和/或本征输入端22的输入光功率。
具体地,硅光相干接收机2光电响应度的测量具体分为硅光相干接收机2信号输入端21的光电响应度的测量和本征输入端22的光电响应度的测量。本发明实施例提供的测量硅光相干接收机2光电响应度的装置,既能够单独用于实现信号输入端21的光电响应度的测量,也能够单独用于实现本征输入端22的光电响应度的测量,还能够同时实现信号输入端21的光电响应度以及本征输入端22的光电响应度的测量。
当装置进行信号输入端21的光电响应度的测量时,光功率计3测量信号输入端21的输入光功率,此处信号输入端21的输入光功率是指在进行信号输入端21的光电响应度的测量时,光源1发出的信号光输入至信号输入端21时的光功率。当装置进行本征输入端22的光电响应度的测量,光功率计3用于测量本征输入端22的输入光功率,此处本征输入端22的输入光功率是指在进行本征输入端22的光电响应度的测量时,光源1发出的信号光输入至本征输入端22时的光功率。在具体进行测量时,处理单元6可以通过控制光路转换单元5,将光源1发出的信号光传输至光功率计3,使得光功率计3能够对输入光功率进行测量。
302,处理单元6控制光路转换单元5,将光源1发出的信号光切换至硅光相干接收机2的信号输入端21和/或本征输入端22,电流测量单元4测量信号输入端21的第一偏振电流和第二偏振电流,和/或本征输入端22的本征输出电流。
具体地,当装置进行信号输入端21的光电响应度的测量时,电流测量单元4用于测量信号输入端21的第一偏振电流和第二偏振电流,此处,第一偏振电流和第二偏振电流仅用于区分在进行信号输入端21光电响应度测量时信号输入端21的两个偏振态的电流。由于输入到信号输入端21的信号光为偏振无关光源1,则信号光将平均分配到两个偏振态中,无需额外增加偏振控制器来旋转信号光的偏振态。当装置进行本征输入端22的光电响应度的测量时,电流测量单元4用于测量本征输入端22的本征输出电流,此处本征输出电流是指在进行本征输入端22的光电响应度测量时本征输入端22的一个偏正态的电流。
需要说明的是,本发明实施例不对步骤301和302的先后顺序作具体限定,可以先进行输入光功率的测量,也可以先进行电流测量。
303,处理单元6根据信号输入端21的输入光功率以及第一偏振电流和第二偏振电流计算信号输入端21的光电响应度,和/或根据本征输入端22的输入光功率与本征输出电流计算本征输入端22的光电响应度。
具体地,当装置进行信号输入端21的光电响应度的测量时,光功率计3将测量获取的信号输入端21的输入光功率发送到处理单元6,电流测量单元4将测量获取的第一偏振电流和第二偏振电流发送到处理单元6,处理单元6用于根据信号输入端21的输入光功率以及第一偏振电流和第二偏振电流计算信号输入端21的光电响应度。当装置进行本征输入端22的光电响应度的测量时,光功率计3将测量获取的本征输入端22的输入光功率发送到处理单元6,电流测量单元4将测量获取的本征输出电流发送到处理单元6,处理单元6根据本征输入端22的输入光功率与本征输出电流计算本征输入端22的光电响应度。
本发明实施例提供的方法,通过光源1、硅光相干接收机2、光功率计3、电流测量单元4、光路转换单元5和处理单元6,实现了硅光相干接收机2光电响应度的自动测量,相比传统的测量装置,无需借助昂贵的可调激光器,也不需要手动旋转偏振控制器以及人眼读取光电流等可能影响测量结果准确性的主观操作,结构简单,操作方便,价格低廉,自动化程度高,测试结果精确,测试数据自动生成无需人工处理,对研发和工业生产都具有重要的意义。
基于上述任一实施例,步骤301之前还包括:300,可调谐滤波器将光源1发出的信号光调制为预设波长的信号光。
具体地,在将光源1发出的信号光传输至光功率计3以及硅光相干接收机2的信号输入端21和/或本征输入端22之前,通过可调谐滤波器对信号光进行波长调制。本发明实施例中,可调谐滤波器可以根据驱动信号的频率对输入的信号光的波长进行调制,输出预设波长的信号光,用于光电响应度的测量。
本发明实施例中,通过控制可调谐滤波器输出信号光的波长,可以在减少光源1数量的同时实现多波长下的硅光相干接收机2的光电响应度的测量,有效减小测量光电响应度的装置体积,降低测量成本。
基于上述任一实施例,步骤301之前还包括:光源1发出的信号光依次经过可调光衰减器8和掺铒光纤放大器9。
