CN109188328B - 一种基于介质集成波导的可调互调校准源 - Google Patents

一种基于介质集成波导的可调互调校准源 Download PDF

Info

Publication number
CN109188328B
CN109188328B CN201810891395.7A CN201810891395A CN109188328B CN 109188328 B CN109188328 B CN 109188328B CN 201810891395 A CN201810891395 A CN 201810891395A CN 109188328 B CN109188328 B CN 109188328B
Authority
CN
China
Prior art keywords
integrated waveguide
dielectric
section
dielectric integrated
intermodulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810891395.7A
Other languages
English (en)
Other versions
CN109188328A (zh
Inventor
陈雄
贺永宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201810891395.7A priority Critical patent/CN109188328B/zh
Publication of CN109188328A publication Critical patent/CN109188328A/zh
Application granted granted Critical
Publication of CN109188328B publication Critical patent/CN109188328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • G01R35/007Standards or reference devices, e.g. voltage or resistance standards, "golden references"

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Waveguide Connection Structure (AREA)

Abstract

本发明公开了一种基于介质集成波导的可调互调校准源,介质集成波导段、波导转换段及输入端均位于介质层上,且波导转换段与输入端及介质集成波导段相连接,介质集成波导段的上表面上设置有环形开槽,非线性偶极子双臂位于介质集成波导段的上表面上,且非线性偶极子双臂位于所述环形开槽内,非线性偶极子双臂上设置有极化开槽,二极管连接于极化开槽的两端,射频信号源通过输入端及波导转换段与介质集成波导段的一端相连接,吸收负载与介质集成波导段的另一端相连接,介质层内部设置有腔体,该可调互调校准源能够实现全测试范围内PIM测试仪器的校准。

Description

一种基于介质集成波导的可调互调校准源
技术领域
本发明涉及一种可调互调校准源,具体涉及一种基于介质集成波导的可调互调校准源。
背景技术
由于无源互调(Passive intermodulation,PIM)机理研究复杂,微观接触的分析存在很大不确定性,这使得PIM的定量化主要依赖于实验测试。PIM测试作为一种典型的射频测试方法,如何提高其测试准确度是一个热门课题。准确的PIM测试需要精密的射频模块来保障,与此同时一个良好的校准参考源也是保证测试准确度中不可或缺的重要部分。
目前常用的IEC62037测试标准对误差分析是基于数学方法,其给出的误差项是误差出现的最大值。而在实际的测试操作中,往往会出现测试结果虽然出现波动,但其真实误差却很少出现如数值估计中的最大误差上下限。这种情况使得实际的测试结果本身往往具备一定准确度而根据数值误差估计该结果又不确信的情况常常出现,使得PIM测试的准确度和置信度大大下降。也即使过多测试误差余度被浪费,也降低了测试准确度也降低了测试效率。针对该种情况,目前已经涌现出一些使用定值的PIM参考源去评估测试仪器的准确性的方案,但这些定值的参考源对超过其PIM区间的测试水平往往存在极大的误差,这也使得PIM测试参考成为一个热门问题。
作为定值参考源校准方法的主要改进措施,动态的互调参考技术的出现使得无源互调的测试趋向于更为稳定和精确的方向发展,但总体而言,在目前公开的动态互调参考技术中,其能提供的互调动态参考幅度有限。而对具有潜在非线性失真的器件,其PIM幅值往往也具有较大的波动性,这使得对全测试范围内的PIM测试仪器校准成为提高PIM测试准确度的关键步骤。这种需求使得开发具有极高动态余度的PIM校准源成为亟需解决的问题。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种基于介质集成波导的可调互调校准源,该可调互调校准源能够实现全测试范围内PIM测试仪器的校准。
为达到上述目的,本发明所述的基于介质集成波导的可调互调校准源包括介质集成波导段、波导转换段、输入端、介质层、非线性偶极子双臂、二极管、射频信号源及吸收负载;
介质集成波导段、波导转换段及输入端均位于介质层上,且波导转换段与输入端及介质集成波导段相连接,介质集成波导段的上表面上设置有环形开槽,非线性偶极子双臂位于介质集成波导段的上表面上,且非线性偶极子双臂位于所述环形开槽内,非线性偶极子双臂上设置有极化开槽,二极管连接于极化开槽的两端,射频信号源通过输入端及波导转换段与介质集成波导段的一端相连接,吸收负载与介质集成波导段的另一端相连接,介质层内部设置有腔体。
介质集成波导段的端部覆盖有绝缘隔离层,铜箔扣合于绝缘隔离层的外侧,且铜箔与介质集成波导段之间使用焊锡焊接。
极化开槽与载波方向平行,二极管竖直焊接于极化开槽的两端。
输入端具有50欧姆阻抗。
射频信号源通过射频转接器与输入端相连接。
本发明具有以下有益效果:
本发明所述的基于介质集成波导的可调互调校准源在具体操作时,通过控制非线性偶极子双臂的尺寸实现可调PIM区间的调节。另外,非线性偶极子双臂上设置有极化开槽,二极管连接于极化开槽的两端,其中,采用布局极化的开槽方式使得二极管可以处于弱场区通过单纯的传导PIM来调控非线性,本发明能够实现以-112dBm三阶互调为下边界向上波动80dB的三阶PIM动态余度,以适应无源器件及有源器件的互调测试。
附图说明
图1为本发明的结构示意图;
图2为本发明互调产生及传播的示意图;
图3为介质集成波导段1的窄边焊接示意图;
图4为介质集成波导段1辐射偶极子的示意图;
图5为极化开槽4与非极化开槽的对比图;
图6为不同偶极子尺寸下采用极化开槽4与否的PIM调节效果图;
图7为本发明最优尺寸下的PIM调节效果图。
其中,1为介质集成波导段、2为非线性偶极子双臂、3为二极管、4为极化开槽、5为波导转换段、6为输入端、7为介质层、8为绝缘隔离层、9为射频信号源、10为吸收负载、11为铜箔。
具体实施方式
下面结合附图对本发明做进一步详细描述:
本发明所述的基于介质集成波导的可调互调校准源包括介质集成波导段1、波导转换段5、输入端6、介质层7、非线性偶极子双臂2、二极管3、射频信号源9及吸收负载10;介质集成波导段1、波导转换段5及输入端6均位于介质层7上,且波导转换段5与输入端6及介质集成波导段1相连接,介质集成波导段1的上表面上设置有环形开槽,非线性偶极子双臂2位于介质集成波导段1的上表面上,且非线性偶极子双臂2位于所述环形开槽内,非线性偶极子双臂2上设置有极化开槽4,二极管3连接于极化开槽4的两端,射频信号源9通过输入端6及波导转换段5与介质集成波导段1的一端相连接,吸收负载10与介质集成波导段1的另一端相连接,介质层7内部设置有腔体,其中,输入端6具有50欧姆阻抗;射频信号源9通过射频转接器与输入端6相连接。
参考图1,介质集成波导段1、波导转换段5及输入端6相互连接为一体,其中,输入端6具有标准50欧姆阻抗,在实际应用中可根据不同需求通过相应的射频转接器将该装置从输入端6转接到同轴或波导输入,其中,二极管3作为人工的非线性源焊接在非线性偶极子双臂2上。在实现中,非线性偶极子通过环形开槽与介质集成波导段1的地平面隔离,使得在使用中偏置电压可以直接施加于非线性偶极子双臂2上,并可以进行实时在线调节。
参考图2,射频信号源9输出的激励载波传输到介质集成波导段1上,通过非线性偶极子双臂2耦合一部分能量以激励二极管3,以产生三阶互调信号IM3,该三阶互调信号IM3通过非线性偶极子双臂2耦合回介质层的腔体内,并沿着双向传播,传递到吸收负载10后被吸收负载10吸收,在此过程中,非线性偶极子相当于一个信号源,其产生的三阶互调信号IM3沿着双向传播,传播到射频信号源9的端口作为反射互调,传播到负载段作为传输互调。
参考图3,在实际操作中,在介质集成波导段1上由于需要通过上下两个地平面直接电连接形成一个腔体型围绕的地电势,考虑到上下导体边界处不能有金属接触,因此先通过绝缘隔离层8将介质集成波导段1的上下边缘处隔离,再使用铜箔11在绝缘隔离层8外侧连接介质集成波导段1的上下两侧,最后使用焊锡焊接介质集成波导段1的上下两侧,以形成上下连通的地电势腔体。
参考图4,非线性偶极子主要由非线性偶极子双臂2和二极管3构成,非线性偶极子的周围设置有环形开槽,通过该环形开槽与介质集成波导段1的地平面隔离,其中,极化开槽4与载波方向平行,二极管3竖直焊接于极化开槽4的两端,由于非线性偶极子与地平面隔离,使得偏置电压可以直接加载在非线性偶极子双臂2的两端,以调节二极管3的静态工作点。
参考图5,非极化开槽的方向与载波的方向垂直,由于介质集成波导段1内部以TE模式为主,这使得极化开槽4处并不会截断沿着载波方向的电流,从而避免在该极化开槽4处的电磁辐射,从而避免二极管3直接受到从介质集成波导段1产生的内部辐射,进而保证在二极管3传导非线性被抑制后,其辐射非线性不会成为干扰源,保证该装置的最低PIM底噪。
参考图6,在多组非线性偶极子尺寸组合下,分别进行全偏置电压范围内的PIM测试,实测结果表明,使用极化开槽4方案在保持非线性偶极子双臂2与非极化开槽方案近乎相同的长和宽情况下,极化开槽4的最低PIM幅值要远优于非极化开槽水平,但两种方案下的最大PIM值并无较大区别,该对比结果显示出本发明对优化最小PIM值作用明显。
参考图7,针对三阶互调频率1885MHz,在幅度为2x43dBm的双载波频率(1935MHz&1985MHz)激励下,使用Avago HSMS2805二极管3作为非线性源,在全电压偏置范围内,最优尺寸参数下其三阶PIM的幅值可以从最强的-33dBm水平调节到最弱-113dBm水平,也即其动态范围达到80dB。

Claims (5)

1.一种基于介质集成波导的可调互调校准源,其特征在于,包括介质集成波导段(1)、波导转换段(5)、输入端(6)、介质层(7)、非线性偶极子双臂(2)、二极管(3)、射频信号源(9)及吸收负载(10);
介质集成波导段(1)、波导转换段(5)及输入端(6)均位于介质层(7)上,且波导转换段(5)与输入端(6)及介质集成波导段(1)相连接,介质集成波导段(1)的上表面上设置有环形开槽,非线性偶极子双臂(2)位于介质集成波导段(1)的上表面上,且非线性偶极子双臂(2)位于所述环形开槽内,非线性偶极子双臂(2)上设置有极化开槽(4),二极管(3)连接于极化开槽(4)的两端,射频信号源(9)通过输入端(6)及波导转换段(5)与介质集成波导段(1)的一端相连接,吸收负载(10)与介质集成波导段(1)的另一端相连接,介质层(7)内部设置有腔体。
2.根据权利要求1所述的基于介质集成波导的可调互调校准源,其特征在于,介质集成波导段(1)的端部覆盖有绝缘隔离层(8),铜箔(11)扣合于绝缘隔离层(8)的外侧,且铜箔(11)与介质集成波导段(1)之间使用焊锡焊接。
3.根据权利要求1所述的基于介质集成波导的可调互调校准源,其特征在于,极化开槽(4)与载波方向平行,二极管(3)竖直焊接于极化开槽(4)的两端。
4.根据权利要求1所述的基于介质集成波导的可调互调校准源,其特征在于,输入端(6)具有50欧姆阻抗。
5.根据权利要求1所述的基于介质集成波导的可调互调校准源,其特征在于,射频信号源(9)通过射频转接器与输入端(6)相连接。
CN201810891395.7A 2018-08-07 2018-08-07 一种基于介质集成波导的可调互调校准源 Active CN109188328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810891395.7A CN109188328B (zh) 2018-08-07 2018-08-07 一种基于介质集成波导的可调互调校准源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810891395.7A CN109188328B (zh) 2018-08-07 2018-08-07 一种基于介质集成波导的可调互调校准源

Publications (2)

Publication Number Publication Date
CN109188328A CN109188328A (zh) 2019-01-11
CN109188328B true CN109188328B (zh) 2020-03-17

Family

ID=64920921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810891395.7A Active CN109188328B (zh) 2018-08-07 2018-08-07 一种基于介质集成波导的可调互调校准源

Country Status (1)

Country Link
CN (1) CN109188328B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212542673U (zh) * 2019-09-30 2021-02-12 3M创新有限公司 无线通信系统
CN110830125B (zh) * 2019-10-11 2020-11-10 西安交通大学 一种用于近场耦合无源互调测试的基片集成缝隙波导测试板
CN113890643B (zh) * 2021-09-08 2024-03-01 杭州紫光通信技术股份有限公司 一种用于无源互调测量的宽带可调标准件及调节方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121425A1 (zh) * 2009-04-22 2010-10-28 华为技术有限公司 一种校准方法及有源天线
CN104681933A (zh) * 2013-11-27 2015-06-03 中国航天科工集团第三研究院第八三五七研究所 L波段宽带抗遮挡全向印刷偶极子天线
CN105633524A (zh) * 2016-03-14 2016-06-01 成都天奥电子股份有限公司 一种改善脊波导连接无源互调的脊波导结构
CN106788784A (zh) * 2015-11-25 2017-05-31 西安交通大学 动态无源互调参考信号发生器
CN108258404A (zh) * 2018-01-08 2018-07-06 西安电子工程研究所 一种具有低抑制特性的平面偶极子天线

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4663346B2 (ja) * 2005-02-01 2011-04-06 富士通株式会社 メアンダラインアンテナ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121425A1 (zh) * 2009-04-22 2010-10-28 华为技术有限公司 一种校准方法及有源天线
CN104681933A (zh) * 2013-11-27 2015-06-03 中国航天科工集团第三研究院第八三五七研究所 L波段宽带抗遮挡全向印刷偶极子天线
CN106788784A (zh) * 2015-11-25 2017-05-31 西安交通大学 动态无源互调参考信号发生器
CN105633524A (zh) * 2016-03-14 2016-06-01 成都天奥电子股份有限公司 一种改善脊波导连接无源互调的脊波导结构
CN108258404A (zh) * 2018-01-08 2018-07-06 西安电子工程研究所 一种具有低抑制特性的平面偶极子天线

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
An experimental consideration on the effect of antenna gain on the observed PIMs for an external PIM-source;Kohei TAKADA等;《 2012 International Symposium on Antennas and Propagation (ISAP)》;20121231;991-994 *
Novel Programmable Passive Intermodulation Generator Using Nonlinear Rotating Disk;Xiong Chen等;《IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS》;20171031;第27卷(第10期);945-947 *
一种基于偶极子近场耦合法测量无源互调的方法;高凡等;《空间电子技术》;20180630(第3期);12-18 *

Also Published As

Publication number Publication date
CN109188328A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN109188328B (zh) 一种基于介质集成波导的可调互调校准源
Simons et al. Modeling of some coplanar waveguide discontinuities
JP4904509B2 (ja) 受動相互変調ひずみの測定方法および測定システム
US7173433B2 (en) Circuit property measurement method
Tong et al. Design and characterization of a 250-350-GHz fixed-tuned superconductor-insulator-superconductor receiver
Cai et al. Passive intermodulation measurement: Challenges and solutions
Wang et al. Impedance compensation of the welding area of the RF connector and microstrip line
US10044320B2 (en) Robust waveguide millimeter wave noise source
Emadeddin et al. Wide scan, active K-band, direct-integrated phased array for efficient high-power Tx-generation
CN117040451A (zh) 一种平衡式功率放大器及提高线性度的方法
Xun et al. Recent progress of parameter-adjustable high-power photonic microwave generation based on wide-bandgap photoconductive semiconductors
Hou et al. Non-intrusive near-field characterization of distributed effects in large-periphery LDMOS RF power transistors
Sharma et al. Compact dual-channel radio frequency power sensor for solid state amplifiers
JP2000221233A (ja) ロードプルまたはソースプル測定用チューナ
CN206850085U (zh) 一种射频同轴连接器及带有射频同轴连接器的天线
Petersson et al. A New Calibration Kit for VNA Measurements of General Microstrip Line Devices Using Gap Waveguide Technology
CN115549612A (zh) 一种传输线补偿型偏置电路
CN105991144A (zh) 一种降低射频系统传输线驻波电压的方法
Zhang et al. A broadband intermodulation reference generator based on artificial nonlinear dipole
US20100182106A1 (en) Direct current voltage isolator
JPS60157301A (ja) ダイオード取付装置
Choi ATTN: Defense Technical Information Center
JP2001033512A (ja) ロードプルまたはソースプル測定用チューナ
Elsbury et al. Microwave packaging for voltage standard applications
CN113219216A (zh) 一种氮化镓微波晶体管测试夹具及其工作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant