CN109191840A - 一种基于智能终端的实时交通状况判定方法 - Google Patents

一种基于智能终端的实时交通状况判定方法 Download PDF

Info

Publication number
CN109191840A
CN109191840A CN201811069001.6A CN201811069001A CN109191840A CN 109191840 A CN109191840 A CN 109191840A CN 201811069001 A CN201811069001 A CN 201811069001A CN 109191840 A CN109191840 A CN 109191840A
Authority
CN
China
Prior art keywords
congestion
road
time
real
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811069001.6A
Other languages
English (en)
Inventor
邢建川
张易丰
丁志新
康亮
李峰
雷瞻遥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201811069001.6A priority Critical patent/CN109191840A/zh
Publication of CN109191840A publication Critical patent/CN109191840A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/012Measuring and analyzing of parameters relative to traffic conditions based on the source of data from other sources than vehicle or roadside beacons, e.g. mobile networks
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明提供了一种基于智能终端的实时交通状况判定方法,包括步骤1、采集汽车运行信息;步骤2、通过重定位机制得到汽车行驶方向的实时加速度时间序列;步骤3、对时间序列进行数据清洗;步骤4、提取数据特征;步骤5、选出合适的分类器;步骤6、通过分类器对道路状况进行分类。本发明解决了传统设备获取实时交通时高造价、高维护成本、不灵活的问题;同时在收集加速度信息的过程中,采用了重定向机制,并对信息进行数据清洗,保证了数据的可靠性;增加8个常见的时间域统计量作为特征,保证了模型预测的准确性;最后提出了一种新的指标定量分析不同的分类器对于本方案的适用程度,更客观全面地选择适合的分类器进行实时交通状况判定。

Description

一种基于智能终端的实时交通状况判定方法
技术领域
本发明涉及一种交通状况判定方法,特别是涉及一种基于智能终端的实时交通状况判定方法。
背景技术
随着现如今汽车数量的日益增长,交通拥堵问题也日益突出。人们在驾驶车辆出行时希望可以通过某种方式了解道路的实时交通状况。如今智能手机已经融入我们的生活中,我们可以通过手机获取到实时交通的状况。而对于如何监测城市道路和交通状况这个问题,现如今存在的解决该问题的方法造价和人力成本都较高,例如在车上安装专门GPS追踪装置;在路边安装设备(例如交通摄像机、雷达或者感应线圈车辆检测器等)。这些设备都是昂贵的,如果大量在车辆上或者所有路口上安装设备显然是不符合实际的。随着智能手机的功能越来越强大,内存以及计算能力不断的增强,同时搭载了大量的传感器,这为我们探测实时交通状况提供了新的思路。
本发明提供了一种运用智能手机上的低耗设备收集车辆加速度信息判别路况信息的方法,即在车辆行驶中通过驾驶人员的智能终端设备收集信息并且判别道路拥堵状况的一种方法。
发明内容
针对传统的获取道路的方式存在造价高、维护成本高、人力成本高等问题,本发明提出了一种运用驾驶人员智能终端上搭载的传感器设备收集车辆行驶中的加速度,并通过加速度判断道路的拥堵状态的一种方法。
本发明设计了一种基于群智感知框架利用智能手机上的传感器收集车辆加速度信息来判别路况的方法。本发明基于群智感知框架,智能手机即作为数据的“生产者”也是数据的“享受者”,包括:
步骤1、智能手机通过自带的传感器对道路拥堵判定对象的原始数据进行收集;
步骤2、收集到的信息经过重定向机制得到车辆在行驶方向上的实时加速度信息;
步骤3、在对数据的收集过程中可能会出现丢失现象或者产生异常值,所以需要进行数据清洗;
步骤4、在完成加速度的重定向以及对异常值、丢失值的处理后,提取道路拥堵判定对象的道路拥堵特征向量;
步骤5、将不同道路拥堵判定对象的道路拥堵特征向量,以及提取所述道路拥堵特征向量的时间窗口的时间段内道路的实际拥堵状况作为一组数据集,采集若干组数据集,其中一半的数据集用于构成训练样本集,剩余的一半数据集用于构成测试样本集,将训练样本集和测试样本集依次代入分类模型,训练决策树、随机森林和xgboost三种分类器模型并选出更适用于本发明的分类器模型;
步骤6、利用数据特征向量和选出的分类器模型实现对道路拥堵类别的判定。
优选地,在步骤4提取数据特征时,还包括:除了选取一段时间内的加速度序列作为特征,同时选择了8个常见的时间域统计量作为特征。
优选地,在步骤5通过分类模型对道路状况进行分类时,还包括:对于分类器的选择中,提出了一种新的指标用户定量分析不同的分类器对于本方案的适用程度。
本发明提供了一种运用智能手机上的低耗设备收集车辆加速度信息判别路况信息的方法,通过运用智能手机这种日益普及的设备来代替传统设备可以解决传统设备获取实时交通时高造价、高维护成本、不灵活等问题;同时在收集加速度信息的过程中,采用重定向机制得到车辆在行驶方向上的加速度信息,并对该信息进行数据清洗,保证了数据的可靠性;在提取数据特征时,增加了8个常见的时间域统计量作为特征,保证了模型预测的准确性;并提出了一种新的指标用于定量分析不同的分类器对于本方案的适用程度,可以更客观全面的选择适合的分类器;最后利用选出的最适合本发明的分类器模型实现实时交通的判定。
附图说明
图1是本发明的整体流程图;
图2是本发明中智能终端传感器及汽车坐标系示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明提出了一种运用驾驶人员智能终端上搭载的传感器设备收集车辆行驶中的加速度,并通过加速度判断道路的拥堵状态的一种方法,如图1所示,本发明包括以下步骤:
(1)道路拥堵判定对象的原始数据采集
如今的智能手机功能范围十分广泛。它们可以高速的处理信息以及支持较大的数据存储。同时智能手机上还搭载了大量的传感器模块,例如加速度传感器、压力传感器、陀螺仪、磁力计等。这些传感器设备不但是很容易获得的,并且也属于低耗设备。本方案中使用智能终端收集车辆行驶过程中的加速度信息、GPS定位、以及时间戳等信息。
(2)通过重定向机制获取道路拥堵判定对象的实时加速度时间序列
在汽车行驶中,车辆的加速度与交通路况是有着密切的关联的。例如在车辆行驶的道路属于通畅时,其加速度会处于一个较平稳的波动中,不会频繁出现加速度的变化幅度较大的情况;而在堵车时,由于车辆在行驶过程中停车的频率很多,所以它的加速度的变化特点是波动频率和幅度都较大。我们可以用手机中的加速度传感器来预估实际交通状况。如图2(a) 所示,(X,Y,Z)为智能手机加速度计的笛卡尔坐标系。我们通过智能手机的加速计可获得三轴方向的加速度值。如图2(b)所示,假设汽车的笛卡尔坐标系为(X’,Y’,Z’)。我们希望得到的是汽车行驶方向的加速度即Y’轴方向的加速度。如果手机保持在一个适当的方向时,手机的X、Y、Z三轴与汽车的X’、Y’、Z’对齐时,我们可以直接获取加速度用来估计交通路况。但是在实际使用很难保证手机的三轴与汽车的三轴随时保持重合,所以我们需要一个重定位机制对手机收集到的数据进行处理然后求得真实的汽车加速度用来估计交通路况。
为了把手机坐标系中的向量转换到汽车坐标系中,现在通用的方法是找出手机坐标系的每个坐标轴到汽车坐标系相对应的坐标轴需要旋转的角度。每个轴的旋转都可以用旋转矩阵的形式来表示。例如简单的二维坐标系中,当旋转角度为时,则旋转矩阵为
手机坐标系中的向量可以通过与旋转矩阵相乘即可重新定位到汽车坐标系中,正如以下公式:
其中,V为手机坐标系中的向量,V′为汽车坐标系中的向量。
类似的,可用如下公式进行重新定位在三维坐标系中。假设角度代表Y轴到Y’需要旋转的角度,θ与φ分别代表X轴和Z轴需要旋转的角度。
对应的旋转矩阵如下
其中,vx,vy,vz分别为手机坐标系中x,y,z轴方向上的向量,v′x,v′y,v′z分别为汽车坐标系中x,y,z轴方向上的向量。
下面将使用上述方法来进行加速度方向的重新定位,即将智能手机中读取到的加速度向量通过重新定位映射到汽车坐标系中。我们将手机的轴作为参考坐标轴,将汽车的轴作为目标轴,通过两个步骤进行全面的重新定位。首先,我们将加速度向量从手机坐标系转换到几何坐标系,然后从几何坐标系转换到汽车坐标系。
1)从手机坐标系转换到几何坐标系
通过智能手机的加速度感应器以及磁力计感应出重力矢量以及磁性向北的磁性矢量,两个矢量的交叉乘积得出几何坐标系中的东西矢量。再将重力矢量和东西向量交叉乘积得出南北矢量。现在由重力矢量、东西矢量、南北矢量三个相互垂直的矢量组成几何坐标系。旋转矩阵表示为:
通过以上的旋转矩阵R-1,计算出几何坐标系中的加速度矩阵A′=A·R-1
其中A为手机坐标系中的加速度矩阵,进而得到磁西向,磁北向和重力向量方向的加速度值。
2)从几何坐标系转换到汽车坐标系
因为几何坐标系和汽车坐标系中对应的磁北和真北会有个一个偏离角度,同样磁西和正西存在一个这样的角度,在知道偏离角度的情况下便可以求出汽车实际的在运行方向上的加速度。这个偏角是由汽车运行方向和磁北的夹角,可以通过GPS获取的位置点来求出汽车运行矢量,磁性向北的磁性矢量已知,便求出夹角,然后根据磁北向的加速度值和夹角的大小得到汽车实际的在运行方向上的加速度。
(3)数据清洗处理
在收集到的真实数据中,可能存在缺失值或者异常值等情况。这样的数据对于要挖据出有效信息造成了一定的困扰,所以需要通过一些方法,尽量提高数据的质量。依据本发明的目的和需求,主要对缺失值以及异常值进行处理。在处理缺失值中,采用均值填充法,即根据该属性在其他所有对象的取值的平均值来填充该缺失的属性值;在异常值的处理中,将遇到的数值视为缺失值。这样就可以应用处理缺失值的方式来进行处理。
(4)提取道路拥堵判定对象的道路拥堵特征向量
本方案选取时间窗口为3分钟的时间段内的加速度时间序列作为特征,本发明对于加速度值的采集频率为1s,所以在3分钟内有180个加速度值作为特征,加速度时间序列中的数据点按时间先后顺序依次编号为x1~x180。除此之外我们选取8个常见的时间域统计量作为特征,构成编号依次为x181~x188的数据点。8个常见的时间域统计量表示如下,其中xi代表编号为i的加速度时间序列中的数据点,N=180。
1)平均值
2)最大值
3)最小值
4)标准偏差
5)平均误差
6)偏度
7)均方根振幅
8)峰态
由上述N+8个数据点得到当前道路拥堵判定对象的道路拥堵特征向量。
(5)分类器的选择
将不同道路拥堵判定对象的道路拥堵特征向量,以及提取所述道路拥堵特征向量的时间窗口的时间段内道路的实际拥堵状态作为一组数据集,其中拥堵状态包括三种:道路通畅、轻微拥堵和严重拥堵,采集2000组数据集,其中1000组用于构成训练样本集,剩余的1000 组用于构成测试样本集。
采用训练样本集分别训练决策树、随机森林和xgboost三种分类器模型,每种分类器用于对三种道路拥堵状态进行类别判定,所述道路拥堵状态包括:道路通畅、轻微拥堵和严重拥堵。
采用测试样本集分别对训练完成的三种分类器进行测试:将测试样本集分别输入三种分类器,得到所述测试样本集在不同分类器上运行完成的时间,取其中最小运行完成时间为 Tmin,最大运行完成时间为Tmax
对于不同分类器的选择,根据评价标准分析出那些分类器更适用于本发明。对于道路拥堵状态的分类,关注的是分类是否准确,因此采用准确率(precision)和召回率作为评价指标,公式如14~15所示。公式14的准确率针对预测结果而言,它表示的是预测为正的样本中有多少是对的,其中TP代表把正类预期为正类,FP表示把负类预测为正类。公式15的召回率也叫查全率,是检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率。其中TP代表把正类预期为正类,FN代表把正类预期为负类。
在本发明中根据实际需求提出了一个新的评价标准TAP,该标准用于评价不同模型对于本发明的适合程度,该评价标准可将准确率和执行速度融合到一个指标,使得评价结果更直观全面。公式16为TAP评价标准的公式,在该公式中ω1以及ω2代表权重,这个权重比例可以根据需要进行修改,在本发明中使用的权重分别为0.9和0.1。公式16的第二项为对时间 T进行归一化方法,把时间T从有量纲的表达式转换为无量纲的表达式,无量纲表达式的范围落在[0,1]的范围之内。其中T为所述测试样本集在当前分类器中的运行时间。由公式16 计算出的TAP说明在现有的分类模型中,计算出TAP的值越大越适合本发明提出的基于群智感知的实时交通分类方案,因此选出TAP值最大的分类器作为交通道路拥堵判定分类器。
(6)实时交通状况判定
本文将道路交通状况分为三个等级:道路通畅、轻微拥堵还是严重拥堵。根据公安部对交通状况用机动车平均速度大小来量化拥挤程度(关于城市交通拥堵问题研究的文献综述,刘晓,《经济研究导刊》,第4期,第102‐103页,2010年4月26日)。
1)道路通畅:在道路畅通的城市主干道之上一般机动车的平均速度在30km/h之上,但是如果机动车是在高速路上行驶,畅通状态的平均速度一般高于50km/h;
2)轻微拥堵:平均车速在20km/h到30km/h之间;
3)严重拥堵:平均速度低于20km/h时属于道路严重拥挤。
提取当前待判定对象的道路拥堵特征向量,通过所述交通道路拥堵判定分类器对当前待判定对象进行道路拥堵状态判定,得到当前待判定对象的道路拥堵状态属于道路通畅、轻微拥堵还是严重拥堵。
本发明提供了一种基于智能终端的实时交通状况判定方法,通过运用智能手机这种日益普及的设备来代替传统设备可以解决传统设备获取实时交通时高造价、高维护成本、不灵活等问题;同时在收集加速度信息的过程中,采用重定向机制得到车辆在行驶方向上的加速度信息,并对该信息进行数据清洗,保证了数据的可靠性;在提取数据特征时,增加了8个常见的时间域统计量作为特征,保证了模型预测的准确性;并提出了一种新的指标用于定量分析不同的分类器对于本方案的适用程度,可以更客观全面的选择适合的分类器;最后利用选出的最适合本发明的分类器模型实现实时交通状况的判定。

Claims (8)

1.一种基于智能终端的实时交通状况判定方法,其特征在于,包括如下步骤:
步骤1、采集道路拥堵判定对象的原始数据:
利用驾驶人员智能终端中的传感器模块,以时间间隔T周期性地采集车辆行驶过程中的加速度信息、GPS定位信息和时间戳信息;
步骤2、获取道路拥堵判定对象的实时加速度时间序列:
通过重定位机制对智能终端中的传感器模块采集到的加速度信息、GPS定位信息和时间戳信息进行处理,得到汽车行驶方向的实时加速度时间序列;
步骤3、数据清洗处理:
清洗汽车行驶方向的实时加速度时间序列;
步骤4、提取道路拥堵判定对象的道路拥堵特征向量:
选取时间窗口为N的时间段内的清洗后的汽车行驶方向的实时加速度时间序列,时间序列中的数据点按时间先后顺序依次编号为x1~xN,同时统计所述时间窗口内的8个时间域统计量,构成编号依次为xN+1~xN+8的数据点,基于上述N+8个数据点得到当前道路拥堵判定对象的道路拥堵特征向量;
步骤5、构建交通道路拥堵判定分类器:
将不同道路拥堵判定对象的道路拥堵特征向量,以及提取所述道路拥堵特征向量的时间窗口的时间段内道路的实际拥堵状态作为一组数据集,其中拥堵状态包括三种:道路通畅、轻微拥堵和严重拥堵;
采集M组数据集,其中M/2组用于构成训练样本集,剩余的M/2组用于构成测试样本集;
采用训练样本集分别训练决策树、随机森林和xgboost三种分类器,每种分类器用于对三种道路拥堵状态进行类别判定,所述道路拥堵类别包括:道路通畅、轻微拥堵和严重拥堵;
采用测试样本集分别对训练完成的三种分类器进行测试:将测试样本集分别输入三种分类器,得到所述测试样本集在不同分类器上运行完成的时间,记其中最小运行完成时间为Tmin,最大运行完成时间为Tmax,采用评价标准TAP作为分类器性能的评价指标,选出TAP值最大的分类器作为交通道路拥堵判定分类器;
其中TP代表把正类预期为正类的数量,FP表示把负类预测为正类的数量,T为所述测试样本集在当前分类器中的运行时间,ω1和ω2表示预设权重;
步骤6、交通道路拥堵判定:
提取当前待判定对象的道路拥堵特征向量,通过所述交通道路拥堵判定分类器对当前待判定对象进行道路拥堵类别判定,得到当前待判定对象的道路拥堵类别。
2.如权利要求1所述的实时交通状况判定方法,其特征在于,所述步骤1中,时间间隔T为1秒。
3.如权利要求1或2所述的实时交通状况判定方法,其特征在于,所述步骤2中,所述重定位机制包括:
步骤2.1、从手机坐标系转换到几何坐标系:通过智能终端中的传感器模块感应出重力矢量以及磁性向北的磁性矢量,由重力矢量以及磁性向北的磁性矢量的交叉乘积得出几何坐标系中的东西矢量,再将重力矢量和东西向量交叉乘积得出南北矢量,由重力矢量、东西矢量、南北矢量三个相互垂直的矢量组成几何坐标系,旋转矩阵表示为:
通过旋转矩阵R-1,计算出几何坐标系中的加速度矩阵A′=A·R-1,其中A为手机坐标系中的加速度矩阵,进而得到磁西向,磁北向和重力向量方向的加速度时间序列;
步骤2.2、从几何坐标系转换到汽车坐标系:通过智能终端中的传感器模块获取的位置点求出车辆运行矢量,计算出磁性向北的磁性矢量和车辆运行矢量之间的偏离角度,根据所述偏离角度和磁北向的加速度时间序列计算出汽车在实际运行方向上的加速度时间序列。
4.如权利要求1所述的实时交通状况判定方法,其特征在于,所述步骤3中,
清洗汽车行驶方向的实时加速度的方法为:对汽车行驶方向的实时加速度时间序列中的缺失值以及异常值采用均值填充法进行处理。
5.如权利要求1实时交通状况判定方法,其特征在于,所述步骤4中,8个时间域统计量具体为:
平均值最大值最小值
标准偏差
平均误差
偏度
均方根振幅
峰态
6.如权利要求1所述的实时交通状况判定方法,其特征在于,所述步骤4中,N=180。
7.如权利要求1所述的实时交通状况判定方法,其特征在于,所述步骤4中,M=2000。
8.如权利要求1所述的实时交通状况判定方法,其特征在于,所述步骤5中,ω1取值为0.9,ω2取值为0.1。
CN201811069001.6A 2018-09-13 2018-09-13 一种基于智能终端的实时交通状况判定方法 Pending CN109191840A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811069001.6A CN109191840A (zh) 2018-09-13 2018-09-13 一种基于智能终端的实时交通状况判定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811069001.6A CN109191840A (zh) 2018-09-13 2018-09-13 一种基于智能终端的实时交通状况判定方法

Publications (1)

Publication Number Publication Date
CN109191840A true CN109191840A (zh) 2019-01-11

Family

ID=64910830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811069001.6A Pending CN109191840A (zh) 2018-09-13 2018-09-13 一种基于智能终端的实时交通状况判定方法

Country Status (1)

Country Link
CN (1) CN109191840A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109754606A (zh) * 2019-02-28 2019-05-14 山东浪潮云信息技术有限公司 一种基于出租车定位预测道路拥堵情况的方法
CN109993356A (zh) * 2019-03-25 2019-07-09 广东工业大学 一种基于xgboost的交通优化系统及方法
CN110246331A (zh) * 2019-05-30 2019-09-17 武汉智云集思技术有限公司 基于指标数据的路况分析方法、设备及可读存储介质
CN110555989A (zh) * 2019-08-16 2019-12-10 华南理工大学 一种基于Xgboost算法的交通量预测方法
CN111599170A (zh) * 2020-04-13 2020-08-28 浙江工业大学 一种基于时序交通网络图的交通运行状态分类方法
CN112710273A (zh) * 2020-12-10 2021-04-27 浙江大学 一种基于智能手机传感器和机器学习的众包路面坑洼检测方法
CN112918488A (zh) * 2021-03-11 2021-06-08 知行汽车科技(苏州)有限公司 车辆控制方法、装置及存储介质
CN113159577A (zh) * 2021-04-22 2021-07-23 电子科技大学 基于群智感知的城市道路规划方法
CN113570862A (zh) * 2021-07-28 2021-10-29 太原理工大学 一种基于XGboost算法的大型交通拥堵预警方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359493A (zh) * 2014-11-18 2015-02-18 浙江工商大学 智能手机车载情况下的高精度方向校正方法
CN104408917A (zh) * 2014-11-18 2015-03-11 浙江工商大学 基于智能手机加速度传感器实时交通路况估计方法
DE102015203233A1 (de) * 2015-02-24 2016-08-25 Bayerische Motoren Werke Aktiengesellschaft Server, System und Verfahren zur Bestimmung einer Position eines Stauendes
CN107103775A (zh) * 2017-05-18 2017-08-29 西安理工大学 一种基于群智计算的道路质量检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359493A (zh) * 2014-11-18 2015-02-18 浙江工商大学 智能手机车载情况下的高精度方向校正方法
CN104408917A (zh) * 2014-11-18 2015-03-11 浙江工商大学 基于智能手机加速度传感器实时交通路况估计方法
DE102015203233A1 (de) * 2015-02-24 2016-08-25 Bayerische Motoren Werke Aktiengesellschaft Server, System und Verfahren zur Bestimmung einer Position eines Stauendes
CN107103775A (zh) * 2017-05-18 2017-08-29 西安理工大学 一种基于群智计算的道路质量检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张易丰: "基于群智感知的智能交通系统的研究与实现", 《中国优秀硕士学位论文全文数据库》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109754606A (zh) * 2019-02-28 2019-05-14 山东浪潮云信息技术有限公司 一种基于出租车定位预测道路拥堵情况的方法
CN109754606B (zh) * 2019-02-28 2021-08-31 浪潮卓数大数据产业发展有限公司 一种基于出租车定位预测道路拥堵情况的方法
CN109993356A (zh) * 2019-03-25 2019-07-09 广东工业大学 一种基于xgboost的交通优化系统及方法
CN110246331B (zh) * 2019-05-30 2021-02-26 武汉智云集思技术有限公司 基于指标数据的路况分析方法、设备及可读存储介质
CN110246331A (zh) * 2019-05-30 2019-09-17 武汉智云集思技术有限公司 基于指标数据的路况分析方法、设备及可读存储介质
CN110555989A (zh) * 2019-08-16 2019-12-10 华南理工大学 一种基于Xgboost算法的交通量预测方法
CN110555989B (zh) * 2019-08-16 2021-10-26 华南理工大学 一种基于Xgboost算法的交通量预测方法
CN111599170A (zh) * 2020-04-13 2020-08-28 浙江工业大学 一种基于时序交通网络图的交通运行状态分类方法
CN111599170B (zh) * 2020-04-13 2021-12-17 浙江工业大学 一种基于时序交通网络图的交通运行状态分类方法
CN112710273A (zh) * 2020-12-10 2021-04-27 浙江大学 一种基于智能手机传感器和机器学习的众包路面坑洼检测方法
CN112918488A (zh) * 2021-03-11 2021-06-08 知行汽车科技(苏州)有限公司 车辆控制方法、装置及存储介质
CN113159577A (zh) * 2021-04-22 2021-07-23 电子科技大学 基于群智感知的城市道路规划方法
CN113159577B (zh) * 2021-04-22 2022-05-03 电子科技大学 基于群智感知的城市道路规划方法
CN113570862A (zh) * 2021-07-28 2021-10-29 太原理工大学 一种基于XGboost算法的大型交通拥堵预警方法
CN113570862B (zh) * 2021-07-28 2022-05-10 太原理工大学 一种基于XGboost算法的大型交通拥堵预警方法

Similar Documents

Publication Publication Date Title
CN109191840A (zh) 一种基于智能终端的实时交通状况判定方法
US11209275B2 (en) Motion detection method for transportation mode analysis
Morris et al. Real-time video-based traffic measurement and visualization system for energy/emissions
CN109544932A (zh) 一种基于出租车gps数据与卡口数据融合的城市路网流量估计方法
CN104412310B (zh) 移动方式判别系统以及移动方式判别装置
US9045041B2 (en) Driver behavior from probe data for augmenting a data model
CN105096611A (zh) 一种道路车辆检测系统及方法
CN110197588A (zh) 一种基于gps轨迹数据的大货车驾驶行为评估方法及装置
KR101197457B1 (ko) 운전 평가 정보 표시 장치 및 방법
CN108492557A (zh) 基于多模型融合的高速公路拥堵等级判断方法
CN105160872B (zh) 一种gps轨迹数据智能采集方法
CN110176139A (zh) 一种基于dbscan+的道路拥堵识别可视化方法
CN110275934A (zh) 基于北斗定位系统的车辆行驶情况风险分析方法和系统
CN109050535A (zh) 一种基于车辆姿态的快速地形工况辨识方法
CN107103775A (zh) 一种基于群智计算的道路质量检测方法
CN110852542B (zh) 一种道路平整度的计算方法及系统
CN112463898B (zh) 一种结合速度与噪声监测数据的噪声地图更新方法
CN108091137A (zh) 一种信号灯控制方案的评价方法及装置
JP2016057836A (ja) 移動体分析システムおよび移動体の方向軸推定方法
CN108241630A (zh) 一种行车目的地推荐方法及装置
CN106126637A (zh) 一种交通工具类别识别方法及装置
CN109979198B (zh) 基于大规模浮动车数据的城市快速道路车速离散辨识方法
Scora et al. Real-time roadway emissions estimation using visual traffic measurements
CN110610118A (zh) 交通参数采集方法及装置
CN108981728A (zh) 一种智能车辆导航地图建立方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190111