具体地,可调光衰减器8和掺铒光纤放大器9用于对光源1发出的信号光功率进行调节。由于在光源1发出的信号光传输与光功率计3、硅光相干接收机2的信号输入端21和/或本征输入端22之间的光路上设置有可调谐滤波器,而可调谐滤波器的插入损耗较大,因此需要在光源1与可调谐滤波器之间的光路上设置掺铒光纤放大器9,对信号光的增益进行调节,进而针对可调谐滤波器的插入损耗进行补偿。
基于上述任一实施例,参考图2,光功率计3包括信号光功率计31和本征光功率计32,光路转换单元5包括第一光开关51、第二光开关52和第三光开关53,可调谐滤波器包括信号可调谐滤波器71和本征可调谐滤波器72;第一光开关51用于切换光源1发出的信号光传输至信号可调谐滤波器71和传输至本征可调谐滤波器72;第二光开关52用于切换信号可调谐滤波器71发出的信号光传输至信号光功率计31和信号输入端21;第三光开关53用于切换本征可调谐滤波器72发出的信号光传输至本征光功率计32和本征输入端22。
具体地,当进行信号输入端21的光电响应度测量时,处理单元6控制第一光开关51,将光源1发出的信号光传输至信号可调谐滤波器71,信号可调谐滤波器71将光源1发出的信号光调制为预设波长的信号光。此外,处理单元6控制第二光开关52,将信号可调谐滤波器71发出的信号光传输至信号光功率计31,信号光功率计31测量硅光相干接收机2的信号输入端21的输入光功率,并控制第二光开关52,将信号可调谐滤波器71发出的信号光传输至硅光相干接收机2的信号输入端21,电流测量单元4测量信号输入端21的第一偏振电流和第二偏振电流。此处,输入光功率信号的测量以及第一偏振电流和第二偏振电流的测量,两者的先后顺序本发明实施例不作具体限定。
当进行本征输入端22的光电响应度测量时,处理单元6控制第一光开关51,将光源1发出的信号光传输至本征可调谐滤波器72,本征可调谐滤波器72将光源1发出的信号光调制为预设波长的信号光。此外,处理单元6控制第三光开关53,将本征可调谐滤波器72发出的信号光传输至本征光功率计32,本征光功率计32测量硅光相干接收机2的本征输入端22的输入光功率,并控制第三光开关53,将本征可调谐滤波器72发出的信号光传输至硅光相干接收机2的本征输入端22,电流测量单元4测量本征输入端22的本征输出电流。此处,输入光功率信号的测量以及本征输出电流的测量,两者的先后顺序本发明实施例不作具体限定。
为了更好地理解与应用本发明提供的一种测量硅光相干接收机光电响应度的装置和方法,本发明进行以下示例,且本发明不仅局限于以下示例。
参考图2,测量硅光相干接收机2光电响应度的装置包括处理单元6、光源1、可调谐衰减器、掺铒光纤放大器9、硅光相干接收机2、电流测量单元4、第一光开关51、信号可调谐滤波器71、第二光开关52、信号光功率计31、本征可调谐滤波器72、第三光开关53和本征光功率计32。其中,光源1、可调谐衰减器、掺铒光纤放大器9和第一光开关51依次连接,第一光开关51的两个输出端口分别连接信号可调谐滤波器71和本征可调谐滤波器72。信号可调谐滤波器71与第二光开关52相连,本征可调谐滤波器72与第三光开关53相连。第二光开关52的两个输出端口分别连接信号光功率计31和硅光相干接收机2的信号输入端21,第三光开关53的两个输出端口分别连接本征光功率计32和硅光相干接收机2的本征输入端22。硅光相干接收机2与电流测量单元4连接,处理单元6分别连接第一光开关51、第二光开关52、第三光开关53、信号光功率计31、本征光功率计32和电流测量单元4。
其中,光源1采用ASE(Amplified Spontaneous Emission)光源,可调光衰减器8衰减范围为0-20dB,信号可调谐滤波器71和本征可调谐滤波器72均为马达式薄膜介质滤波片,用于切换输入硅光相干接收机2的光信号波长,支持整个C波段内ITU 96波的光谱自动切换且属于偏振无关的滤波器,即不改变输入光信号的偏振态。掺铒光纤放大器9用来补偿信号可调谐滤波器71和本征可调谐滤波器72的损耗,使输入硅光相干接收机2的光信号处于合适输入的范围内。信号光功率计31和本征光功率计32可通过RS232接口连接处理单元6,上报输入光功率,用于光电响应度的计算。处理单元6可实现第一光开关51、第二光开关52和第三光开关53的自动切换,从而实现整个测试的自动化。
基于图2所示的装置结构,以下对进行信号输入端21的光电响应度的测量方法进行具体说明:
图4为本发明实施例提供的测量信号输入端21光电响应度的阶段一示意图,如图4所示,由于信号可调谐滤波器71的插损较大,大约为22dB左右,ASE光源1输出大约为10dBm,因此需要调节掺铒光纤放大器9将其增益调节为12dB左右,此时ASE光源1经掺铒光纤放大器9后输出为+22dBm,将第一光开关51切换至与信号可调谐滤波器71相连接,通过处理单元6将信号可调谐滤波器71的输出光谱调谐到预设波长,信号可调谐滤波器71支持C波段ITU96波的任意波长的切换。此时信号可调谐滤波器71输出光功率大约0dBm,光功率大小比较适合于硅光相干接收机2的光电响应度测试,经第二光开关52切换至与信号光功率计31相连,记录当前光功率计3的输入值,即信号输入端21的输入光功率为Psig(W)。
图5为本发明实施例提供的测量信号输入端21光电响应度的阶段二示意图,如图5所示,将第二光开关52切换至硅光接收机的信号输入端21,通过电流测量单元4读取信号输入端21的两个偏振态的电流,即第一偏振电流Isig-X和第二偏振电流Isig-Y。由于采用的是ASE光源,因此每一个偏振态实际输入的光功率为信号输入端21的输入光功率Psig的一半,因此每一个偏振态实际输入光功率为Psig/2。
基于信号输入端21的输入光功率Psig以及第一偏振电流Isig-X和第二偏振电流Isig-Y计算信号输入端21光电响应度的公式如下:
X偏振态光电响应度Rsig-X(A/W)=2*Isig-X/(N*Psig);
Y偏振态光电响应度Rsig-Y(A/W)=2*Isig-Y/(N*Psig);
N为每个偏振态所包含的PD个数。
由于本示例中的硅光相干接收机2内部共有8个高速PD,每一偏振态分别包含4个PD,则信号输入端21光电响应度的公式如下:
X偏振态光电响应度Rsig-X(A/W)=Isig-X/(2*Psig);
Y偏振态光电响应度Rsig-Y(A/W)=Isig-Y/(2*Psig)。
以下对进行本征输入端22的光电响应度的测量方法进行具体说明:
图6为本发明实施例提供的测量本征输入端22光电响应度的阶段一示意图,如图6所示,将第一光开关51切换至与本征可调谐滤波器72相连接,通过处理单元6将本征可调谐滤波器72的输出光谱调谐至预设波长,此时本征可调谐滤波器72输出光功率仍然为0dBm左右,经第三光开关53切换至与本征光功率计32相连,记录当前本征光功率计32的输入值,即本征输入端22的输入光功率PLo(W)。
图7为本发明实施例提供的测量本征输入端22光电响应度的阶段二示意图,如图7所示,将第三光开关53切换至硅光相干接收机2本征输入端22,通过电流测量单元4读取硅光相干接收机2本征端输出光电流,即本征输出电流ILo,由于本征信号端只允许一个偏振态的光输入,因此经第三光开关53后输入到本征信号端的有效光信号的功率为输入光功率的一半。
基于本征输入端22的输入光功率PLo以及本征输出电流ILo计算本征输入端22光电响应度的公式如下:
本征输入端22光电响应度RLo(A/W)=2*ILo/(N*PLo)
N为硅光相干接收机2内部所含PD个数。
由于本示例中,本征输入端22输入光平均分配到8个PD中,本征输入端22光电响应度的计算公式如下:
本征输入端22光电响应度RLo(A/W)=ILo/(4*PLo)。
本示例中,通过光源1、硅光相干接收机2、光功率计3、电流测量单元4、光路转换单元5和处理单元6,实现了硅光相干接收机2光电响应度的自动测量,相比传统的测量装置,无需借助昂贵的可调激光器,也不需要手动旋转偏振控制器以及人眼读取光电流等可能影响测量结果准确性的主观操作,结构简单,操作方便,价格低廉,自动化程度高,测试结果精确,测试数据自动生成无需人工处理,对研发和工业生产都具有重要的意义。
最后应说明的是:以上各实施例仅用以说明本发明的实施例的技术方案,而非对其限制;尽管参照前述各实施例对本发明的实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明的实施例各实施例技术方案的范围。

Claims (10)

1.一种测量硅光相干接收机光电响应度的装置,其特征在于,包括光源、硅光相干接收机、光功率计、电流测量单元、光路转换单元和处理单元;所述硅光相干接收机与所述电流测量单元连接,所述处理单元分别与所述光功率计、所述电流测量单元和所述光路转换单元连接;所述光源为ASE光源;
所述处理单元用于控制所述光路转换单元将所述光源发出的信号光切换至所述光功率计以及所述硅光相干接收机的信号输入端和/或本征输入端;
所述光功率计用于测量所述信号输入端和/或所述本征输入端的输入光功率;
所述电流测量单元用于测量所述信号输入端的第一偏振电流和第二偏振电流,和/或所述本征输入端的本征输出电流;
所述处理单元还用于根据所述信号输入端的输入光功率以及所述第一偏振电流和第二偏振电流计算所述信号输入端对应所述硅光相干接收机中各PD的光电响应度,和/或根据所述本征输入端的输入光功率与所述本征输出电流计算所述本征输入端对应各PD的光电响应度。
2.根据权利要求1所述的装置,其特征在于,还包括可调谐滤波器,所述可调谐滤波器设置于所述光源与所述光功率计、所述硅光相干接收机的信号输入端和/或本征输入端之间的光路上;所述可调谐滤波器用于对所述信号光进行波长调制。
3.根据权利要求2所述的装置,其特征在于,还包括可调光衰减器和/或掺铒光纤放大器,所述可调光衰减器和/或所述光纤放大器设置在所述光源与所述光功率计、所述硅光相干接收机的信号输入端和/或本征输入端之间的光路上。
4.根据权利要求2所述的装置,其特征在于,所述光功率计包括信号光功率计和本征光功率计,所述光路转换单元包括第一光开关、第二光开关和第三光开关,所述可调谐滤波器包括信号可调谐滤波器和本征可调谐滤波器;
所述第一光开关用于切换所述光源发出的信号光传输至所述信号可调谐滤波器和传输至所述本征可调谐滤波器;
所述第二光开关用于切换所述信号可调谐滤波器发出的信号光传输至所述信号光功率计和所述信号输入端;
所述第三光开关用于切换所述本征可调谐滤波器发出的信号光传输至所述本征光功率计和所述本征输入端。
5.一种根据权利要求1至4中任一所述的装置测量硅光相干接收机光电响应度的方法,其特征在于,包括:
所述处理单元控制所述光路转换单元,将所述光源发出的信号光切换至所述光功率计,所述光功率计测量所述硅光相干接收机的信号输入端和/或本征输入端的输入光功率;
所述处理单元控制所述光路转换单元,将所述光源发出的信号光切换至所述硅光相干接收机的信号输入端和/或本征输入端,所述电流测量单元测量所述信号输入端的第一偏振电流和第二偏振电流,和/或所述本征输入端的本征输出电流;
所述处理单元根据所述信号输入端的输入光功率以及所述第一偏振电流和第二偏振电流计算所述信号输入端对应所述硅光相干接收机中各PD的光电响应度,和/或根据所述本征输入端的输入光功率与所述本征输出电流计算所述本征输入端对应各PD的光电响应度。
6.根据权利要求5所述的方法,其特征在于,所述处理单元控制所述光路转换单元,将所述光源发出的信号光切换至所述光功率计,光功率计测量所述硅光相干接收机的信号输入端和/或本征输入端的输入光功率,之前还包括:
可调谐滤波器将所述光源发出的信号光调制为预设波长的信号光。
7.根据权利要求6所述的方法,其特征在于,所述处理单元控制所述光路转换单元,将所述光源发出的信号光切换至所述光功率计,光功率计测量所述硅光相干接收机的信号输入端和/或本征输入端的输入光功率,之前还包括:
光源发出的信号光经过可调光衰减器和掺铒光纤放大器后输入至所述可调谐滤波器。
8.根据权利要求6所述的方法,其特征在于,所述光功率计包括信号光功率计和本征光功率计,所述光路转换单元包括第一光开关、第二光开关和第三光开关,所述可调谐滤波器包括信号可调谐滤波器和本征可调谐滤波器;
所述第一光开关用于切换所述光源发出的信号光传输至所述信号可调谐滤波器和传输至所述本征可调谐滤波器;
所述第二光开关用于切换所述信号可调谐滤波器发出的信号光传输至所述信号光功率计和所述信号输入端;
所述第三光开关用于切换所述本征可调谐滤波器发出的信号光传输至所述本征光功率计和所述本征输入端。
9.根据权利要求8所述的方法,其特征在于,所述可调谐滤波器将所述光源发出的信号光调制为预设波长的信号光,具体包括:
所述处理单元控制所述第一光开关,将所述光源发出的信号光传输至所述信号可调谐滤波器,所述信号可调谐滤波器将所述光源发出的信号光调制为预设波长的信号光;
所述处理单元控制所述光路转换单元,将所述光源发出的信号光切换至所述光功率计,光功率计测量所述硅光相干接收机的信号输入端和/或本征输入端的输入光功率,具体包括:
所述处理单元控制所述第二光开关,将所述信号可调谐滤波器发出的信号光传输至所述信号光功率计,所述信号光功率计测量所述硅光相干接收机的信号输入端的输入光功率;
所述处理单元控制所述光路转换单元,将所述光源发出的信号光切换至所述硅光相干接收机的信号输入端和/或本征输入端,电流测量单元测量所述信号输入端的第一偏振电流和第二偏振电流,和/或所述本征输入端的本征振态电流,具体包括:
所述处理单元控制所述第二光开关,将所述信号可调谐滤波器发出的信号光传输至所述硅光相干接收机的信号输入端,电流测量单元测量所述信号输入端的第一偏振电流和第二偏振电流。
10.根据权利要求8所述的方法,其特征在于,所述可调谐滤波器将所述光源发出的信号光调制为预设波长的信号光,具体包括:
所述处理单元控制所述第一光开关,将所述光源发出的信号光传输至所述本征可调谐滤波器,所述本征可调谐滤波器将所述光源发出的信号光调制为预设波长的信号光;
所述处理单元控制所述光路转换单元,将所述光源发出的信号光切换至所述光功率计,光功率计测量所述硅光相干接收机的信号输入端和/或本征输入端的输入光功率,具体包括:
所述处理单元控制所述第三光开关,将所述本征可调谐滤波器发出的信号光传输至所述本征光功率计,所述本征光功率计测量所述硅光相干接收机的本征输入端的输入光功率;
所述处理单元控制所述光路转换单元,将所述光源发出的信号光切换至所述硅光相干接收机的信号输入端和/或本征输入端,电流测量单元测量所述信号输入端的第一偏振电流和第二偏振电流,和/或所述本征输入端的本征振态电流,具体包括:
所述处理单元控制所述第三光开关,将所述本征可调谐滤波器发出的信号光传输至所述硅光相干接收机的本征输入端,电流测量单元测量所述本征输入端的本征输出电流。
CN201811134088.0A 2018-09-27 2018-09-27 一种测量硅光相干接收机光电响应度的装置和方法 Active CN109194411B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811134088.0A CN109194411B (zh) 2018-09-27 2018-09-27 一种测量硅光相干接收机光电响应度的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811134088.0A CN109194411B (zh) 2018-09-27 2018-09-27 一种测量硅光相干接收机光电响应度的装置和方法

Publications (2)

Publication Number Publication Date
CN109194411A CN109194411A (zh) 2019-01-11
CN109194411B true CN109194411B (zh) 2020-12-01

Family

ID=64906566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811134088.0A Active CN109194411B (zh) 2018-09-27 2018-09-27 一种测量硅光相干接收机光电响应度的装置和方法

Country Status (1)

Country Link
CN (1) CN109194411B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530613B (zh) * 2019-09-24 2021-05-25 中兴光电子技术有限公司 一种硅光芯片探测器响应度测试装置和方法
CN111130647B (zh) * 2019-12-05 2021-09-28 深圳新飞通光电子技术有限公司 一种icr模块的快速扫描测试系统及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8406621B2 (en) * 2009-10-29 2013-03-26 Teraxion Inc. Method and apparatus for measuring a factor characterizing a balanced detection device
US9100116B2 (en) * 2011-08-24 2015-08-04 Ciena Corporation Short-term optical recovery systems and methods for coherent optical receivers
CN103414503B (zh) * 2013-08-19 2016-04-20 重庆三峡学院 采用相位分集接收相干光正交频分复用接入信号的系统
US10097271B2 (en) * 2014-07-11 2018-10-09 Acacia Communications, Inc. Multichannel coherent transceiver and related apparatus and methods
CN106768351B (zh) * 2016-11-23 2019-04-23 苏州苏纳光电有限公司 红外探测器单模多变的响应度测试系统和方法
CN108204824B (zh) * 2016-12-19 2021-01-05 湖南航天机电设备与特种材料研究所 一种光电探测器检测装置及检测方法
CN107800492A (zh) * 2017-12-13 2018-03-13 武汉电信器件有限公司 一种自动测试硅光相干接收机偏振消光比的装置及方法

Also Published As

Publication number Publication date
CN109194411A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
US6839131B2 (en) Method and apparatus for monitoring optical signal performance in wavelength division multiplexing system
US7499182B2 (en) Optical signal measurement system
US6873795B1 (en) Apparatus for detecting peaks of wavelength-division-multiplexed light, and apparatus for controlling said light
CN101604055B (zh) 一种并联双腔可调谐光纤法布里-珀罗滤波器
CN109194411B (zh) 一种测量硅光相干接收机光电响应度的装置和方法
CA2222002A1 (en) Method and circuit for detecting laser mode hop
US6396574B1 (en) Apparatus for measuring the wavelength, optical power and optical signal-to-noise ratio of each optical signal in wavelength-division multiplexing optical communication
CN102243107A (zh) 高灵敏度上转换单光子探测系统
CN111103055A (zh) 一种光功率自动校准系统及方法
TWI391640B (zh) 光信號之波長的測量設備、方法及系統
Niemi et al. Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter
CN202048988U (zh) 高灵敏度上转换单光子探测系统
KR200385979Y1 (ko) Cwdm 파장측정을 위한 핸드헬드형 광파장측정기
CN110082075B (zh) 一种超高波长分辨率的无源光器件光谱扫描装置及方法
CN101371470A (zh) 光信号测量系统
CN209745527U (zh) 一种超高波长分辨率的无源光器件光谱扫描装置
CN213932391U (zh) 一种用于行星齿轮周向应变测量的光纤光栅波长解调装置
CN116865854B (zh) 一种可集成于光子集成芯片上的波长检测装置
JP2008209214A (ja) 光サンプリング装置
JP4180595B2 (ja) 波長多重光制御装置
KR100317140B1 (ko) 파장분할다중 광통신에서 광신호의 파장과 광 세기와 광 신호대 잡음비를 측정하는 장치
US6724962B2 (en) Wavelength to optical power converter and method for converting wavelength into optical power
KR20000034635A (ko) 파장분할다중 시스템의 채널 감시 장치
CN117330113A (zh) 一种fbg解调装置
JP2023159688A (ja) 測定システム及び測定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant